
1. Introduction
The deformation of lithospheric tectonic plates generates major rifts, strike-slip faults, and subduction zones 
and is, hence, a critical process for the evolution of our dynamic planet. Lithosphere deformation involves a 

Abstract Deformation at tectonic plate boundaries involves coupling between rock deformation, 
fluid flow, and metamorphic reactions, but quantifying this coupling is still elusive. We present a new 
two-dimensional hydro-mechanical-chemical numerical model and investigate the coupling between 
heterogeneous rock deformation and metamorphic (de)hydration reactions. We consider linear viscous 
compressible and power-law viscous shear deformation. Fluid flow follows Darcy's law with a Kozeny-
Carman type permeability. We consider a closed isothermal system and the reversible (de)hydration 
reaction: periclase and water yields brucite. Fluid pressure within a circular or elliptical inclusion is 
initially below the periclase-brucite reaction pressure and above in the surrounding. Inclusions exhibit a 
shear viscosity thousand times smaller than for the surrounding. For circular inclusions, solid deformation 
has a minor impact on the evolution of fluid pressure, porosity, and reaction front. For elliptical inclusions 
and far-field shortening, rock pressure inside the inclusion is higher compared to circular inclusions, and 
reaction-front propagation is faster. The reaction generates a large change in porosity (∼0.1%–55%) and 
in solid density (∼2,300–3,500 kg m−3), and the reaction front exhibits steep gradients of fluid pressure 
and porosity. Reaction-front propagating increases the weak inclusion's surface and causes an effective, 
reaction-induced weakening of the heterogeneous rock. Weakening evolves nonlinear with progressive 
strain. Distributions of fluid and rock pressure as well as magnitudes and directions of fluid and solid 
velocities are significantly different. The models mimic basic features of shear zones and show the 
importance of coupling deformation and metamorphism. The applied MATLAB algorithm is provided.

Plain Language Summary Geodynamic processes at tectonic plate boundaries are 
complicated because rock deformation, fluid flow, and chemical reactions occur simultaneously. 
Investigating these coupled processes by direct observations is usually not possible, and investigating 
them with laboratory experiments is often not feasible. Alternatively, these coupled processes can be 
investigated with computer simulations. Here, we present a new two-dimensional hydro-mechanical-
chemical computer model to investigate the coupling of these processes. We consider a simple and 
reversible (de)hydration reaction: periclase (magnesium oxide) and water yields brucite (magnesium 
hydroxide). The initial fluid pressure within a circular or elliptical inclusion is initially below the 
periclase-brucite reaction pressure, while in the surrounding it is above. Inclusions in the deforming rock 
are mechanically weaker than the surrounding. Models with elliptical inclusions generate higher rock 
pressure inside the inclusion compared to circular inclusions and show a faster reaction-front propagation. 
The propagating reaction-front causes an effective, reaction-induced weakening of the heterogeneous 
rock. Fluid and rock pressure as well as magnitudes and directions of fluid and solid velocities are 
significantly different. The models mimic basic features of shear zones and suggest a strong impact of 
heterogeneous rock deformation on (de)hydration reactions and associated rheological weakening. The 
applied MATLAB algorithm is provided.
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complex interplay between heat transfer, rock deformation, fluid flow, and metamorphic reactions. Notably, 
the interplay between heterogeneous rock deformation and metamorphic (de)hydration reactions, such as 
related to eclogitization, serpentinization, or decarbonation, may have a significant impact on, for example, 
the evolution of shear zones (e.g., Austrheim, 1987), faulting at slow-spreading ridges (e.g., Escartin et al., 
1997), subduction interface processes (e.g., Guillot et al., 2015), or slip-weakening of faults due to decarbon-
ation (e.g., Sulem & Famin, 2009). Hence, quantifying this interplay is essential for eventually understand-
ing coupled plate tectonic processes. At present, however, such quantification remains elusive.

Many metamorphic reactions are intrinsically coupled to fluid flow since they involve the hydration or 
dehydration of rocks (e.g., Lindgren, 1912; Philpotts & Ague, 2009; Putnis, 2009; Yardley, 1989). Such met-
amorphic (de)hydration reactions occur when ambient pressure and temperature conditions change due 
to, for example, rock burial and subsequent exhumation (e.g., Philpotts & Ague, 2009; Yardley, 1989). Fur-
thermore, stress and fluid-pressure variations due to tectonic, differential stresses can affect the region of 
thermodynamic equilibrium of hydrous/anhydrous phases (e.g., Jamtveit et al., 2019; Moulas et al., 2019; 
Wheeler, 2018). Fluid flow and associated (de)hydration reactions are essential for many first-order phe-
nomena in plate boundary regions, which include, for example, fluid cycling through the lithosphere (e.g., 
John et al., 2011), the evolution of shear zones (e.g., Austrheim, 1987), slow-slip phenomena at subduction 
zones (e.g., Gomberg et al., 2010; Schwartz & Rokosky, 2007), intermediate-depth earthquakes (e.g., Bran-
tut et al., 2017; Ferrand et al., 2017), reaction-induced rheological weakening of rocks (e.g., Jolivet et al., 
2005; White & Knipe, 1978), or self-sustained densification of the lower crust (e.g., Malvoisin et al., 2020). 
These reactions may also be of industrial relevance, for example, for geological carbon sequestration (e.g., 
Kelemen & Matter, 2008) or volume changes during geothermal energy extraction.

Metamorphism and rock deformation often occur together (e.g., Hobbs & Ord, 2015; Yardley, 1989). From 
the view point of solid volume and mass changes, there are two end-member scenarios that couple (de)
hydration reactions and rock deformation: (1) the volume of the considered solid-fluid system is constant 
during (de)hydration or (2) the pressure is constrained during (de)hydration while the volume is uncon-
strained. The first, constant volume, scenario requires mobility, input, and loss of the involved elements 
via dissolution and precipitation processes (e.g., Lindgren, 1912; Putnis, 2009). The considered fluid-rock 
system is open, but its mass exchange evolves in such a way that the rock volume is constant. For the par-
ticular case of an open system with constant volume, there is virtually no coupling between (de)hydration 
reactions and rock deformation, so that (de)hydration reactions can be investigated using pure hydro-chem-
ical (HC) models assuming that velocities of the solid rock are zero (e.g., Plümper et al., 2017). In the second 
scenario, the volume is not constrained. Volume change occurs if the system is closed, and the elements are 
redistributing among the stable phases (e.g., Connolly, 1997; Malvoisin et al., 2015). For the case of a closed 
system with volume change, deformation of the porous solid coupled with (de)hydration reactions must 
be investigated using a hydro-mechanical-chemical (HMC) model (e.g., Poulet et al., 2012). Volume chang-
es can be significant and may cause considerable deformation and differential stresses in the rock. These 
stresses can cause fracturing (e.g., Carmichael, 1987; Evans et al., 2020; Kelemen & Hirth, 2012; Plümper 
et al., 2012; Zheng et al., 2018), for example, during serpentinization (e.g., Kelemen & Hirth, 2012) or tran-
sition from anorthosite to eclogite (e.g., Jamtveit et al., 2000).

Furthermore, metamorphic reactions frequently occur during lithosphere deformation, which exhibits 
shear deformation significantly larger than the volumetric deformation. Deviatoric stresses drive shear 
deformation, and the mean stress in a deforming rock is, hence, not lithostatic (e.g., Schmalholz et al., 
2014). Moreover, most deforming rock units are mechanically heterogeneous, due to, for example, their 
layered structure. These heterogeneities typically cause folding and necking in the deforming lithosphere 
across all geological scales (e.g., Schmalholz & Mancktelow, 2016). Furthermore, active shear zones are 
usually mechanically weaker than their wall rocks, so that rock units, including active shear zones, rep-
resent mechanically heterogeneous systems. Mechanical heterogeneities in deforming rocks cause stress 
and pressure variations within and around the heterogeneities (e.g., Moulas et al., 2014; Schmid & Podlad-
chikov, 2003). Recent numerical models show that mechanical heterogeneities within subduction-related 
shear zones, and the associated stress variations, could explain slow slip events, that is, episodes of aseismic 
slip commonly associated with tectonic tremor, which are observed along subduction interfaces (e.g., Beall 
et al., 2019a, 2019b; Webber et al., 2018). These purely mechanical models do not yet consider fluid flow and 
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reactions. Eventually elaborating such mechanically heterogeneous shear zone models by including fluid 
flow and reactions is, hence, important for ultimately understanding subduction interface processes and for 
unraveling the interplay between lithosphere deformation and metamorphic reactions.

A method to quantify the interplay between lithosphere deformation, fluid flow, and metamorphic reac-
tions is mathematical modeling. A particular challenge for such models is the significantly different tempo-
ral and spatial scales of fluid flow and viscous flow of the lithospheric rocks (e.g., Quinquis & Buiter, 2014). 
Therefore, many numerical models focusing on lithosphere deformation employ significantly simplified 
models to quantify fluid flow and/or reactions (e.g., Quinquis & Buiter, 2014). For example, in some earlier 
models, the magnitude and direction of fluid velocity are prescribed to a constant value (e.g., T. V. Gerya et 
al., 2008). In other models, the fluid velocity is described by a Darcy-type law, but it is assumed that the fluid 
pressure is equal to the rock pressure (e.g., Yang & Faccenda, 2020). In contrast to such lithospheric-scale 
models, two-phase models can calculate both solid deformation and fluid flow, based on a self-consistent 
system of governing equations (e.g., Biot, 1941; Coussy, 2004; Evans et al., 2018; Yarushina & Podladchikov, 
2015). However, many of these models are currently still assuming that solid deformation is negligible and 
set the solid velocities to zero (e.g., Beinlich et al., 2020; Plümper et al., 2017). Other models focus on ho-
mogeneous deformation and ignore shear deformation or mechanical heterogeneities (e.g., Brantut et al., 
2011; Malvoisin et al., 2015).

Here, we aim to take a further step toward quantifying the interplay between heterogeneous rock 
 deformation, fluid flow, and metamorphic reactions. We study the impact of volumetric and shear 
 deformation on fluid flow and (de)hydration reactions in a mechanically heterogeneous, poroviscous 
 medium. Our two-dimensional (2D) mathematical model for HMC two-phase processes extends the 
 model of Malvoisin et al. (2015). The mechanical part of our HMC model can calculate stress and pressure 
 variations around mechanically weak, or strong, inclusions in a compressible power-law viscous medium 
under far-field pure-shear shortening. We study the deformation of a medium with weak elliptical inclu-
sions because such a model captures the first-order stress and deformation features of weak lithospheric 
shear zones (Moulas et al., 2014). The HC part of the model can calculate the evolution of fluid pressure, 
porosity, and solid as well as fluid densities including (de)hydration reactions. Although our HMC model 
is generally applicable, for transparency and clarity, we apply the model here to a simple brucite (Mg(OH)2) 
− periclase (MgO) − water (H2O) system (Figure 1). We also chose the brucite-periclase (de)hydration re-
action because it involves considerable volume and porosity changes (e.g., Carmichael, 1987; Zheng et al., 
2018) and is, hence, a good test for the numerical robustness of our HMC model. For simplicity, we assume 
a constant temperature and a constant system composition (closed system), and we assume that solid and 
fluid densities are only a function of the fluid pressure.

The aims of our study are as follows: (1) to present a self-consistent system of equations to quantify (de)
hydration reactions and fluid flow in mechanically heterogeneous and deforming poroviscous rock, (2) to 
present a numerical pseudo-transient finite-difference algorithm to solve the system of equations, (3) to 
quantify the impact of volumetric and shear deformation on the brucite-periclase (de)hydration reaction 
and the evolving reaction front, (4) to quantify differences between fluid and rock pressure, and between 
fluid and solid velocities, and (5) to quantify the reaction-induced rheological weakening of the modeled 
heterogeneous rock.

2. Mathematical Model
2.1. Porous Medium Densities for the Brucite, Periclase, and Water System

We consider a porous medium, with porosity ϕ, which consists of a solid phase with density ρs and a pore 
fluid with density ρf so that the total density of the porous medium is

     ρ ρ ρ 1 .T f s (1)

We assume that the solid phase consists of two components: (1) a nonvolatile component that remains in the 
solid and (2) a volatile component that is liberated during dehydration. For the considered brucite-periclase 
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system, the nonvolatile component is MgO, and the volatile component is H2O. To quantify the nonvolatile 
component of MgO in the solid phase, we use its mass (in kg) fraction, Xs. Periclase has a molar mass of 
0.0403 kg/mol, water of 0.0180 kg/mol and brucite of 0.0583 kg/mol. Therefore, we set Xs = 1 for periclase 
and Xs = 0.69 for brucite. Furthermore, we define the relative density of the solid component in the solid 
phase as

 ρ ρX s sX (2)

2.2. HC Model

The conservation of total mass is described by

          
ρ ρ ρ 1 0,f sT

f st
v v (3)

where t is time,   is the divergence operator, and fv  and sv  are vectors of the fluid and solid (barycentric) 
velocities, respectively. For vector and tensor quantities, we use indices f and s as superscripts because vector 
and tensor components will have additional subscripts indicating the spatial direction, and scalar quantities 
can be easier distinguished from vector and tensor quantities. We modify Equation 3 by subtracting and 
adding sv  to fv , yielding

               
ρ ρ ρ 1 0.f s s sT

f st
v v v v (4)
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Figure 1. (a) Solid and (b) fluid density fields in pressure, P, and temperature, T, space. (c) and (d) Corresponding profiles of solid and fluid densities and mass 
fraction of MgO as a function of fluid pressure at 800°C. These three profiles are used in the numerical algorithm as precalculated data.
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Then, we re-group the velocity vectors with the total density, ρT, to yield

             
ρ ρ ρ 0.f s sT

f Tt
v v v (5)

Now, the relative velocity of the fluid to the solid, f sv v , in Equation 5 can be expressed by Darcy's law in 
the absence of gravity

       
3

.
η

f s
f

f

k pv v (6)

where k is the permeability coefficient in a Kozeny-Carman-type permeability expression, ηf is the fluid vis-
cosity, and pf is the fluid pressure. Similar to total mass, the conservation of the total nonvolatile component 
(MgO) is described by

               
ρ 1 ρ 1 0.s

X Xt
v (7)

There is no fluid velocity in this conservation equation because we assume that the dissolution of MgO in 
the fluid is negligible.

We assume a constant temperature and a closed system with constant system composition so that we have 
equal molar amounts of H2O and MgO. Our system has a constant composition as a whole, but its compo-
sition can vary locally because of local mass exchange (e.g., reaction and/or diffusion). We approximate ρs, 
ρf, and Xs as a function of pf, which can be expressed as

 
 
 
 







ρ ρ

ρ ρ

.

f f f

s s f

s s f

p

p

X X p
(8)

The values of ρs, ρf, and Xs for a range of values of pf are calculated by Gibbs free-energy minimization (e.g., 
Connolly, 2005; Figure 1), using the thermodynamic data set of Holland and Powell (1998).

2.3. Mechanical Model

We consider a 2D viscous material, which represents the solid part of the poroviscous medium. We employ 
a power-law viscous flow law, which is typically applied to model dislocation creep (e.g., Gerya, 2019). The 
relationship between the deviatoric stress tensor components,  τ σ δij ij ijp  (where σij are the components 
of the total stress tensor, p is total pressure and δij is the Kronecker delta) and solid velocity gradients, or 
deviatoric strain rate tensor components Dij, is (e.g., Fletcher, 1974; Schmalholz & Schmid, 2012)

 


 
   

 

1
ττ 2η ,
τ

n
s II

ij ij
ref

D (9)

where subscripts i and j are either 1 (representing the horizontal x-direction) or 2 (representing the 
vertical y-direction), ηs is the solid shear viscosity, IIτ  is the square root of the second invariant of 

the deviatoric stress tensor,  2 2
IIτ τ τxx xy , refτ  is a reference stress, n is the stress exponent, and 

           / / / 2 δ / / 3s s s
ij i j j i ij i iD v x v x v x . For n = 1, the material is linear viscous, for example 

mimicking diffusion creep, having a constant viscosity ηs. For simplicity, we also consider a viscous volu-
metric deformation for which the divergence of the solid velocity field is related to the difference between 
total pressure, p, and fluid pressure, pf (e.g., Yarushina & Podladchikov, 2015)

SCHMALHOLZ ET AL. 5 of 21

10.1029/2020GC009351



Geochemistry, Geophysics, Geosystems

  


  


,
1 λ

fs p p
v (10)

where λ is the bulk viscosity. The applied force balance equations without 
inertial forces and gravity are

  σ 0.ij (11)

2.4. Governing System of Equations

The above equations represent a system of 11 equations for 11 unknowns, 
which are pf, ϕ, ρs, ρf, Xs, p, s

xv , s
yv , τxx, τyy, and τxy, assuming that the 

 deviatoric stress tensor is symmetric, τ τxy yx. The three  deviatoric stress 
tensor components are calculated using the three flow laws  (Equation 
9). The solid pressure is determined from the bulk-flow law, Equation 
10. The solid and fluid densities and the mass fraction are  calculated 
by the three precomputed thermodynamic data tables  (Equation 8 and 
 Figures 1c and 1d). Equation 5 is used to determine the fluid pressure, 
pf,  Equation 7 to determine the porosity, ϕ, and the two force balance 

Equation 11 to  determine the two solid velocities, s
xv  and s

yv . To determine 

pf, ϕ, s
xv , and s

yv , we use an iterative numerical method, here referred to as 
 pseudo-transient (PT) method (e.g., Chorin, 1968; Duretz et al., 2019; Räss 
et al., 2019). We apply the PT method because (1) it is a suitable method to 
solve fully coupled, nonlinear problems due to its iterative  nature, (2) it is 
fully matrix free and easy to program, and (3) the  developed 2D model is 
easily extendable for 3D. To apply the PT method, we add a pseudo time 
derivative of the unknown variables pf, ϕ, s

xv , and s
yv  to the corresponding 

equations, which we use to determine these variables. The PT equations 
are

 

(12)

When the PT time derivatives of the left-hand sides of the Equation 12 are zero, then the corresponding 
steady-state equations are solved. The closed system of governing equations is given by Equations 8–10 and 
12. Model variables and parameters are given in Table 1.

2.5. Model Configuration

We present the model configuration before presenting the numerical method because some of the numeri-
cal parameters, such as the numerical time step, depend on the model configuration (Figure 2). It is essen-
tial to apply physically consistent initial conditions. Hence, we first assume ambient conditions for which 

 

   




  

  
       

   
           


 



3ρ ρ ρ
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Symbol Name/definition Units

pf Fluid pressure Pa

φ Porosity -

ρs Solid density kg⋅m−3

ρf Fluid density kg⋅m−3

Xs Mass fraction MgO -

p Total pressure Pa
s
xv , s

yv Solid velocities m⋅s−1

sv     
2 2s s

x yv v
m⋅s−1

f
xv , f

yv Fluid velocities m⋅s−1

fv     
2 2f f

x yv v
m⋅s−1

τxx, τyy, τxy Deviatoric stresses Pa

IIτ  2 2τ τxx xy
Pa

refτ Reference stress Pa

k Permeability m2

ηf Fluid viscosity Pa⋅s

ηs Shear viscosity solid Pa⋅s

λ Bulk viscosity solid Pa⋅s

n Stress exponent -

βeff Effective compressibility Pa

pini Initial ambient pressure Pa

xxD Far-field shortening rate s−1

r Inclusion radius m

w Model width m

Table 1 
Model Variables and Parameters
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the unknown parameters are constant in the 2D model domain. We 
then apply an initial perturbation for pf in a circular, or elliptical, region, 
representing an inclusion, in the center of the model domain (Figure 
3). We consider different aspect ratios and orientations for the elliptical 
inclusions. The origin of the coordinate system is always at the center of 
the inclusions with positive coordinates indicating toward the right side 
and upwards. The initial perturbation either increases or decreases the 
ambient value of pf. We consider two initial configurations: (1) ambient 
conditions for which periclase and water are stable with a positive flu-
id-pressure perturbation generating locally higher fluid pressures inside 
the inclusion for which brucite is stable and (2) ambient conditions for 
which brucite is stable and a negative pressure perturbation for which 
locally periclase and water are stable. The initial porosity field, ϕ0, must 
be consistent with the applied initial fluid pressure field including a 
pressure perturbation. The initial porosity is

  



 0

0

ρ 1
1 ,

ρ

amb amb
X

X

(13)

where ambρX  is the corresponding density for the applied ambient fluid pressure, amb is the initially ambient 
porosity, and 0ρX is the initial density field for the initial fluid-pressure field including the perturbation. 
Equation 13 shows that ϕ0 cannot be constant initially if a fluid pressure perturbation is applied because 0ρX 
varies according to the applied fluid pressure perturbation. Equation 13 is derived from Equation 7, assum-
ing zero solid velocities. To guarantee that ϕ0 is initially everywhere positive requires, according to Equation 
13, that   amb 0 amb1 ρ / ρX X . Boundary conditions for pf and ϕ are of Dirichlet type, and boundary values 
are fixed to the initial ambient values.

We also show simulations for a configuration with inclusions, which have a smaller shear viscosity being 
1,000 times smaller than the one of the surrounding (Figures 6–10). Furthermore, we show simulations for 
far-field pure-shear shortening boundary conditions, with horizontal shortening and vertical extension, 
so that the divergence of the applied boundary velocity field is zero (Figures 6–10). We assume a constant 
temperature of 800°C so that there is a sufficient range of fluid pressures for which periclase is stable (Fig-
ure 1a). The exact temperature value is not essential for our isothermal study because the variation of the 
solid and fluid densities with varying fluid pressure is similar for different temperatures (Figures 1a and 1b).

2.6. Numerical Algorithm and Dimensionless Parameters

All derivatives are approximated with discrete difference ratios following the standard procedure of stag-
gered finite difference (FD) methods (e.g., Gerya, 2019). The numerical algorithm consists of a standard 
time loop with an internal PT iteration loop. During this PT iteration loop, the PT time derivatives in the 
discretized Equation 12 approach zero. In practice, we iterate until the PT time derivative becomes smaller 
than a specified numerical tolerance error. Approximating the time derivatives with the FD method gener-
ally requires four numerical time steps, which are the physical time step, t, controlling time evolution, the 
PT time step to solve for pf, 

PT
pft , the PT time step for ϕ, t

PT , and the PT time step for s
xv  and s

yv ,  PT
vt . The 

choice of the numerical time steps is crucial for a stable convergence of the PT iterative solution, but the time 
steps do not affect the result after convergence. For the presented simulations, we employed the following 
numerical time steps:
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Figure 2. Sketch of the modeled scenario and the model configuration (see 
text for details).



Geochemistry, Geophysics, Geosystems

SCHMALHOLZ ET AL. 8 of 21

10.1029/2020GC009351

Figure 3. Numerical convergence test for a model with a weak and oblique elliptical inclusion under far-field horizontal pure-shear shortening. The model is 
described and discussed in detail later in Section 3 and more results of the model are displayed in Figures 9 and 10. The presented results of the convergence 
test correspond to a model time of 3.3 h. (a–c) Color  plot of pf for three different numerical resolutions (white numbers inside panel). (d–f) Color plot of 

    
2 2s s s

x yv vv  for three different numerical resolutions (white numbers inside panel). (g) Variation of the minimum value of pf and the maximal value of 

sv  with increasing resolution. The horizontal axis shows the resolution in the horizontal x-direction, and the vertical axis shows the corresponding quantities 
for pf and sv  divided by the corresponding value for the maximal resolution of 401 grid points. The plot shows that the respective values vary less and less with 
increasing resolution indicating an asymptotic convergence of the numerical result toward a specific magnitude.
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where eff iniβ 0.01 / p , r is the inclusion radius (the small radius in case of an elliptical inclusion), x and y 
are horizontal and vertical grid spacing, respectively, and pini is the initial value of the ambient fluid pressure. 
There are many possibilities to scale and/or nondimensionalize the model parameters inside the numerical 
algorithm. We programmed the numerical algorithm in such a way that the specific magnitudes of individual 
parameters, such as shear viscosity, are not significant and that the characteristic physical behavior of the 
system is controlled by dimensionless parameters. This scaling provided the most stable convergence during 
the PT iterations. The dimensionless parameters and numerical examples applied in the simulations are
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(15)

where w is the model width and xxD  is the applied far-field horizontal pure-shear shortening rate. We model 
purely mechanical, M, (fluid velocity is zero, no reactions), purely HC, (solid velocity is zero), and fully 
coupled HMC, systems. Parameter 1Γ  applies to all systems, parameter 2Γ  to HC systems and parameters 

3Γ , 4Γ , and 5Γ  to HMC systems, where 4Γ  controls the far-field deformation via xxD  and 5Γ  only applies for 
power-law viscous deformation, n > 1.

The shear viscosity of the inclusion can be different from the one of the surrounding medium. The initial in-
clusion boundary represents the reaction boundary between brucite and periclase. This boundary will move 
during the simulations with progressive fluid pressure diffusion. Hence, also the boundary between regions 
of high porosity (periclase and water region) and low porosity will move. The boundary between brucite 
and periclase is controlled by a considerable change in porosity. Therefore, we define the brucite-periclase 
boundary by the average porosity between the brucite and periclase-water region. The brucite-periclase 
reaction boundary evolves, together with the evolving porosity field. At each time step, the shear viscosity 
distribution is adjusted in order to coincide with the evolving reaction boundary. Therefore, the size and 
geometry of the mechanically weaker inclusion are changing as time progresses.

To show in this section also a representative numerical convergence test of the algorithm, we performed 
a HMC simulation, which is described and discussed in detail below (Figures 9 and 10), for different nu-
merical resolutions (Figure 3). We run simulations with resolutions of 51 × 51, 101 × 101, 151 × 151, 201 
× 201, 301 × 301, and 401 × 401 grid points until a time corresponding to 3.3 h. The distribution of pf 

(Figures 3a–3c) and     
2 2s s s

x yv vv  (Figures 3d–3f) does not show numerical oscillations around the 

dehydration front, although the numerically calculated fields of pf and sv  have not been smoothed during 

SCHMALHOLZ ET AL. 9 of 21

10.1029/2020GC009351



Geochemistry, Geophysics, Geosystems

the simulations. The minimal value of pf at the end of each simulation varies for the different numerical res-

olutions, but it varies less and less with increasing resolution indicating the numerical convergence (Figure 
3g). Similarly, the maximal value of sv  at the end of each simulation varies less and less with increasing 

resolution (Figure 3g). The convergence test indicates that the pseudo-transient finite difference (PTFD) 

algorithm is robust and suitable to numerically simulate the coupling of heterogeneous rock deformation, 
porous fluid flow, and metamorphic reactions.

We programmed the numerical algorithm in MATLAB. We provide the entire algorithm for the most 
complex HMC model configuration (Figure 9), which is available online (https://zenodo.org/badge/
latestdoi/284908588).
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Figure 4. Numerical results of the mechanical model without fluid flow and reaction. (a) and (c) Total pressure field from analytical solutions of Moulas et al. 
(2014) for a weak circular and weak oblique elliptical inclusion under horizontal shortening. (b) and (d) Corresponding numerical results. The numerical model 
reproduces the characteristic pressure distribution and magnitudes.

https://zenodo.org/badge/latestdoi/284908588
https://zenodo.org/badge/latestdoi/284908588
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3. Results
We present first results of a mechanical (M) model to test the applicability of the PTFD method considering 
viscous compressible flow for the calculation of pressure variations around weak inclusions under far-field 
shortening (e.g., Moulas et al., 2014; Schmid & Podladchikov, 2003). To test our system of equations and 
algorithm further, we show results of a HC model, which reproduce the overall results for nonlinear diffu-
sion of fluid pressure perturbations (Malvoisin et al., 2015). Finally, we present fully coupled HMC models 
to test the impact of far-field deformation and mechanical heterogeneities on fluid flow and reaction-front 
evolution.

3.1. Heterogeneous Mechanical Model

A weak circular inclusion is embedded in a linear viscous medium under horizontal pure-shear shortening 
(Figures 2, 4a, and 4b). The applied dimensionless parameters are 1Γ 14, 3Γ 1, and 4Γ 0.0024. We 
also consider an elliptical inclusion (Figures 4c and 4d). The aspect ratio of the ellipse is three, and the 
long axis is tilted 30° to the vertical direction. The applied dimensionless parameters are 1Γ 14 (where the 
radius corresponds to the short axis of the ellipse), 3Γ 1 and 4Γ 0.0024. Inside the circular and elliptical 
inclusion, ηs is a factor 1,000 smaller than in the surrounding medium. We calculate the distributions of p 
and compare them with the corresponding analytical solutions from Moulas et al. (2014). The results show 
that the applied PTFD algorithm with a staggered Eulerian grid can calculate the characteristic pressure 
variations around the weak inclusions under far-field shortening (Figure 4). The numerical and analytical 
solutions are not fully comparable because (1) the analytical solution considers incompressible deformation 
while the numerical algorithm considers viscous volumetric deformation and (2) the analytical solution 
applies to an infinite domain while in the numerical model the pure-shear boundary conditions are applied 
at the boundaries of the finite model domain. However, the numerical and analytical solutions show similar 
magnitudes and distribution of p.

3.2. HC Model

We consider a porous medium without solid deformation and set the solid velocities to zero. Initially, the 
ambient fluid pressure and porosity are perturbed within a circular domain (Figure 5). This domain has the 
same viscosity as the surrounding and the model is mechanically homogeneous. We apply the parameters 

1Γ 10 and  8
2Γ 10 .

First, we apply an initially higher fluid pressure in the circular region so that initially brucite is stable inside 
the inclusion and periclase is stable outside the inclusion. The initial ambient value of pf = pini = 6.5 kbar 
and in the inclusion pf = 8.45 kbar. The ambient initial ϕ = 0.55 and in the inclusion ϕ = 0.007. We chose this 
porosity distribution to test the algorithm in the limit of low porosity. Figure 5 shows horizontal profiles of 
pf and ϕ through the left model half, centered vertically, so that the right end of the displayed horizontal pro-
files is at the center of the inclusion. The model configuration is similar to models of Malvoisin et al. (2015) 
for reactions with positive Clapeyron slope (their Figures 10e and 10f). With progressive time, the initially 
step-like perturbation of pf is diffusing while the profile of ϕ maintains a step-like shape representing the 
motion of a dehydration front, indicating the release of water from brucite (Figures 5a and 5b). Once values 
of pf drop below 7.85 kbar, which is the value that defines the reaction from brucite to periclase, no brucite 
is present anymore in the model, which is indicated by constant ϕ = 0.55.

Second, we apply an initially smaller fluid pressure in the circular region so that initially periclase is stable 
inside the inclusion and brucite is stable outside the inclusion. At first, the ambient value of pf = 8.5 kbar 
and inside the inclusion pf = 6.8 kbar. The ambient initial ϕ = 0.001 and in the inclusion ϕ = 0.55, again to 
test the algorithm in the limit of low porosity. This configuration corresponds to models shown in Figures 
10g and 10h of Malvoisin et al. (2015). With progressive time, the step-like perturbation of pf is diffusing, but 
the profile of pf maintains a steep gradient for fluid pressure > 7.85 kbar, which is the pressure at the reac-
tion from brucite to periclase (Figures 1c and 1d). The profile of ϕ also maintains a steep gradient represent-
ing the motion of a dehydration front, which moves outward toward the brucite region (Figures 5c and 5d).
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For the case of a brucite-inclusion with higher fluid pressure (Figures 5a and 5b), the initially steep fluid 
pressure gradients decrease during the fluid pressure diffusion. At a certain time, the fluid pressure in the 
inclusion decreases below the reaction pressure of ca. 7.85 kbar and the brucite inclusion disappears (cor-
responding to the red line in Figures 5a and 5b). In contrast, for a periclase-inclusion with smaller fluid 
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Figure 5. Numerical results of the hydro-chemical model, for which solid velocities are set to zero. The plots show 
horizontal profiles of pf and ϕ through the left model half, centered vertically, so that the right end of the displayed 
profile is at the center of the inclusion. Evolution of fluid pressure for positive (a) and negative (c) initial pressure 
perturbations in circular inclusion. The gray-shaded region indicates the fluid pressure range for which periclase is 
stable. Corresponding evolution of porosity (b and d). Numbers in legend indicate modeled time in hours.

Figure 6. Color plot indicating the distribution of fluid pressure, pf, and arrows indicating fluid (white arrows) and solid (black arrows) velocities for four 
simulations at a model time of 39.2 h. The circular and elliptical inclusion exhibited initially a smaller fluid pressure than the surrounding and the shear 
viscosity is a factor 1,000 smaller than the one of the surrounding (see text for details). (a) Hydro-chemical (HC) model (solid velocities are zero) with circular 
inclusion and no far-field shortening. (b) Hydro-mechanical-chemical (HMC) model with circular inclusion and no far-field shortening. (c) HMC model with 
circular inclusion and with far-field shortening. (d) HMC model with elliptical inclusion of initial aspect ratio of three and with far-field shortening. The white 
dashed line indicates the initial size of the perturbation. Solid and fluid velocity arrows are calculated and plotted at the same position.
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pressure, the initially steep fluid pressure gradients are maintained during fluid pressure evolution, and the 
increase of the minimal fluid pressure inside the inclusion slows down significantly. The model with a peri-
clase-inclusion and with sustained steep fluid pressure gradients involves the spatial propagation of a sharp 
fluid pressure front, or reaction front. Modeling the propagation of such sharp reaction front is numerically 
more challenging than the scenario with a brucite-inclusion exhibiting a simple fluid pressure diffusion. 
Therefore, for the following HMC models, we focus on the scenario with periclase-inclusions.

3.3. HMC Model

We consider the full HMC model to investigate the impact of solid deformation and mechanical heterogene-
ity on the evolution of pf and ϕ, and on the reaction front evolution. We consider linear viscous deformation 
and perform five models with increasing deformation complexity (Figure 6). The models include a circular 
( 1Γ 10) or elliptical inclusion with a vertical radius two or three times larger than the horizontal radius, 
for which 1Γ 10. In the inclusions, the fluid pressure (pf = 6.5 kbar) is initially smaller than the outside 
ambient pressure (pf = 8.5 kbar). For all models,  8

2Γ 10  and 3Γ 1, except that ηs inside the inclusion 
is a factor 1,000 smaller than outside. We assume that the effective shear viscosity of the high-porosity, 
poroviscous periclase-water region is much smaller than the effective viscosity of the low-porosity brucite 
region and, hence, apply a smaller shear viscosity inside the inclusion. The first HMC model has a circular 
inclusion and no far-field deformation ( 4Γ 0; Figure 6b), the second HMC model has a circular inclusion 
and far-field deformation ( 4Γ 0.0024; Figure 6c), the third HMC model has an elliptical inclusion with 
aspect ratio of two and far-field deformation (result only shown in Figure 7), and the fourth HMC model 
has an elliptical inclusion with aspect ratio of three and far-field deformation ( 4Γ 0.0024; Figure 6d). We 
apply relatively similar inclusion aspect ratios of two and three because for small aspect ratios the impact of 
the aspect ratio on the inclusion pressure is largest in purely mechanical models (e.g., Moulas et al., 2014, 
their Figure 8a; Luisier et al., 2019, their Figure 6b). For comparison with the HMC models, we also show 
the corresponding HC model, for which solid velocities are zero (Figure 6a).

In all models, the stability field of periclase, and the associated high-porosity region, is growing with time 
due to diffusion of pf (e.g., Figure 6). In the HMC model without far-field deformation, the solid velocities 
indicate a radially symmetric contraction of the solid (Figure 6b). The direction of solid and fluid velocities 
is nearly identical. In the HMC model with circular inclusion and far-field pure-shear deformation, away 
from the circular inclusion, the solid velocities indicate the applied horizontal shortening and vertical ex-
tension (Figure 6c). Around the inclusion, the solid velocities change direction and show a radial contrac-
tion. Inside the inclusion, the directions of solid and fluid velocities are different. In the HMC model with 
far-field deformation and elliptical inclusion, the solid velocities indicate horizontal shortening and vertical 
extension, and around the inclusion contraction (Figure 6d). Inside the inclusion, the directions of solid and 
fluid velocities are different. For all HMC models, the maximal fluid velocities are approximately 7 orders 
of magnitudes larger than the solid velocities (see also Figures 9d and 9e). The order of magnitude of the 
fluid velocity can be estimated from Equation 6. Based on the applied parameters (Equation 15), assuming 
no solid velocity, a fluid-pressure gradient of 2 kbar/cm, and a representative porosity of 0.1 yields 2 × 10−8 
m/s. For the HMC models with far-field deformation, the shortening velocity is the product of shortening 
rate and half-model width, which yields according to the values in Equation 15 a solid velocity of 10−15 m/s.

With progressive time, the horizontal profiles, centered vertically, of pf and ϕ differ for the five models (Fig-
ures 7a and 7b). Profiles of pf and ϕ are similar for the two HMC models with circular inclusion, indicating 
that far-field deformation does not significantly affect the evolution of pf and ϕ. However, profiles of pf and 
ϕ are different for the HMC models with elliptical inclusions and show a broader region with periclase and, 
hence, a more displaced dehydration front. The width of the periclase region in the HC model is similar to 
the width in the two HMC models with circular inclusions, whereas pf has diffused slightly less for the two 
HMC models. The similar width of the periclase region for the HC and HMC models with circular inclusion 
shows that solid deformation has a minor impact on the propagation of the dehydration front for the ap-
plied configuration. The reason is that weak circular inclusions under far-field deformation do not generate 
a perturbation in p with respect to the far-field value of p (e.g., Moulas et al., 2014). This is different for 
weak elliptical inclusions with the long axis orthogonal to the shortening direction, as applied here, which 
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exhibit higher p inside the inclusion compared to the far-field value (e.g., Moulas et al., 2014). For circular 
and elliptical inclusions, the distribution of p inside the inclusion is homogeneous (e.g., Moulas et al., 2014). 
The higher p inside elliptical inclusions causes a higher pf, with respect to circular inclusions, and, hence, a 
wider diffusion region (Figure 7). Furthermore, values of p inside elliptical inclusions are larger for higher 
aspect ratios, which explains why the elliptical inclusion with an aspect ratio of 3 has a broader diffusion 
region than the inclusion with an aspect ratio of 2 (Figure 7).

With progressive time, pf diffuses fastest for the two HMC models with circular inclusion and slowest for 
the HMC model with an elliptical inclusion of aspect ratio three (Figure 7c). For all models, diffusion of pf 
is fastest during the initial stage of the simulations and progressively slows down significantly (Figure 7c). 
The diffusion of pf controls the displacement of the dehydration front, which shows a similar nonlinear 
time evolution as pf (Figure 7d). The dehydration front in the HMC model with elliptical inclusion of aspect 
ratio three moves fastest whereas the dehydration front for the HMC models with circular inclusion moves 
slowest. For the applied parameters, the dehydration front has moved a distance between r/2 (i.e., 0.5 cm) 
and r within 220 h (9.2 days). The results show that deformation of a mechanically heterogeneous medium 
has an impact on the evolution of fluid pressure and of the reaction front, which depends on the geometry 
of the heterogeneity. Additional figures showing more results of the five simulations presented in Figure 7 
are available in the supplementary information (Figures S1–S5).

The model domain represents a deforming, heterogeneous rock in which a dehydration reaction occurs. 
The effective viscosity of the heterogeneous rock, η, can be calculated by the ratio of  IIτ / 2 xxD , where  IIτ  
is the area-averaged value of IIτ  and xxD  represents the second invariant of the deviatoric strain rate tensor 
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Figure 7. Horizontal profiles of fluid pressure and porosity for the models presented in Figure 6 and an additional model with elliptical inclusion having an 
initial aspect ratio of two. The profiles are centered vertically, corresponding to the bottom of the color plots displayed in Figure 6. (a) Profile of fluid pressure 
and (b) porosity for a modeled time of 220 h. (c) Time evolution of fluid pressure in the center of the inclusion corresponding to horizontal position 0 in (a). 
(d) Time evolution of the distance between the current location of the dehydration front and the initial location. This distance is indicated by the width of the 
horizontal red line in (b) for the HMC model with circular inclusion and shortening (red line). The lines in (d) show a stair-step pattern because the reaction 
front propagates in a discrete manner and, hence, the distance of the reaction front increases only by increments that are equal to the horizontal grid spacing.
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corresponding to the applied bulk pure-shear deformation, which is constant throughout the simulations. 
The progressive dehydration reaction decreases the value of η with progressive deformation because the 
surface of the weak inclusion increases and the stress field changes (Figures 8a and 8d). The decrease of η 
with progressive reaction and deformation represents a reaction-induced weakening of the heterogeneous 
rock. The weakening is fastest at the beginning of deformation and subsequently slows down significantly. 
This overall weakening evolution is linked to the evolution of the inclusion surface (Figure 8d), which 
grows fastest at the beginning of the simulation and then subsequently slows down. However, the magni-
tude of the weakening, here between 30% and 50% effective viscosity reduction (Figure 8a), depends on the 
inclusion shape, and elliptical inclusions with larger aspect ratio exhibit more weakening (Figure 8a). For 
comparison, we also show the evolution of the harmonic average, or mean, and of the arithmetic average of 
the viscosity fields (Figures 8b and 8c). The simulations employ a linear shear viscosity and, therefore, the 
evolution of the harmonic and arithmetic mean of the viscosity field depends only on the relative inclusion 
surface inside the model domain. The results show a strongly nonlinear weakening with time and, hence, 
with progressive bulk strain since the applied bulk far-field pure-shear strain rate is constant.

To illustrate all features of our HMC model, we present results of a simulation with an oblique elliptical 
inclusion and a power-law viscous medium (Figures 9 and 10; the convergence test shown in Figure 3 
was done for this simulation). The long axis of the elliptical inclusion forms a 60° angle with the horizon-
tal shortening direction. The applied dimensionless parameters are 1Γ 10,  8

2Γ 10 , 3Γ 1, 4Γ 0.0024, 
5Γ 0.024, and n = 3. Results are made dimensional with the example values used in Equation 15. Magni-

tudes of p and pf are significantly different both inside and outside the inclusion (Figures 9a and 9b). While 
p is homogeneous inside the inclusion and varies outside, pf, in contrast, varies inside the inclusion but 
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Figure 8. Reaction-induced weakening with progressive time is quantified by the decrease of the effective viscosity (a–c) of the entire model domain of three 
simulations presented in Figure 7 (see legends). (a) The effective viscosity is calculated by the area-average of the second invariant of the stress tensor divided 
by the second invariant of the far-field, pure-shear, strain rate invariant, which is constant throughout the simulation. (b) The effective viscosity is calculated by 
the harmonic mean of all viscosities at all numerical grid points. (c) Same as (b) but for arithmetic average. All effective viscosities are divided, normalized, by 
the initial effective viscosity of the first numerical time step. (d) Relative increase of the inclusion surface, divided by initial inclusion surface, with time.
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is homogeneous outside. The divergence of the solid velocity,   sv , shows contraction (negative values) 

inside the inclusion but mainly expansion (positive values) outside the inclusion (Figure 9c). The distribu-

tion of the absolute magnitude of the fluid velocity,     
2 2f f f

x yv vv , indicates that significant fluid 

flow only occurs inside the inclusion, where ϕ is large and where there is a gradient of pf (Figure 9d). The 

absolute magnitude of the solid velocity,     
2 2s s s

x yv vv , shows that solid deformation is significant 

inside and outside the inclusion (Figure 9e). The magnitudes of absolute solid and fluid velocities indicate 
that fluid velocities, as estimated above, are approximately 7 orders of magnitude larger than the solid ve-
locities. For illustration, we also calculate approximate fluid velocities by using p instead of pf in the Darcy 
Equation 6. These approximate fluid velocities are zero inside the inclusion since p is homogeneous (Figure 
9f). Hence, fluid velocities calculated with rock pressure gradients can be considerably different from the 
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Figure 9. Color maps of model quantities (see Table 1) for an oblique elliptical inclusion with far-field horizontal pure shear shortening after a modeled time 
corresponding to 16.5 h. The material is power-law viscous with a stress exponent of 3, and the inclusion has a shear viscosity thousand times smaller than the 
surrounding. The physical units of the displayed quantities are given in the title of each panel. See text for more details.
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fluid velocities calculated with fluid pressure gradients (Figures 9d and 9f). The shear stresses, τxy, inside 
the inclusion are significantly smaller than outside (Figure 9g), which is reasonable since the shear viscosity 
of the inclusion is 1,000 times smaller than the one of the surrounding. These shear stress variations also 
agree with analytical results for host-inclusion studies of Moulas et al. (2014). For the applied parameters, 
the largest magnitudes of τxy are in the order of 40 MPa. Also, IIτ  is essentially homogeneous inside the 
inclusion and varies only outside (Figure 9h), which is the reason why the effective, stress-dependent shear 
viscosity of the solid, ηs, varies only outside the inclusion (Figure 9i). An enlargement of the model domain 
shows that the current inclusion boundary, representing the dehydration front, defines the transition from 
contraction inside the inclusion to expansion outside (Figure 10a). The applied far-field pure-shear, with 
horizontal shortening and vertical extension, would generate a zero divergence of the solid velocity,  sv . 
Values of  sv  are mostly positive outside the inclusion, indicating expansion, showing that the contraction 
inside the inclusion generates an expansion outside the inclusion to conserve total volume (Figure 10a), 
which is imposed by the volume conserving, pure-shear boundary conditions. For the presented results, 
we consider a pure-shear far-field shortening rate, xxD , of 2×10−14 s−1 (Equation 15). Maximal magnitudes 
of  sv  are in the order of −1×10−12 s−1 showing that contraction rates are ∼ 2 orders of magnitudes faster 
than the applied far-field shortening rates (Figure 10a). Fluid and solid velocities parallel to the short axis 
of the ellipse are significantly faster than the velocities parallel to the long axis (Figures 10b and 10c). Both 
magnitudes and directions of solid and fluid velocities are different inside the inclusion (Figures 10b and 
10c). Furthermore, the direction of the reaction-front propagation is opposite to the direction of both solid 
and fluid velocities; while the solid and fluid velocities point toward the center of the inclusion, the reaction 
front moves away from the inclusion center (Figure 10c).

We run three additional simulations for the model configuration shown in Figure 9 keeping all parameters 
identical except: one simulation had an ambient porosity of 0.2 in the surrounding, and consequently a 
higher porosity in the inclusion; one simulation had a shear viscosity of the inclusion that was only a factor 
of 4 smaller than the one of the surrounding; and one simulation had a shear viscosity of the inclusion that 
was a factor of 4 larger than the one of the surroundings (i.e., a model with strong inclusion). The results 
are displayed in the supplementary information (Figures S6–S9). A comparison of the three additional sim-
ulations with the simulation displayed in Figure 9 shows: (1) A larger porosity generates larger values of 

both sv  and fv  (Figures S6 and S7). (2) A smaller viscosity ratio between surrounding and weak inclusion 
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Figure 10. Enlargement of model results displayed in Figure 9. (a) Color plot of divergence of solid velocity field and arrows indicating solid velocity field. The 
dashed white line indicates the initial inclusion boundary and the black dotted line indicates the contour for which the divergence is zero. (b) Color plot of the 
absolute magnitude of fluid velocity and arrows indicating fluid velocity field. (c) Color plot of the absolute magnitude of solid velocity and arrows indicating 
solid and fluid velocity fields. Black dashed line indicates current reaction front. The physical units of the displayed quantities are given in the title of each 
panel.



Geochemistry, Geophysics, Geosystems

generates larger values of τxy inside the inclusion, smaller values of sv , and larger variations of p and pf be-
tween inclusion and surrounding (Figures S6 and S8). (3) A strong inclusion generates significantly smaller 

values of sv  but larger values of fv , higher τxy inside the inclusion and a larger variation of p between 

inclusion and surrounding (Figures S6 and S9).

4. Discussion
In the discretized PT mass conservation Equation 12, we keep the products of velocity, density, and poros-
ity within the divergence term. We do not “open” the divergence term to obtain separate advection terms, 
for example, products of velocity multiplied by density gradient. Although we did not compare different 
numerical discretization schemes, we suggest that the applied conservative numerical scheme in fully di-
vergent form is useful for numerical stability during modeling the propagation of sharp porosity and dehy-
dration fronts, such as shown in Figures 5 and 7.

We consider a simple metamorphic reaction to investigate the fundamental impact of deformation in a 
heterogeneous solid on the reaction and fluid flow. It is, in principle, straightforward to extend the model 
to more complicated reactions involving more components, such as presented in Malvoisin et al. (2015). We 
assumed that the solid density is a function of the fluid pressure (Equation 8). Although for pure isotropic 
solids the density variations are a consequence of mean-stress variations (see Moulas et al., 2019, for discus-
sion), it has been experimentally demonstrated that dehydration reactions are controlled by fluid pressure 
(e.g., Llana-Fúnez et al., 2012). When solid-fluid interactions are considered, the mean stress of the solid 
grains may not be the most appropriate macroscopic thermodynamic variable to quantify metamorphic 
phase equilibrium (e.g., Dahlen, 1992; see also discussion in Schmalholz & Podladchikov, 2014). For sol-
id-fluid interactions, mineral devolatilization reactions must be investigated at the respective solid-fluid 
interface (e.g., Dahlen, 1992). However, our mathematical model constitutes a two-phase, or a superposed 
two-field, solid-fluid continuum, in which the solid-fluid interfaces are not resolved. Therefore, we need to 
approximate the thermodynamic pressure by some model quantity. For the (de)hydration reaction, the vari-
ation of total density is much larger than the density variation of the solid minerals. Therefore, the porosity 
evolution caused by the (de)hydration reactions controls the overall total density variation, and consequent-
ly, the volumetric deformation of the solid. Hence, we apply the fluid pressure as most appropriate proxy for 
the macroscopic thermodynamic pressure.

We model a closed system in equilibrium and assume that the transport of the hydrous fluid occurs by po-
rous flow. Therefore, all the hydrous fluid required for the reaction is already in the system. Consequently, 
the reaction from periclase and H2O-pure fluid to brucite decrease the volume of the system because the 
fluid in the pore space is bounded after the reaction in the brucite and porosity is significantly reduced. In 
an open system, the hydration of periclase, at pressure and temperature where brucite can form in the pres-
ence of water, generates a total-volume increase because water is added to the system during the reaction. 
Such hydration can cause reaction-induced fracturing in the rocks surrounding the hydrating periclase (e.g., 
Carmichael, 1987; Kuleci et al., 2017).

Our model configuration and results may be applicable to reactions related to fluid transfer inside and 
across shear zones. Moulas et al. (2014) showed that mathematical models of weak inclusions in viscous 
medium capture the first-order mechanical response of shear zones that develop in 2D  visco-elasto-plastic 
thermo-mechanical numerical models during lithosphere shortening (e.g., Jaquet & Schmalholz, 2018; 
 Schmalholz & Podladchikov, 2013). Fluid transfer and associated reactions are likely important during 
shear zone formation because the fluid enables reactions whose products can be weaker than the  protolith 
(e.g., Jolivet et al., 2005). Therefore, fluid-driven mineral reactions can cause weakening during shear 
zone  evolution, as was suggested for the fluid-controlled transformation from granulite to eclogite (e.g., 
 Austrheim, 1987; Jamtveit et al., 2000; Jolivet et al., 2005). Due to the weakening, shear zones exhibit 
smaller effective viscosities and deviatoric stresses than the surrounding wall rock and can, hence, exhibit 
different fluid and solid pressures compared to the less-deforming wall rock (e.g., Jamtveit et al., 2018; 
Schmalholz & Podladchikov, 2013). Our model may be, hence, useful to study fluid transfer and reactions 

SCHMALHOLZ ET AL. 18 of 21

10.1029/2020GC009351



Geochemistry, Geophysics, Geosystems

in shear zones. Furthermore, our models show that reaction-induced weakening in a heterogeneous rock 
is strongly nonlinear with progressive time and, hence, progressive strain. Weakening is strongest during 
the initial stages of the reaction because it is controlled by fluid-pressure diffusion, which is controlled by 
the decreasing fluid pressure gradients. Also, significant reaction-induced weakening may occur within a 
small amount of strain because the fluid velocities, controlling reaction-front propagation, may typically be 
significantly faster than the solid velocities during tectonic deformation.

The applied model configurations with a single circular, or elliptical, inclusion were intentionally kept sim-
ple in order to investigate some fundamental features of coupling between heterogeneous deformation, 
fluid flow, and reactions, such as the propagation of a reaction front with steep gradients of fluid pres-
sure and porosity. Potential future applications of our model could be the investigation of reaction-induced 
fracturing, for which elasticity should be considered in the constitutive equations and fracturing could be 
modeled, for example, by modeling brittle failure with a phase-field model, as was recently employed by 
Evans et al. (2020) to study hydration (serpentinization) of peridotite. Other potential applications could be 
to mechanically heterogeneous subduction interface shear zones with strong inclusions in a weak matrix, 
which we were recently studied numerically in the context of slow slip events and tremor (e.g., Beall et al., 
2019a, 2019b; Webber et al., 2018). Our model could be useful to investigate the effects of fluid flow and 
reactions on slow slip events. Furthermore, the model could be elaborated to investigate the impact of (de)
hydration reactions (e.g., serpentinitization or eclogitization), fluid flow, and reaction-induced weakening 
on the deformation dynamics along active subduction interfaces (e.g., Angiboust et al., 2012; Guillot et al., 
2015). However, the computational performance of our algorithm must be improved to apply it to more 
natural shear zone geometries and to consider many inclusions, several reactions, and large strain. Such 
improvement could be made, for example, by translating the algorithm to the Julia programming language 
and utilizing parallel graphics processing unit computation (e.g., Besard et al., 2019).

5. Conclusions
The presented 2D HMC model and the applied PTFD numerical algorithm are suitable to quantify the 
 interplay between metamorphic reactions and fluid flow in a deforming, heterogeneous, poroviscous 
 medium. The medium is mechanically heterogeneous because the mineral-fluid assemblages involved in 
the reaction have different effective viscosities. Our model can simulate the power-law viscous deformation 
of a heterogeneous medium coupled to Darcy-type porous fluid flow, whereby solid and fluid velocities 
differ by 7 orders of magnitude. Furthermore, the model can simulate the propagation of a sharp, step-like, 
(de)hydration, porosity, and viscosity front.

Our results show that rock deformation and mechanical heterogeneities can have a considerable impact 
on fluid flow and metamorphic reactions because heterogeneities in deforming rock can cause rock pres-
sure variations, which in turn cause fluid pressure variations that impact the reaction. In the simulations, 
the propagation of the reaction front during deformation causes a reaction-induced weakening of the 
heterogeneous rock because the surface of a weak mineral-fluid assemblage increases due to the reaction. 
This reaction-induced weakening is controlled by fluid-pressure diffusion and is strongly nonlinear with 
progressive strain, whereby weakening is most significant during the initial stages of the reaction. Also, 
in deforming heterogeneous rock, magnitudes, gradients, and distributions of fluid pressure and rock 
pressure can be significantly different so that also directions of fluid and solid velocities can be different. 
Therefore, models calculating fluid velocities from gradients of the rock pressure are likely considerably 
inaccurate if applied to deforming heterogeneous rock, such as in and around shear zones or plate bound-
ary regions.

Data Availability Statement
All numerical results have been generated with a self-developed MATLAB algorithm, which is  available 
on the platform Zenodo (https://doi.org/10.5281/zenodo.4051493) under: https://zenodo.org/badge/
latestdoi/284908588
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