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ABSTRACT Here, we report the draft whole-genome sequence of an anthracene-
degrading bacterium, Mycolicibacterium frederiksbergense strain LB501T, using the
PacBio and Illumina sequencing platforms. The complete genome sequence of strain
LB501T consists of 6,713,618 bp and provides new insights into its metabolic capabil-
ities, including aromatic conversion pathways with promiscuous activities.

M ycolicibacterium frederiksbergense strain LB501T was isolated from a polycyclic ar-
omatic hydrocarbon (PAH)-contaminated soil (Belgium) using PAH-sorbing Teflon

membranes (1, 2). Strain LB501T, previously belonging to the genus Mycobacterium, has
been reclassified into the genus Mycolicibacterium (3, 4). The strain was grown in a min-
eral medium (5) containing 0.5 g liter21 of anthracene as the sole carbon source. DNA
was extracted using the DNeasy PowerMax soil kit (Qiagen, Carlsbad, CA) with a modi-
fied protocol that included a pretreatment with lysozyme (20mg ml21, at 37°C for
30min) and proteinase K (1.8mg ml21, at 56°C for 30min) to improve cell lysis. The ge-
nome was sequenced using the PacBio RS II (Menlo Park, CA) and Illumina (San Diego,
CA) sequencing platforms. Default parameters were used except where otherwise noted.
For PacBio sequencing, genomic DNA was directly used for library preparation without
fragmentation. A 20-kb SMRTbell library was generated and sequenced on one single-
molecule real-time (SMRT) cell at the Génome Québec Innovation Centre (McGill
University, Montréal, Canada), which generated 1,238,955,776bp from 124,389 subreads,
with an average subread length of 9,960bp. Raw subreads shorter than 500bp or having
a quality score lower than 0.75 were filtered out, and the remaining reads were de novo
assembled using the Hierarchical Genome Assembly Process (HGAP.3)/Quiver protocol
from the SMRT Analysis software suite version 2.3.0.140936.p4 (6). The resulting assem-
bly was subsequently scaffolded using SSPACE-Longread version 1.1 (7). To further cor-
rect for potential assembly artifacts, paired-end sequencing (2� 75bp) was performed
on the Illumina NextSeq 500 sequencing platform at the Utrecht Sequencing Facility
(Utrecht, The Netherlands). A new DNA extraction was carried out as described above,
and a DNA library was prepared using a TruSeq Nano DNA low-throughput library prep kit
with a target insert size of 350bp (Illumina). Illumina raw reads were trimmed using
Trimmomatic version 0.32 (palindromic mode, headcrop:16, minlen:32, slidingwindow:4:15,
trailing:30), yielding a total number of 5,959,272 (5,959,272 R11 5,959,272 R2) Illumina
quality-controlled paired-end reads. The Illumina reads were aligned against scaffolds, and
a consensus sequence of each scaffold was generated using bcftools version 1.9 (8). The
final corrected scaffolds were annotated using the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) version 4.8 (9). The final assembly consists of four scaffolds, with a total
size of 6,713,618bp. One scaffold corresponds to a circular chromosome with a length of
6,086,872bp and a G1C content of 67.3%. The chromosome was circularized using
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SSPACE-Longread version 1.1. The other three scaffolds correspond to plasmids, one
341,437-bp plasmid (G1C content, 65.8%), one 268,343-bp plasmid (G1C content,
65.2%), and one 16,966-bp plasmid (G1C content, 66.1%). The chromosome and the
341,437-bp plasmid each contain one within-scaffold gap of 2,142 bp (3,206,107 to
3,208,248) and 491bp (862 to 1,352), respectively. The whole-genome sequence encom-
passes 6,440 coding sequences (CDS), 2 rRNA operons (16S, 23S, and 5S rRNAs), 2 non-
coding RNAs, and 46 tRNA genes. Two chromosomally encoded catabolic regions of
approximately 99 and 33 kb were identified at positions 737,825 to 836,329 and
3,866,266 to 3,899,381, respectively, which contain several gene clusters required
for complete PAH biodegradation, such as phenanthrene, anthracene, and pyrene.
In particular, the 99-kb catabolic region presents a gene structure and organization
similar to those of the 150-kb catabolic region A from Mycobacterium vanbaalenii
PYR-1 (10, 11). These regions contain several ring-hydroxylating dioxygenases (RHDs),
including nidAB, nidA3B3, and pdoA2B2, responsible for initial dioxygenation in the ring
cleavage process of low- and high-molecular-weight PAHs (12, 13). The pht cluster
(phtRAaAbBAcAd) (14) and the b-ketoadipate pathway cluster (pcaJICDBGHR) (15, 16)
were identified in the major catabolic region, which demonstrates that anthracene
degradation by strain LB501T proceeds through the o-phthalate degradation path-
way (phthalate 3,4-dioxygenase) and ortho-cleavage of protocatechuate (protocate-
chuic acid [PCA] 3,4-dioxygenase), as previously suggested (17). Moreover, the ge-
nome sequence harbors multiple genes involved in heavy metal resistance, such as
copper (copA, copC, and copD), arsenic (arsRBCDA), and mercury (merA and merB).
The presence of these metal resistance genes suggests that Mycolicibacterium freder-
iksbergense strain LB501T could be a promising microorganism for bioaugmentation
of soils contaminated with both PAHs and heavy metals.

The genome sequence of strain LB501T will enable transcriptomic and proteomic
analyses under different environmental conditions and the development of specific bio-
markers for bioaugmentation monitoring. The metabolic capabilities of strain LB501T are
also relevant to biorefining processes of lignin fractions of lignocellulosic biomass (i.e.,
the bioaromatic platform) (18, 19).

Data availability. This whole-genome shotgun project has been deposited at GenBank
under the BioProject number PRJNA521839, the BioSample number SAMN10915336, and
the accession numbers CP038799, CP038797, CP038798, and CP038796. The versions
described in this paper are the first versions, CP038799.1, CP038797.1, CP038798.1, and
CP038796.1. The PacBio and Illumina raw reads have been deposited in the Sequence
Read Archive (SRA) under accession numbers SRR10121029 and SRR11515926,
respectively.
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