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Abstract
Problem-solving tasks form the backbone of STEM (science, technology, engineering,
and mathematics) curricula. Yet, how to improve self-monitoring and self-regulation
when learning to solve problems has received relatively little attention in the self-
regulated learning literature (as compared with, for instance, learning lists of items or
learning from expository texts). Here, we review research on fostering self-regulated
learning of problem-solving tasks, in which mental effort plays an important role. First,
we review research showing that having students engage in effortful, generative learning
activities while learning to solve problems can provide them with cues that help them
improve self-monitoring and self-regulation at an item level (i.e., determining whether or
not a certain type of problem needs further study/practice). Second, we turn to self-
monitoring and self-regulation at the task sequence level (i.e., determining what an
appropriate next problem-solving task would be given the current level of understand-
ing/performance). We review research showing that teaching students to regulate their
learning process by taking into account not only their performance but also their invested
mental effort on a prior task when selecting a new task improves self-regulated learning
outcomes (i.e., performance on a knowledge test in the domain of the study). Important
directions for future research on the role of mental effort in (improving) self-monitoring
and self-regulation at the item and task selection levels are discussed after the respective
sections.
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Learning to solve problems constitutes an important part of the curriculum in many school
subjects and particularly in STEM domains (science, technology, engineering, and mathemat-
ics). Most of the problems students encounter are well-structured problems (for a typology of
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problem variations, see Jonassen 2000), and students have to learn what series of actions they
should perform (possibly bounded by rules regarding what actions are or are not allowed) to
get from A (given information on an initial state) to B (a described goal state) (Newell and
Simon 1972). Learning to solve problems requires the acquisition of both the procedural
knowledge of what actions to perform and how to perform them and the conceptual knowledge
of why to perform those actions. Decades of research inspired by cognitive load theory
(Sweller et al. 2011) have shown that this knowledge is not efficiently acquired by having
students mainly solve practice problems. Rather, in the initial stages of skill acquisition,
students benefit (i.e., attain higher test performance with less investment of time/effort) from
studying examples of fully worked-out solution procedures and (subsequently) completing
partially worked-out solution procedures, before solving conventional practice problems on
their own (for a recent review, see Van Gog et al. 2019). In this review, we use the term
“problem-solving tasks” to encompass all of those formats (from worked examples to com-
pletion problems and practice problems).

As students engage with problem-solving tasks, it is important that they can adequately
self-regulate their learning process, especially during self-study sessions in which teachers are
not (directly) available to guide their learning. In self-regulated learning, students have to
invest effort in both the tasks (i.e., the to-be-learned content or object-level processing) and in
self-regulated learning processes (i.e., meta-level processing; De Bruin et al., introduction to
this special issue). Different models of self-regulated learning exist, most of which describe
self-regulated learning as a cyclical process that includes preparatory (planning), performance,
and evaluation phases (i.e., deciding which task to perform; performing it, monitoring
progress, and possibly adjusting strategies while working on the task; judging performance
after the task is completed; using this as input for deciding on the next task; et cetera) and
involves cognitive, behavioral, motivational, and affective processes in each phase (for a
review, see Panadero 2017). These models of self-regulated learning emphasize that accurate
self-monitoring (i.e., judging one’s level of performance) and self-regulation (i.e., deciding on
how to proceed) are essential for the effectiveness of self-regulated learning (i.e., for learning
outcomes on the to-be-learned content).

It is well known, however, that students’ monitoring judgments are often inaccurate, and
self-monitoring of problem-solving tasks is no exception (e.g., Baars et al. 2014a, 2017; De
Bruin et al. 2005, 2007). This is problematic, because accurate self-monitoring is considered a
necessary (though not sufficient) condition for accurate self-regulation and, thereby, for the
effectiveness of self-regulated learning (e.g., Dunlosky and Rawson 2012). Therefore, re-
searchers have been trying to identify ways of improving students’ monitoring accuracy.
However, the majority of research on how to improve self-monitoring (and, thereby, self-
regulation and learning outcomes) was conducted in the context of learning lists of items (e.g.,
word pairs, concept definitions; e.g., Dunlosky and Rawson 2012) or learning from expository
texts (see Griffin et al. 2019, for a review). How to improve self-monitoring and self-regulation
of problem-solving tasks has received much less attention, and given that the to-be-monitored
cognitive processes involved in problem-solving are very different, findings from research on
learning lists of items or learning from texts might not generalize (De Bruin and Van Gog
2012; Ackerman and Thompson 2017).

Here, we review some of the available research on fostering self-regulated learning of
problem-solving tasks, in which mental effort (i.e., the “cognitive capacity that is actually
allocated to accommodate the demands imposed by the task”; Paas et al. 2003, p. 64) plays an
important role in two different ways. First, we review research showing that having students
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engage in effortful, generative learning activities while learning to solve problems can provide
them with cues that help them improve self-monitoring and self-regulation at an item level
(i.e., determining whether or not a certain type of problem needs further study or practice).
Then, we turn to self-monitoring and self-regulation at the task sequence level (i.e., determin-
ing what an appropriate next problem-solving task would be given the current level of
performance). We review research showing that teaching students to regulate their learning
process by taking into account a combination of their (self-assessed) performance and their
(self-reported) invested mental effort on a prior task when selecting a new task improves self-
regulated learning outcomes (i.e., performance on a knowledge test in the domain of study).
After each section, we discuss important directions for future research on the role of effort in
(improving) the accuracy of self-monitoring and self-regulation.

Improving Self-Monitoring and Self-Regulation at Item Level

Generative learning activities are activities that help learners to actively construct meaning from the
learningmaterials (Fiorella andMayer 2016). These activities, which are usually quite effortful, have
mainly been investigated as a means to improve learning outcomes: they foster deeper processing of
the learning materials and thereby improve learning and transfer performance (i.e., in cognitive load
theory terms, generative activities impose germane cognitive load: the effort invested in them
contributes to learning; Sweller et al. 2011). However, they can also be used to improve students’
monitoring accuracy. Research on text comprehension has shown that having students generate
keywords (DeBruin et al. 2011; Thiede et al. 2005), summaries (Anderson andThiede 2008; Thiede
and Anderson 2003), diagrams (Van de Pol et al. 2019; Van Loon et al. 2014), drawings (Kostons
and De Koning 2017; Schleinschok et al. 2017), or concept maps (Redford et al. 2012; Thiede et al.
2010), after studying a text and before they are asked to make a prospective judgment of learning
(predicting their performance on a future test) regarding that text, improves their monitoring
accuracy (i.e., their predicted performance is closer to their actual performance; see also Van de
Pol et al., this special issue).

The finding that generative learning activities improve monitoring accuracy can be ex-
plained by the cue-utilization framework (Koriat 1997). Learners base their monitoring
judgments on different sources of information (i.e., cues) originating from the (presentation
of the) study material and their experience while studying. The extent to which their judgment
is accurate depends on the cue diagnosticity, that is, on how predictive the cues are for their
actual test performance. For performing well on a text comprehension test, learners need to
understand the gist of a text (as opposed to simply memorizing facts). Because generative
activities provide learners with access to cues regarding their understanding of the gist of the
text, monitoring accuracy improves.

While most of the research on the use of generative activities to improve monitoring
accuracy has focused on learning lists of items (e.g., word pairs, concept definitions) or
learning from (expository) texts, several studies have investigated whether and how they affect
monitoring accuracy when learning to solve problems by studying worked examples. Gener-
ative activities that were investigated include solving an isomorphic practice problem after
studying a worked example (i.e., generating the entire solution procedure oneself), completing
steps in a partially worked-out example (i.e., generating parts of the solution procedure
oneself), self-explaining solution steps, and comparing one’s answers to a standard (i.e.,
correct answer/solution procedure).
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In a study in primary education, Baars et al. (2014a) found that providing students with an
isomorphic practice problem after they had studied a worked example on how to solve a water
jug problem improved their prospective monitoring accuracy (i.e., it reduced their overesti-
mations of their performance on a future test). However, it did not improve their regulation
accuracy (i.e., their judgment of which examples they should restudy). For secondary educa-
tion students (Baars et al. 2017), the opportunity to solve a practice problem did seem to affect
their self-regulation: Adolescents who studied examples on how to solve heredity problems in
biology and then received a practice problem to solve made more accurate monitoring
judgments and were more accurate at indicating which examples they should restudy.

Interestingly, completing solution steps was found to make secondary education students
underestimate their performance. Baars et al. (2013) presented students either with fully
worked-out examples of heredity problems in biology or with partially worked-out completion
problems, in which students had to generate some steps themselves. In the completion
condition, students’ predictions of their own test performance were lower than their actual
performance. They also reported investing significantly more mental effort than students in the
fully worked-out example condition. Given that the self-reported mental effort negatively
correlated with their judgments of learning, these findings may suggest that students used the
high effort as a cue indicating a lack of understanding (see also Baars et al., this special issue).
When students fail to take into account that they (presumably) learned from engaging in the
completion activity, this would lead to underestimation of their test performance. Possibly,
findings would have been different if students would first have been given the opportunity to
study a fully worked example, before moving to completion problems (this would have
allowed them to acquire knowledge of the steps and then test the quality of that knowledge
during step completion).

In contrast to generating full or partial solutions, self-explaining did not seem to improve
monitoring. While self-explaining had been found to be effective for improving monitoring
accuracy of text comprehension (Griffin et al. 2008), it did not affect secondary education
students’ retrospective monitoring accuracy (i.e., judging how well they performed a task just
completed, also known as self-assessment) when applied after studying examples or solving
problems (Baars et al. 2018a).

Baars et al. (2018a) did find that problem complexity affected monitoring accuracy: students
made more accurate retrospective monitoring judgments on less complex problems than on more
complex problems. There may be several (not mutually exclusive) reasons for this. First, the more
complex a problem is, the higher the cognitive load it imposes (i.e., the more effort it requires), and
the less resources are available for monitoring (keeping track of) what one is doing during task
performance, which reduces the quality of the cues available for judging performance afterwards
(Van Gog et al. 2011a). Second, as performance is also better on less complex problems, lower
monitoring accuracy on more complex problems may reflect the “unskilled and unaware” effect
(Kruger and Dunning 1999): Students who lack the knowledge to perform well on a task also lack
knowledge of the standards against which their performance should be assessed (i.e., of what would
constitute good performance). Third, and related to the issue of (lacking) performance standards, on
more complex problems, it may be more difficult for students to know which parts of the problem
they solved (in)correctly than on less complex problems. Indeed, providing students with a standard
(i.e., the correct answer/solution procedure) against which to compare their own performance while
making monitoring judgments was found to improve the accuracy of students’ retrospective
monitoring judgments (Baars et al. 2014b; Oudman et al. submitted for publication; for similar
findings in learning concept definitions from texts: Rawson and Dunlosky 2007).
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Directions for Future Research on the Role of Mental Effort in (Improving)
the Accuracy of Self-Monitoring and Self-Regulation at the Item Level

The research reviewed in the previous section shows that having students invest effort in
generative activities during or after example study seems to improve their monitoring accura-
cy, presumably because these activities provide learners with good cues about their under-
standing of the solution procedure. An important direction for future research in this area
would be to gain a better understanding of what cues students derive from the generative
activity and of the role of mental effort in this process. The available research suggests that
students may use the effort involved in completing the task or generative activity as a cue for
making monitoring judgments: Several studies have found students’ effort ratings to correlate
negatively with their monitoring judgments (e.g., Baars et al. 2013; Baars et al. 2018b; Baars
et al. 2014b; see also Baars et al., this special issue). This suggests that students tend to see
high effort as a sign of poor performance and low effort as a sign of good performance (cf. a
data-driven interpretation of effort; Koriat et al. 2014).

Indeed, the amount of effort students need to invest to complete a generative activity like
completing steps in a partially worked-out example, or solving a practice problem, might be a
good indicator of the quality of their mental model of the solution procedure, because the
higher the students’ level of skill is, the higher their performance efficiency is (i.e., higher
accuracy achieved in less time and with less effort; see Kalyuga and Sweller 2005; Van Gog
and Paas 2008). However, whether invested effort is a good cue to use when judging (future
test) performance would depend on several other factors: (1) the accuracy of students’
performance on the generative activity; (2) the design of the generative activity; and (3) when
making prospective monitoring judgments, the possibility that engaging in the activity con-
tributes to learning (i.e., performance on future tasks).

First, ratings of invested mental effort cannot be meaningfully interpreted without looking
at the quality of the associated performance (Van Gog and Paas 2008). For instance, when a
student completes a step rapidly and with little effort, but wrongly, the invested effort is not
very informative of the quality of the mental model of the problem-solving procedure, and
using it as a cue for a monitoring judgment will lead to poor monitoring accuracy. However,
students will not always be able to infer with certainty whether their performance was correct
or not.

Second, whether invested mental effort is a good cue for making monitoring judgments
depends on the origin of the effort (i.e., the processes effort is invested in), which can be
affected by other (extraneous) variables than the quality of students’ mental model of the
solution procedure. For instance, when the design of the generative activity requires students to
invest a lot of effort in extraneous processing (i.e., simply originating from the way in which
the material is presented, e.g., because split-attention is induced or because redundant infor-
mation is presented; Sweller et al. 2011), then the amount of effort invested is no longer very
informative about the quality of their mental model and, thus, not predictive of their (future
test) performance. Vice versa, if the design of a generative activity includes high levels of
instructional support (e.g., hints on how to complete steps), then it might be completed with
little effort, but again, this might not be very informative of the quality of the mental model
and, hence, of (future) performance in the absence of that support. In such cases, using effort as
a cue will not improve (and more likely reduce) monitoring accuracy. It is unlikely, however,
that students will be able to distinguish to what extent the effort they had to invest to complete
the activity originated from the way in which the activity was designed.
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Third, when making prospective monitoring judgments (i.e., predicting future test perfor-
mance), the usefulness of effort invested in the generative activity as a cue also depends on
whether students learn from engaging in the generative activity (for which there is evidence,
see Fiorella and Mayer 2016). If the activity requires high effort, but simultaneously contrib-
utes to improving their mental model of the solution procedure (cf. the concept of germane
cognitive load; Sweller et al. 2011), then students might underestimate their future test
performance when using effort invested in the generative activity as a cue (unless they
recognize that the high effort they invest is contributing to their learning; cf., a goal-driven
interpretation of effort; Koriat et al. 2014).

Thus, future research should aim to establish whether students indeed use effort as a cue in
making monitoring judgments (the evidence so far is correlational) and under which circumstances
using effort as a cue does and does not improve monitoring accuracy. Such insights could then
perhaps be used to design interventions to help students establish when effort is or is not a good cue
to use for making monitoring judgments. Moreover, future research should continue to investigate
what kind of generative activities can foster students’monitoring accuracy. In developing and testing
generative activities, it should be kept inmind that the design of these activities is crucial: Ideally the
(effort) cues they generate should be associated with the quality of the mental model and not
originate from other, extraneous factors.

Another important direction for future research that we currently know very little about is to
what extent students consider mental effort whenmaking regulation decisions. That is, in deciding
whether or not an example would have to be restudied or a problem should be practiced further, it
is likely that students would make an estimation of the amount of effort that a task requires and
would consider whether they are willing to invest that effort. Indeed, their willingness to (continue
to) invest effort in (re)studying might be an important variable in explaining why increasing
monitoring accuracy is not always sufficient for improving regulation accuracy (as some of the
findings reviewed above also showed): students may know they would have to restudy a task, but
may not be willing to do so (e.g., if they feel it requires too much effort and/or feel that restudying
would not help them to get a better understanding of the task).

Last but not least, an interesting avenue for future research might be to investigate whether
students’ effort investment is also a useful cue for teachers in monitoring their students’
learning. Teachers’ monitoring accuracy of students’ learning is not only a requirement for
adaptive teaching but also necessary if teachers are to help their students to improve their self-
monitoring and self-regulation skills. Recent findings suggest that generative activities on
problem-solving tasks do not only provide students’ with cues that help them monitor their
own learning but may also aid teachers in monitoring their students’ learning. For instance,
having access to students’ performance on practice problems improves teachers’ judgments of
students’ test performance (Oudman et al. 2018; for similar findings in text comprehension,
see Thiede et al. 2019; Van de Pol et al. 2019, this special issue). Perhaps, giving teachers’
insight into the amount of mental effort students invested might further improve their accuracy
when monitoring and regulating their students’ learning (e.g., if two students performed a task
very well, and one of them had to invest little effort while the other had to invest a lot of effort,
the first student might not have to practice the task further, while the other might benefit from
further practice; teachers could not glean this information from the accuracy of students’
performance only). Moreover, this might enable teachers to better assist their students in self-
regulating their learning (e.g., discussing with them under which conditions invested or
required effort might or might not be useful to consider when making monitoring judgments
and regulation decisions).
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Improving Self-Monitoring and Self-Regulation at Task Sequence Level

While regulation in terms of deciding whether or not to study or practice a similar task again
does play a role in self-study, students typically have to make more complex regulation
decisions during self-regulated learning with problem-solving tasks. They will usually be
confronted with a whole array of potential problem-solving tasks in STEM textbooks/
workbooks or in online learning environments, spanning across multiple levels of complexity.
Students should ideally be working on tasks that are at an optimal level of complexity and
provide an optimal level of support given their current level of knowledge (Van Merriënboer
1997; Van Merriënboer and Kirschner 2013). That is, the tasks should be a little more complex
but, with the appropriate support, within reach (cf. zone of proximal development; Vygotsky
1978).

As such, self-regulated learning of problem-solving tasks requires monitoring and regula-
tion at a task sequence level: students need to be able to self-assess their performance on a task
just completed (i.e., make a retrospective monitoring judgment), and then select a next task
with the right level of complexity and/or support. When students show poor self-assessment
accuracy and underestimate or (more commonly) overestimate their own performance (Kruger
and Dunning 1999; Hacker and Bol 2019), their task selection choices will probably not be
adaptive to their current level of performance, which has detrimental effects on their learning
outcomes (i.e., performance on a posttest on the to-be-learned content). That is, students would
end up wasting valuable study time and effort on tasks they can already do (in case of
underestimation) or might move on to tasks that are still too difficult (in case of overestima-
tion). Both scenarios might well have detrimental effects on their motivation (i.e., may leave
them underwhelmed or overwhelmed, respectively) and, thus, on their willingness to continue
to invest effort in self-study. Students might also quit studying prematurely in case of
overestimation, thinking they are already well prepared for their next class or an exam, when
in fact they are not.

In sum, and as mentioned earlier, both accurate self-assessment (monitoring) and accurate
task selection (regulation) are key for the effectiveness of self-regulated learning (i.e., learning
outcomes on the to-be-learned content), and accurate self-assessment is a necessary but not a
sufficient condition for accurate task selection. The reason it is not sufficient is that regulation
at the task sequence level also requires learners to take into account the characteristics of the
prior as well as the novel (i.e., not yet studied) tasks that are available, which makes it
substantially more complex than regulation at the item level (i.e., deciding whether or not to
restudy). For instance, students have to pay attention to the complexity level of the just-
completed and to-be-selected task and to the amount of instructional support the task provides
(e.g., a worked example: highest possible support; completion problem: some support, which
can be higher or lower depending on the ratio of steps worked out vs. to be completed;
conventional practice problem: no support). In other words, in deciding on a new task, students
are either implicitly or explicitly also regulating their effort investment, because the complexity
and format of the new task (in combination with students’ current level of performance) will
determine the amount of effort they will need to invest.

We still know very little about what task selection choices students make (and in doing so,
how students regulate their effort) when they engage in self-regulated learning with examples
and practice problems. Below, we will first review some recent empirical studies on this
question. Subsequently, we will discuss research showing that students’ task selection choices
and, importantly, the effectiveness of self-regulated learning (i.e., performance on a posttest on
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the to-be-learned content) improve from teaching them to consider the combination of their
(self-assessed) performance and invested mental effort on a prior task when selecting a next
one.

Task Selection Choices During Self-Regulated Learning with Problem-Solving Tasks

Instructional design research has shown that studying examples is typically less effortful for
novice learners than practice problem solving (Van Gog et al. 2019). An interesting question
regarding students’ regulation of effort (De Bruin et al., introduction to this special issue) then
is whether students realize this and would select tasks in line with what we know to be
effective task sequences, for instance, starting (at each new complexity level) with studying an
example before moving to a practice problem (cf. Renkl and Atkinson 2003; Van Gog et al.
2011b; Van Harsel et al. 2019, in press; Van Merriënboer 1997).

A recent study with university students (Foster et al. 2018) found that when students were
given a choice over what tasks to work on, the ratio of students’ selection of worked examples
versus practice problems was on average about 40% versus 60%. In line with instructional
design principles (e.g., Van Merriënboer 1997), the percentage of examples selected decreased
and the percentage of practice problems increased over time and there was a higher probability
of an example being selected after a failed than after a correct problem-solving attempt. In
contrast to instructional design principles, however, students rarely started the training phase
with example study.

Yet this was different in Van Harsel et al. (manuscript in preparation). Higher education
students (first year students at a Dutch university of applied sciences) learned to solve math
problems on the trapezoid rule. After a pretest, a self-regulated learning phase followed, in which
students were instructed to select six tasks of their own choice, from a database with 45 tasks, with
the aim of preparing for the posttest that would follow. The tasks in the database were organized at
three levels of complexity, with three task formats per complexity level: videomodeling examples
(in which the solution procedure was being worked out by an instructor, appearing on the screen
step by step in handwriting, and explained in a voice-over), worked examples (text based, the
worked-out solution procedure was visible all at once), or practice problems. At each level,
students had 5 isomorphic tasks (i.e., different cover stories) for each format to choose from (i.e., 3
× 3 × 5 = 45 tasks in total; they could select each task only once). Almost 77% of students started
with observing a video modeling example, 19% with a worked example, and only 4% with a
practice problem, and the vast majority of students started at the lowest complexity level (almost
89%).While the selection of examples gradually decreased, and the selection of practice problems
gradually increased over the course of the self-regulated learning phase, the ratio of examples (i.e.,
video and worked examples combined) remained quite high (see Table 1).

Interestingly, the findings also revealed a difference in task sequences chosen between students
who scored the highest and thosewho scored the lowest on the posttest tasks that were isomorphic to
the self-regulated learning phase tasks. In the second half of the learning phase, low-scoring students
continued to select tasks at the lowest complexity level and continued to select examples more often
than high-scoring students. Unfortunately, performance data on the practice problems was not
available, so it is not entirely clear whether the study behavior of low-scoring students simply reflects
that they did not yet grasp the lowest complexity problems (in which case their study behavior is
quite adaptive), reflects poor regulation (i.e., if they would have been able to move on to more
complex problems, but did not study/practice those, this explains why they would perform lower on
the posttest), or reflects a lack of motivation.
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Recent large-scale observational studies (Rienties et al. 2019; Tempelaar et al. in press)
with university students, during an 8-week introductory mathematics course in a blended
learning environment also showed that students made substantial use of worked examples in
the online study environment (in up to 43% of the exercises; Rienties et al.). However, large
differences among students were observed: several clusters of students were identified that
differed widely in the amount of examples studied and practice problems completed and in
when they worked on those tasks (i.e., in preparation for which activity in the course: tutorial
sessions, quizzes, or the final exam). While some of these patterns of self-regulated study
behaviors are likely more effective and efficient than others, these studies unfortunately did not
allow for drawing strong conclusions about that (e.g., because of large differences in back-
ground and prior knowledge in mathematics and because only part of the learning activities in
the course took place in the only study environment).

In sum, we know relatively little about task selection choices students make and even less about
why they make those choices. The available data suggest that students do seem to be (implicitly or
explicitly) aware of the fact that examples are efficient for learning (i.e., by providing high
instructional support and requiring relatively little effort compared to practice problems) as they
make substantial use of them, although there are differences among studies and among students in
when students opt for example study. Yet, it remains unclear from these studies why students switch
from examples to practice problems and vice versa and whether they (implicitly or explicitly) use
effort as a cue in making these decisions to alternate between formats. However, as we will show in
the next section, we do know that training students to consider invested effort during task selection
can improve the effectiveness of self-regulated learning.

Training Students to Make Task Selection Choices Based on a Combination of Their
(Self-Assessed) Performance and Invested Mental Effort

In this section, we review two studies (Kostons et al. 2012; Raaijmakers et al. 2018b) that have
shown that training students’ self-assessment and task selection skills by means of video
modeling examples that teach them to consider the combination of their (self-assessed)
performance and (self-reported) invested mental effort on a prior problem-solving task when
selecting a new one can improve the effectiveness of self-regulated learning.1 This training

1 Note that there are other effective approaches to improving self-assessment and task selection skills in the
context of problem-solving tasks as well (e.g., in intelligent tutoring systems: Long and Aleven 2016, 2017; Roll
et al. 2011). We did not review these studies here as they fall outside the scope of this article (i.e., they did not
focus on the role of mental effort, and task selection was not always fully self-regulated but often implemented as
“shared control” in which the system first makes a pre-selection of tasks at an appropriate level, from which the
learner then gets to choose; see also Corbalan et al. 2008).

Table 1 Percentages of selected video modeling examples, worked examples, and practice problems in the self-
regulated training phase (Van Harsel et al. manuscript in preparation)

Video modeling example Worked example Practice problem

Task 1 76.9% 19.0% 4.1%
Task 2 24.5% 31.3% 44.2%
Task 3 37.4% 22.4% 40.1%
Task 4 35.4% 28.6% 36.1%
Task 5 30.1% 34.9% 34.9%
Task 6 17.0% 28.6% 54.5%
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approach was inspired by adaptive task selection systems (Anderson et al. 1995; Koedinger
and Aleven 2007). Adaptive systems monitor individual students’ performance on a problem
on several parameters, which are then used in an algorithm to select a suitable next problem for
the student from a task database. In the studies reviewed here, secondary education students
were taught a simplified task selection algorithm, combining their (self-assessed) performance
and invested mental effort on the current problem.

The studies were conducted in the domain of biology; more specifically, students had to
learn to solve monohybrid cross problems (Mendel’s law of heredity). The procedure for
solving these problems consisted of five steps: (1) translating the information given in the
cover story into genotypes, (2) putting this information in a family tree, (3) determining the
number of required Punnett squares, (4) filling in the Punnett square(s), and (5) finding the
answer(s) in the Punnett square(s). An online learning environment was designed, with a task
database presenting the problem-solving tasks that students could choose from. The task
database was designed according to two key instructional design principles from the Four-
Component Instructional Design model (4C/ID Model; Van Merriënboer 1997; Van
Merriënboer and Kirschner 2013) stating that: (1) learning tasks should be ordered from
simple to complex, and (2) within each level of complexity, learning tasks should be offered
that initially provide a high level of instructional support, which is slowly reduced (faded out)
in later tasks as the learners’ knowledge increases (i.e., the “completion” or “fading” principle;
Paas 1992; Renkl and Atkinson 2003; Van Merriënboer 1990). Accordingly, the problem-
solving tasks in the database (see Fig. 1) were ordered in five increasing levels of complexity,
and within each level of complexity, three levels of instructional support were provided: high
(completion problems with most solution steps worked out, some for the learners to complete),
low (completion problems with some steps worked out, most for the learners to complete), or
no support (conventional problem: no steps worked out, learners solve the entire problem
themselves). At each level of support within a complexity level, students could choose from
five isomorphic tasks that had the same solution procedure (i.e., the same structural features)
but different cover stories (i.e., different superficial features; e.g., a task on eye color vs. hair
structure).

The self-assessment and task selection training was provided by means of video modeling
examples in which another student (i.e., the model) demonstrated and explained the self-
assessment and task selection procedure. The training consisted of a general introduction
followed by four video modeling examples, two by male and two by female models (to
prevent potential effects of model-observer similarity on training outcomes; Schunk 1987).
Students first observed the model solving a problem (low complexity, no support) from the
task database (note that two of the models did not correctly solve the problem to create
variability in performance/self-assessment). After solving the problem, the model rated
invested mental effort (scale of 1-9; Paas 1992) and self-assessed performance, assigning 1
point for every problem-solving step correctly completed (0–5). Then, the model selected a
new task from the database by combining the (self-assessed) performance and mental effort
rating, according to a table (based on task selection algorithms used in prior research, Corbalan
et al. 2008; Salden et al. 2006; see Fig. 2): When high performance was attained with low
effort, the table advised selecting a task with much less support/more complexity; with high
performance and high effort to practice a similar task again (until some efficiency is reached),
with low performance and high effort to choose a less complex task or more support.

Kostons et al. (2012) first conducted an experiment to test the effectiveness of the training.
Students in the experimental group completed a pretest (to check that they indeed had little if
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any prior knowledge of the biology problems) and then observed the four video modeling
examples of the entire performance – assessment – selection cycle. Students in the “no
training” control group received only the performance part of the video modeling examples
(this was done to ensure that any effects on the posttest were not due to the knowledge on how
to solve the biology problems conveyed in the examples). The training was shown to enhance
self-assessment accuracy (i.e., the absolute deviation between the judged and actual perfor-
mance) and task selection accuracy (i.e., the deviation [number of columns in Fig. 1] between
the chosen task and the recommended task).

In a second experiment, Kostons et al. (2012) investigated the effects on learning outcomes.
Students first completed a pretest, then entered the training phase (same experimental/control
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Fig. 1 Task database (Raaijmakers et al. 2018b): 5 complexity levels, 3 levels of instructional support within
each complexity level, and 5 different learning tasks within each complexity-support level

Performance

4-5 +2 +1 0

2-3 +1 0 -1

0-1 0 -1 -2

1-3 4-6 7-9
Effort

Fig. 2 Table used by the models to select a new task from the database. Suppose a no support problem at
complexity level 1 was completed, with self-assessed performance of 4 and mental effort rating of 2, the task
selection advice would be +2, meaning 2 columns to the right in the database in Fig. 1: a low support problem at
complexity level 2
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conditions), after which all students engaged in a self-regulated learning phase, working on
eight tasks of their choice from the database, and finally, completed a posttest. Students in the
training condition outperformed students in the control condition on the posttest problems.
Thus, the effectiveness of the self-regulated learning phase (in terms of how much knowledge
students acquired on how to solve the biology problems) was higher when students had
received self-assessment and task selection training. In other words, students who had been
trained made better choices and gained more from self-regulated study.

Importantly, this finding was replicated and extended in a study by Raaijmakers et al.
(2018b), who showed that the effectiveness of self-regulated learning not only improved when
the training was based on the specific algorithm (shown in Figure 2) but also improved when a
more general task selection heuristic was used (e.g., the model saying “I attained a high score
on performance with a medium amount of effort, so I am ready for a more difficult task/one
with less support.”).2 Moreover, they found some evidence that the task selection skills might
transfer: Trained students made better task selection choices when they were presented with
vignettes, in which the performance and invested mental effort of another (fictitious) student in
a new problem context were given (e.g., math problems with 8 steps and a database with 4
complexity and 2 support levels) and were asked to select a suitable next task for their
(fictitious) peer. However, it is as yet unclear whether the effects of the training can indeed
be (made to) transfer to self-regulated learning in other problem contexts. In a follow-up study
(Raaijmakers et al. 2018a), students who first received the self-assessment and task selection
training in the context of the biology problems and then had to engage in a self-regulated
learning with math problems (linear equation problems consisting of 3 steps; organized in a
database with 5 complexity and 2 support levels) did not show better math posttest perfor-
mance than students who did not receive the training. As it would be unfeasible to train task
selection skills for each type of problem students might encounter, it is important for future
research to investigate obstacles and conditions for successful transfer of self-assessment and
task selection skills.

Nevertheless, the fact that self-assessment and task selection training were found to
improve the effectiveness of subsequent self-regulated learning—and that this finding was
replicated—is important. It shows that teaching students a relatively simple task selection rule
based on a combination of their self-assessed performance and invested mental effort improves
their self-regulated learning outcomes. Despite a large body of research on interventions to
improve monitoring accuracy across a variety of learning tasks, there are relatively few
interventions that were actually shown to affect learning outcomes (Hacker and Bol 2019).

Directions for Future Research on the Role of Mental Effort in Self-Assessment
and Task Selection at the Task Sequence Level

The previous section not only shows that there is a paucity of research into the role of mental
effort in self-regulated learning at the task sequence level but also shows that research in this
direction is very promising for fostering self-regulated learning with problem-solving tasks.
Yet a lot of work remains to be done, and we will discuss several directions for future research

2 Note, though, that initial experiments (included as supplementary material in Raaijmakers et al. 2018b) revealed
that particular design features of the video examples are key to the effectiveness of the training
(see supplementary materials of Raaijmakers et al. 2018b; see also Baars et al. 2014b, who found no effects
with written training examples).
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here, along the lines outlined by De Bruin et al. (introduction to this special issue). As
reviewed in the previous section, we still know very little about what task selection choices
students make when they engage in self-regulated learning with examples and practice
problems. But we know even less about why they make those choices and what role mental
effort plays in this, both in terms of effort invested in the prior task (i.e., effort monitoring) and
in terms of effort they expect to have to invest on a subsequent task (i.e., effort regulation).

First, as for effort (in) monitoring, it is imperative to gain more insight into the cues students
use for monitoring their performance and for monitoring invested effort. On the one hand, as
mentioned earlier, students may use effort as a cue in monitoring their performance, and the
research on training them to do so (reviewed in the previous section) shows that this can be a
fruitful strategy. On the other hand, the negative association between effort ratings and
monitoring judgments found in research at the item level might also indicate that there are
other cues that students use both in making performance judgments and in making effort
ratings. Indeed, a conceptual as well as a measurement issue regarding self-reported mental
effort is that it is not entirely clear what effort ratings are based on (see also Scheiter et al., this
issue). Some studies have shown that effort ratings can be influenced, for instance, by when
effort is reported (i.e., immediately after a task vs. after a series of tasks; Schmeck et al. 2015;
Van Gog et al. 2012) and by whether performance feedback is given prior to making an effort
rating. Raaijmakers et al. (2017) manipulated feedback valence (regardless of actual perfor-
mance, i.e., students were led to believe they performed correctly/incorrectly, or better/worse
than they thought), and negative feedback was found to result in higher and positive feedback
in lower effort ratings. This suggests that students’ affective response to the feedback and/or
their altered perceptions of the task demands influenced their effort ratings. Therefore, next to
clarifying the cues on which effort monitoring is based, future research should also continue to
address when and how students can best be asked to report their invested mental effort. Thus
far, when using rating scales, it seems advisable to assess effort immediately upon task
completion and before any feedback on the task is provided.

Second, with regard to effort regulation, we need to gain more insight into the cues students
use to regulate their effort in the task selection phase (i.e., the preparatory phase of self-
regulated learning cycle). How do students perceive the demands imposed by the different task
formats that they can choose from (i.e., how much effort do they expect they would have to
invest) and how does this affect their choice of complexity level or task format? Could we help
them to more effectively regulate their (effort during) learning by instructing students on the
merits of different task formats for different phases in their learning process? And how much
effort are students willing to invest to continue to improve their performance (see also Paas
et al. 2005)? What role do affective and motivational variables (e.g., perceived self-efficacy)
play, both in how they perceive task demands and in how much effort they are willing to
invest? For instance, a lack of motivation might be a potential explanation for the task selection
pattern (i.e., often staying at the lowest complexity level) observed in students who performed
poorly on the posttest in the study by Van Harsel et al. (manuscript in preparation). Also, in the
training studies reviewed above, there was a substantial variance in the extent to which
students benefitted from self-assessment and task selection training. Kostons et al. (2012)
suggested that this might have been due to differences in motivation, and indeed, a study by
Baars and Wijnia (2018) showed that students’ task-specific motivation was associated with
their monitoring accuracy after training (they used the training approach from Kostons et al.
2012; Raaijmakers et al. 2018a, b).
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One problem in addressing the basis for students’ monitoring judgments, effort ratings, and
regulation decisions is that it is unclear to what extent students are aware of these judgment and
decision-making processes or whether they occur rather automatically. This affects what methods
and techniques could be used to study these questions. For instance, process-tracingmethods such as
verbal protocols or eye tracking (or a combination of both; Van Gog et al. 2005) have been used for
studying self-assessment and task selection processes (cf. Nugteren et al. 2018) and might be one
way to reveal, for instance, why students switch from examples to practice problems and vice versa
andwhether they use effort as a cue inmaking these decisions to alternate between formats. Another
method that has been used is to ask students to report on what cues they use during self-assessment
and task selection either as open question (Van Harsel et al. manuscript in preparation) or with the
aid of a list of potential cues (cf. Van de Pol et al. submitted for publication). However, these
methods assume that students are aware of and can introspect on their monitoring and regulation
processes. As this might not always be the case, these methods could/should ideally be used in
conjunction with experimental approaches that, for instance, systematically vary which cues are
available (see e.g., studies by Van de Pol et al. submitted for publication, and Oudman et al. 2018,
with teachers) or try to establish which factors differentially affect effort judgments, monitoring
judgments, and objective measures of effort and performance (cf. Ackerman 2019; Scheiter et al.,
this special issue).

Third, regarding the question of how we can optimize cognitive load during self-regulated
learning, as students have to invest effort both in studying the to-be-learned content (primary
task) and in self-regulating their learning process (secondary task), the training approach we
reviewed above seems very promising. However, the caveats mentioned earlier (in the prior
“future directions” section) also apply here; if effort ratings are affected by extraneous
variables, the trained task selection approach will not work optimally. Future research should
also look into further optimizing the training. Even though our simple approach to teaching
students to combine (self-assessed) performance and effort for the selection of new task was
effective for improving learning outcomes, it is likely that the algorithm that was used can be
further improved upon (note, though, that any algorithm would have to be relatively simple,
and much simpler than the advanced algorithms used in adaptive systems, or students will not
be able to understand, remember, and apply it during self-regulated learning). Another
important avenue for future research would be to investigate obstacles and conditions for
successful transfer and the role of cognitive load therein. That students were not able to
transfer the task selection skills trained in one type of problem context to another problem
context could have been due to high cognitive load imposed by the primary task (i.e., solving
the new problems), in which case students might have too little resources left to simulta-
neously remember, adapt, and apply the learned task selection procedures.

Last but not least, future research should move beyond controlled contexts, and when doing
so, investigating students’ motivation to invest effort (Paas et al. 2005) becomes even more
important. While most of the research discussed here was already conducted in a classroom
context, it was still a controlled context. Students could choose which tasks to work on during
the self-regulated learning phase, but they had to choose a certain number of tasks and knew
they would be tested immediately after the learning phase (e.g., Foster et al. 2018; Van Harsel
et al. manuscript in preparation; Kostons et al. 2012; Raaijmakers et al. 2018b). The findings
from the studies by Rienties et al. (2019) and Tempelaar et al. (in press) suggest that
(individual differences in) motivation have a huge influence on what tasks students select
and when in naturalistic course contexts. Given that effective self-regulated learning keeps
students within their zone of proximal development, it will be effortful to maintain, as students
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are always working on tasks that are just above their current level of performance. So, even if
we can train students to become more effective self-regulators, an important open question is
whether they would persist in this kind of effortful self-study when it is up to them.
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