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Abstract
The summer of 2018 was characterized by high temperatures and low precipitation values in the
Netherlands. The drought negatively impacted different sectors, resulting in an estimated damage
of 450 to 2080 million Euros. Strong regional differences were observed in the precipitation
shortfall across the country, with highest deficits in the southern and eastern regions. This raised
two questions: (i) have increasing global temperatures contributed to changes in meteorological
and agricultural droughts as severe or worse as in 2018? And (ii) are trends in these types of
droughts different for coastal and inland regions? In this paper we show that there is no trend in
summer drought (Apr-Sep) near the coast. However, a trend in agricultural drought is observed for
the inland region where water supply is mainly dependent on local precipitation. This trend is
driven by strong trends in temperature and global radiation rather than a trend in precipitation,
resulting in an overall trend in potential evapotranspiration. Climate model analyses confirm that
this trend in agricultural drought can at least in part be attributed to global climate change.

1. Introduction

The summer of 2018 in northwestern Europe was
characterised by long-lasting large scale high pres-
sure conditions, leading to dry and hot weather over
large parts of the continent (WWA 2018, Kornhuber
et al 2019, Vogel et al 2019). In the Netherlands
each month in the period April to September was
above average warm; in May, June, July, Septem-
ber and October it was also drier than normal (fig-
ure 1(a) and (b)) (Sluijter et al 2018). The combin-
ation of warm and dry conditions led to high val-
ues of drought indicators such as the precipitation
shortfall (the cumulative potential evapotranspira-
tion minus precipitation, set to zero if smaller than
zero; in the Netherlands referred to as ‘neerslagtekort’
and in hydrology referred to as ‘precipitation defi-
cit’). Precipitation shortfall (neerslagtekort) is com-
monly used as a drought indicator in the Netherlands
(figure 1(c)). The precipitation shortfall was larger in
the south and east of the country than in the west
because of lower precipitation values, higher temper-
atures and more sunshine (figure 2).

The 2018 drought negatively impacted differ-
ent Dutch sectors. In the agricultural sector a large

precipitation shortfall, decreasing water quality and
availability impacted crop yields and grassland. The
financial effects on farmers’ income varied widely
due to differences in local drought impacts, their
vulnerability and potential mitigation options. Ship-
ping was affected by low river water levels which lim-
ited the load river barges could carry, reduced capa-
city and higher prices resulted in increased income
for the shipping sector but higher costs for custom-
ers. Reduced quality and quantity of surface waters
impacted drinking water facilities, recreation and
natural ecosystems. Low groundwater tables led to
increased land subsidence and damaged hundreds of
houses in urban areas. As a result/consequence, total
economic loss was estimated to be between 450 and
2080 million Euros (Ecorys 2018).

It is obvious that extreme drought events have
large consequences for the economy and affect differ-
ent sectors. Therefore, a pressing societal question is
whether or not events like the 2018 drought are linked
to climate change and hence can be expected to occur
more frequently in the future. In this paper we aim
to answer the question ‘have increasing global tem-
peratures contributed to changes in meteorological
and agricultural droughts as severe or worse than the
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2018 drought in the coastal or the inland region of the
Netherlands?’.We assess whether or not trends in four
variables related to drought severity—precipitation,
temperature, potential evapotranspiration (PET) and
soil moisture—can be attributed to global warming.
Because drought propagates through the hydrological
cycle it is important to quantify the trends in all four
of these components, to fully understand if drought
occurrence is changing and which factors are most
influential. As the impact of different drought types
is strongly related to the affected sectors (Van Loon
et al 2016), we aim to provide a complete overview
of trends in meteorological droughts (lack of precip-
itation) and agricultural droughts (described in this
paper by trends in soil moisture and PET).

In-depth trend attribution analyses of precip-
itation or other drought-related variables have so
far focused on country-wide averages (Sluijter et al
2018). Over the 20th century increasing summer pre-
cipitation and increasing PET, via rising temperat-
ures and sunnier summers, have to a large extent
compensated each other, consequently there is no
trend in country-wide precipitation shortfall. How-
ever, Daniels et al (2014) and Lenderink et al (2009)
show that in the Netherlands, the influence of SST
on precipitation trends resulted in differences in pre-
cipitation between the coastal and inland regions and
this is likely related to the land-sea temperature con-
trast. Lenderink et al (2009) indicate that the influ-
ence of SST on precipitation trends is particularly
strong in the coastal area less than 30–50 km from
the coastline. This is confirmed by van Haren et al
(2012) for trends in summer precipitation in west-
ern Europe. In this paper, for the first time we analyse
trends in the coastal and inland regions separately,
with a focus on the inland region. Attribution ana-
lyses are performed on trends in different indicators
of meteorological drought and agricultural drought
in the inland region.

Mitigation of potential impacts of meteorological
drought is often possible in the low-lying, mainly
western, parts of the Netherlands using discharge
from the rivers Rhine and to a much smaller extent
Meuse. Therefore we include an analysis of observed
discharge at Lobith and precipitation over the Rhine
catchment upstream of Lobith. The eastern parts of
the Netherlands have a higher dependency on pre-
cipitation for drought mitigation as their elevation is
above the river level and thus Rhine water can not
reach these areaswithout pumping. This strongly lim-
its the possibilities for drought mitigation and thus
makes these regions more vulnerable to local meteor-
ological drought.

2. Data and study region

Weuse public Dutch station data for the period 1951–
2019 available from KNMI. Variables that are ana-
lyzed include homogenized precipitation and mean

temperature, global radiation (total downward short-
wave radiation) and Makkink PET. Makkink PET is a
measure that is mainly dependent on radiation and
temperature. We additionally use Rhine discharge at
Lobith.

Furthermore, we analyse four different gridded
variables: precipitation, temperature, PET and soil
moisture. Soil moisture and PET are estimated using
data-model chains, using readily available PET data,
see also section 5 for a discussion of PET-schemes. For
trend calculations we use monthly datasets that are
readily available and sufficiently complete for a period
of at least 35 years. All gridded datasets used in this
study are shown in figure 3 and listed below.

For observations and reanalyses we use (see
table 1 and Supplementary Information (SI)
(stacks.iop.org/ERL/15/094081/mmedia) for more
detailed explanations):

• For precipitation: KNMI rain gauges and E-OBS
(1950-2018),

• For near-surface temperature: KNMI station data
and E-OBS,

• For PET: CLM-ERA-I (1979-2016), CLM-WFDEI
(1979-2013), MERRA-2 RefET (1980-2018) and
ERA-I (1979-2018),

• For soil moisture: CLM-ERA-I, CLM-WFDEI,
FLDAS and two ISIMIP runs with WFDEI reana-
lysis input (1971-2010) (PCRGLOB-WFDEI and
LPJmL-WFDEI).

For climate model data the following simulations
are used:

• 16 (4 GCMs × 4 hydrological models) transient
runs from the ISIMIP ensemble that have data
available for both soil moisture and PET, we also
use daily mean near-surface temperature and pre-
cipitation series for these ISIMIP runs,

• The combination EC-Earth / PCR-GLOBWB (van
der Wiel et al 2019) for all four variables,

• The 16-member RACMO ensemble (Lenderink et
al 2014) for PET and soil moisture.

Based on Lenderink et al (2009), theDutch coastal
region is defined by the area up to 50 km from the
North Sea, or, to make sure this is well into the main-
land for land bordering the Wadden Sea, at least
30 km from the Wadden Sea and covers about 45%
of the country. The inland region is defined to be the
remainder of the country. Variables are averaged over
either the Dutch coastal or the Dutch inland region,
to see if trends in drought variables vary as a result of
the coastal influence.

3. Methods

Except for some details, the methods used in this
article are described in detail in Kew et al (2019a),
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Figure 1. Time series of (a) monthly temperature [◦C], (b) monthly precipitation [mm] and (c) daily precipitation shortfall
(cumulative potential evapotranspiration minus precipitation, set to zero if smaller than zero) [mm] for station De Bilt. Grey
shading and the black line show the climatological distribution based on years 1981–2010. Country averaged data indicates a
similar drought signal (not shown).

where they were used in a similar way as in the

current paper, including the use of mostly the same
datasets. The method is also extensively explained
in van Oldenborgh et al (2018) and van der Wiel
et al (2017), two method overview papers are in
preparation (van Oldenborgh et al 2019, Philip et
al 2019). For completeness we give a short sum-
mary below. A list of assumptions is given in
the SI.

To attribute the 2018 drought to climate change

we use a multi-method, multi-model approach. We
calculate trends with respect to Global Mean Sur-

face Temperature (GMST) for all variables and
all datasets and synthesize results into one over-
arching attribution statement. The analysis steps
include: (i) trend calculation from observations; (ii)

model validation; (iii) multi-method multi-model
attribution and (iv) synthesis of the attribution
statement.

In this study, we statistically model (i.e.
fit) the dependency of Apr-Sep means of the
four drought related variables on smoothed
GMST, (the model GMST for model data and
GISTEMP surface temperature GMST (Hansen
et al 2010) for observational and reanalyses
data) as follows (see also van Oldenborgh
et al 2019, Philip et al 2019):

We fit the following probability distributions:

• for precipitation: a Gaussian distribution that
scales with GMST, focussing on low values,

• for temperature: a Gaussian distribution that shifts
with GMST, focussing on high values,

• for PET: a Gaussian distribution that scales with
GMST, focussing on high values and

• for soil moisture: a Gaussian distribution that
scales with GMST, focussing on low values.

When the distribution is shifted (for temperat-
ure), a linear trend is fitted by making the location
parameter µ dependent on GMST as

µ= µ0 +αT, (1)

with α in [units of the study variable]/K. When the
distribution is scaled (for precipitation, PET, soil
moisture, discharge),

µ = µ0 exp(αT/µ0), (2)

σ = σ0 exp(αT/µ0), (3)

which keeps the ratio of the location and scale para-
meter σ/µ invariant. In each case, the distribution fit-
ted to all data is evaluated twice: once for the year

4
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(a) precipitation (b) temperature

dnalni/latsaoc)d(noitaidar)c(

Figure 2. Summer mean (Apr-Sep) anomalies in 2018 for (a) precipitation [fraction], (b) temperature in [◦C] and (c) global
radiation in [W/m2] at KNMI stations and (d) map of coastal (yellow) and inland (blue) stations.

Figure 3. Gridded datasets used in this paper. Left: observational and reanalysis datasets, right: climate model datasets. Listed
under PET is the PET scheme (PT: Priestley-Taylor, PM: Penman-Monteith, H: Hamon, B: Bulk formula, M: Makkink), under
SM is the depth in meters of the soil moisture layer used (RD: depends on rooting depth, predominantly 1 m for WaterGAP2).
Shading indicates an experiment with either multiple input datasets or multiple hydrological models. The number of resulting
hydrological model simulations are indicated by horizontal lines on the right side of the figure.

1950 and once for the year 2018. This period cap-
tures most of the anthropogenic heating as a result
of anthropogenic greenhouse gas emissions (1.05 K
between 1950 and 2018). Trends are given as abso-
lute differences for temperature and as relative per-
centage changes for precipitation, PET and soil mois-
ture, between the years 2018 and 1950. Note that for
some positive-definite variables—e.g. precipitation
and variables that depend strongly on precipitation
such as soilmoisture and PET—it ismore appropriate

to scale rather than shift the distribution with GMST
(see van Oldenborgh et al 2019, Philip et al 2019, for
an explanation). The scalingmethod is also applied to
the discharge dataset.

As an example, figure 4 shows the fits for the E-
OBS inland precipitation series. Themagnitude of the
2018 event was 1.46 mm/day or 267 mm/6 months,
which is shown as a magenta square in (a) or
horizontal line in (b). Using the full data series, scaled
up to the climate of 2018 and down to the climate

5
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of 1950, we compute the return periods. This gives a
return period of 20 years in the present climate (95%
confidence interval, CI, of 9 to 80 years). Note that
this is the frequency of events at least as dry as what
was experienced in 2018. With a change since 1950 of
−1 % (95% CI −13 % to +14 %) the observational
data showno significant trend in inland precipitation.

All model data were subjected to two validation
tests—a qualitative test on the seasonal cycle and a
stronger test on variability, see SI for details—models
that did not pass the tests were disregarded. Trends
from the time series that passed the validation tests
are shown in section 4.

We synthesize the trends of all data using the same
method as in Kew et al (2019a). Observed trends
and modeled trends are synthesised separately into
one consolidated value for the observations (includ-
ing reanalyses) and a value for the modeled trends.
These two results are then combined into a single res-
ult, see also the SI.

4. Results

4.1. Spatial trend analysis of station data
In this section we discuss a spatial analysis of four
sets of Dutch station data: precipitation, temperature,
global radiation and Makkink PET. Furthermore we
analyse discharge at Lobith and precipitation over the
Rhine basin.

Mapping relative regressions (regression/mean)
of precipitation with respect to GMST from indi-
vidual stations in the Netherlands (figure 5(a)) shows
that there are differences between coastal and inland
regions in trends in summer-half year (Apr-Sep) pre-
cipitation. The coastal stations show a positive trend
of up to 25% per degree GMST rise towards a wet-
ter summer climate, whereas the inland stations show
negligible or even significant negative trends (p<0.1).

Both the coastal and the inland regions show a
positive trend in summer temperature up to 2.5 K/K
(figure 5b) and positive trends in Makkink PET
and incoming radiation up to around 25 %/K (fig-
ure 5c,d). Note that a positive trend in sunshine dur-
ation or incoming radiation enhances local temper-
atures and Makkink PET both directly and indirectly
through the higher temperatures (e.g. van Olden-
borgh et al 2009, van den Besselaar et al 2015).

Averaging the precipitation stations over the
inland and coastal areas gives summer trends of
1± 15 %/K (in agreement with the E-OBS trend
discussed in section 3) and 12± 16 %/K respect-
ively. The latter is only significantly different from
zero at p< 0.1, but the trend in the difference
between these two series is significant at p< 0.01 at
−0.22± 0.14 mm/day. This implies that the differ-
ence in precipitation between coast and inland is very
unlikely caused by natural variability.

The difference in temperature trends between
coast and inland is small and dataset-dependent. The

trends in global radiation at inland stations is lar-
ger than at the coast. After 1985 this is mainly due
to the clearer skies since aerosol pollution peaked
around that time in the Netherlands. However, there
is enough data before 1985 to show that the under-
lying positive trend (van Oldenborgh et al 2009) is
also stronger inland. Overall the trend averaged over
the inland stations is 7± 4 W/m2/K higher than over
the coastal ones over 1965–2019, where it should be
noticed that the number of stations in the early part
is low. This difference in trends is qualitatively con-
firmed by the ERA5 and 20CRv3 reanalysis (Slivin-
ski et al 2019). We expect both the lower precipita-
tion trends and higher global radiation trends in the
inland region to contribute to more risk of high pre-
cipitation shortfall, this is quantified in section 4.3.

Although the focus of this analysis is on meteoro-
logical and agricultural drought in the Netherlands,
low river discharge affects water availability in the
low-lying parts of the Netherlands and also had other
socio-economic impacts during the drought of 2018.
We therefore include a trend analysis of the Rhine
river discharge at Lobith and of the precipitation over
the Rhine catchment averaged over the summer sea-
son. It is beyond the scope of this article do a full attri-
bution study of these two variables.

Based on data from 1901 to 2019, there is a neg-
ative trend in Apr-Sep averaged discharge at Lob-
ith of −9 % (95% CI −18 to 2 %) over the period
between 1950–2018. However, it is only significant at
p< 0.1. E-OBS precipitation (Apr-Sep average) over
the Rhine catchment has a significant negative trend
of −14 % (−23 % to −3 %) between 1950 and
2018. Although there is a trend towards less precip-
itation over the Rhine catchment, the variability in
discharge at Lobith is large and possibly other factors
compensate this trend, so that we only find a non-
significant trend towards lower Apr-Sep discharge
averages at Lobith.

4.2. Detection of trends in the coastal region
For the coastal region the return period of the 2018
drought in E-OBS precipitation was only 10 years
(95% CI 5 to 30 years), which is less extreme than the
inland precipitation event analysed in section 3. The
trend in summer precipitation for the coastal region
calculated from E-OBS only is 8 % (95% CI −6% to
26%). Although this trend is stronger than the inland
region, towards a wetter coastal climate, it is not sig-
nificant. For verification purposes, we repeated this
analysis using Dutch precipitation stations selecting
and aggregating over the stations in the coastal region
(note that E-OBS leaves out many coastal stations as
they fall in sea grid boxes). The trend is slightly lar-
ger (9 % (95% CI −5 to 27% )), only significant at
p< 0.1.

The climate models and especially the relatively
coarse globalmodels that are used to drive the ISIMIP

6
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Figure 4. Illustrative example of the fitting method for E-OBS sum of Apr-Sep precipitation in [mm/6 months] averaged over the
inland region, using a Gauss fit and looking at the low tail. (a) Apr-Sep averaged data (stars) against GMST and fit lines - the
location parameter µ (thick) and the 6 and 40 yr return values (thin lines). Vertical bars indicate the 95% confidence interval on
the location parameter µ at the two reference years 2018 and 1950. The magenta square illustrates the magnitude of the 2018
precipitation event. (b) Return period diagram for the fitted distribution and 95% confidence intervals, for reference years 2018
(red lines) and 1950 (blue lines). The data is plotted twice, scaled with smoothed global mean temperature up to 2018 (red
crosses) and down to 1950 (blue crosses). The horizontal magenta line illustrates the magnitude of the 2018 precipitation event.

(a) precipitation (b) temperature

(c) radiation (d) Makkink PET

Figure 5. Relative regressions against GMST for Dutch station data averaged for Apr-Sep (a) precipitation, (b) mean temperature
(absolute regression), (c) global radiation and (d) Makkink PET. Note that all values, including non-significant values are shown.
Only stations with at least 20 years of data are included, for precipitation this is mostly from 1951, for radiation it is often
available from around 1970 or 1990.

models, do not describe the coastal effects in precip-
itation well enough to trust the results for this region
(e.g. Lenderink et al 2009, van Haren et al 2012).
Therefore we do not analyse precipitation and the
other variables further in models. Unfortunately, this

means we cannot make an attribution statement on
meteorological drought in the coastal region. How-
ever, as large bodies of surface water and upstream
water via the river Rhine are available in this region,
the impact of a meteorological drought is relatively
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small as precipitation only accounts for a small frac-
tion of the available water for irrigation in this region.

4.3. Detection and attribution of trends in the
inland region
In this section we first briefly describe the most
important results of the observational trend analysis
andwemention the decisionswemade related to that.
Next, we present the attribution synthesis figure for
the inland region. We do this for each of the four
variables—precipitation, temperature, PET and soil
moisture.

As shown in section 3 the return period of
the 2018 inland precipitation event was 20 years
(figure 4). Figure 6(a) shows trends (percentage
change) in precipitation for observations and mod-
els that passed the validation tests. As for the coastal
precipitation data, using inland stations instead of
E-OBS does not lead to a different conclusion
on the observed trend. The confidence interval in
the trend calculated from observations is so large
that it encompasses all model-trends. As the cli-
mate models are consistent with the observation
within the uncertainties due to natural variabil-
ity, we use the weighted average of observations
and models. For precipitation we conclude from
the synthesis of observation and model results that
there is a small positive but non-significant trend
towards a wetter inland climate of 1.6 % (95% CI
−1.2 % to 4.4 %). Looking forward, the climate
models do not agree on the sign of a trend in
low precipitation values in the future.

The summer half year of 2018 was warm in the
inland region; the return period of the 2018 event was
75 years (95%CI 15 to 1100 years). Figure 6(b) shows
the trends (absolute change) inmean temperature for
observations and models. We note that the calculated
trend is systematically lower in climate models than
in observations. The trend calculated from E-OBS is
1.9 K (95%CI 1.3 K to 2.4 K). The average trend in cli-
mate models is 0.9 K (95% CI 0.3 K to 1.4 K), which
is about 50 % less than the observed trend. We thus
conclude that there is a trend towards higher summer
mean temperatures. At least half of this can be attrib-
uted to human induced climate change.

As a consequence of using different PET-schemes
the value for PET and the corresponding return
period for 2018 is less well defined. Most trends
shown in figure 6(c) are clearly positive, as expected
from the positive trend in temperature. As for tem-
perature, the trends in the climate models are lower
than the trends in observation-based PET.

For soil moisture, the uncertainty in the trends
calculated with observed input is very large and
clearly around zero (figure 6(d)). The averaged trend
calculated with input from the models also encom-
passes zero. We thus conclude there is no signific-
ant trend in soil moisture over the inland region, but
uncertainties are high.

5. Discussion

No trend can be found in observed inland sum-
mer precipitation. This is in agreement with climate
model results. For the future, some of these climate
models show a large decrease in precipitation due
to a shift towards more easterly circulation types
(Haarsma et al 2009). The KNMI’14 climate scen-
arios for the Netherlands, based on the CMIP5 mod-
els, therefore span the range from a small increase to
a large decrease in summer precipitation.

Using Mar-Sep instead of Apr-Sep does not
change the spatial pattern of precipitation trends (not
shown). For farmers, a change in precipitation in
March could make a big difference on the amount
of available soil moisture in the rootzone at the start
of the growing season and for that reason a more in
depth analysis on thismonthwould be of value. How-
ever, as in the Netherlands shortage is traditionally
measured from Apr-Sep, we have chosen to focus on
Apr-Sep here.

The observed and modeled synthesized values for
the trend in temperature differ by a factor of two and
can therefore not be combined. This is a well known
problem in climate models for this region, (e.g. van
Oldenborgh et al 2009, Bhend andWhetton 2013, van
Oldenborgh et al 2013, Kew et al Kew, et al., 2019b).
Our conclusion that half of the observed trend can be
attributed to human induced climate change, points
to the fact that models do not show the same trend as
observed. This could be due to errors in model struc-
ture or parameterization causing systematic biases or
due to factors other than human induced climate
change that cause an additional trend in the observa-
tions. Therefore, based on the current model runs, we
can not decide what is the origin of half of the trend
seen in observations.

In our analysis we use different PET schemes, as
each hydrological modeling group that contributed
to the ISIMIP data store provided PET data using
its own prescribed PET-scheme. As a consequence,
we compare different measures. We can therefore
not compare absolute values in PET. However, the
differences in trends in these different datasets are
smaller when using the same driving GCM with
different hydrological models (with different PET-
scheme) than when using one hydrological model
(and one PET-scheme) with different driving GCMs.
For instance, the difference between HO8-GFDL-
ESM2M and HO8-HadGEM2-ES is larger than the
difference betweenHO8-GFDL-ESM2M and LPJmL-
GFDL-ESM2M, see figure 6(c). This was also found
in an earlier study (Kew et al 2019a). We therefore
conclude that the driving factor for the differences
between modelled PET trends stems mainly from the
GCM realizations, rather than from the PET schem-
atization.

As a result of the discrepancy between modeled
and observed trends in temperature it is very likely
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Figure 6. Synthesized values of trends per degree GMST rise for (a) precipitation [percentage change], (b) temperature [absolute
change in K], (c) PET [percentage change] and (d) soil moisture [percentage change]. Black bars are the average trends, colored
boxes denote the 95% CI. Blue represents observations and reanalyses, red represents models. Coloured bars denote natural
variability, white boxes also take representativity or model errors into account (only if applicable). In the synthesis, the magenta
bar denotes the weighted average (weighted with the inverse total variances) of observations and models and the white box
denotes the unweighted average. Soil moisture trends are based on standardized data, the other trends on absolute values.

that there will also be a discrepancy in trends in PET
and soil moisture between climate models and obser-
vations. Indeed, trends in PET are lower in models
than in observations. Nevertheless, the sign of the
trend is clear. It is however not easy to quantify the
influence of this trend on agriculture, nature etc In
soil moisture the influence of the lower temperature
trends in models is less clear.

Soilmoisture is important for crop health. If suffi-
cient water is available fromopenwater or groundwa-
ter, (agricultural) areas can be irrigated. In that case
soil moisture is no longer directly dependent on pre-
cipitation, but also depends on irrigation amounts.

In that sense PET (or the precipitation shortfall P-
PET) is more directly related to the drought under
irrigation, than soil moisture values. To avoid adding
up uncertainties, we have only shown trends in
precipitation and PET separately rather than trends
in P- PET.

For soil moisture either very local measurements
or satellite measurements that only measure the top
few centimeters are available. Furthermore, most
observed soil moisture time series are too short to use
for reliable trend analyses. Therefore we used reana-
lysis data instead of observations, consequentlymodel
validation was not possible. Another limitation in
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using soil moisture for a trend analysis is that if tem-
perature rises and soil moisture is already low, soil
moisture values cannot become much lower, since
the vegetation can no longer extract water from the
unsaturated zone. Based on these limitations and the
fact that irrigation is common in the Netherlands, the
precipitation shortfall P- PET is likely to be more use-
ful as a drought measure than soil moisture.

6. Conclusions

While most studies of drought in the Netherlands
use the whole country to study trends in precipita-
tion, we have shown that there is a significant differ-
ence in trends in Apr-Sep precipitation between the
coastal region and inland region. This distinction is
also visible but not statistically significant in trends
in Makkink PET, which combines trends in temper-
ature and radiation. We have therefore analysed the
coastal and inland regions separately, for four differ-
ent drought related variables.

The coastal region is marked by a trend towards
higher Apr-Sep precipitation values. A formal attri-
bution study was not possible for this region, because
most of the climatemodels used in this study—which
are also used as drivers for the hydrological models—
do not capture this coastal effect. This coastal region
can often use water from the Rhine river for irrig-
ation to mitigate drought effects and are therefore
less sensitive to reduced precipitation. We find a non-
significant negative trend in Apr-Sep Rhine discharge
at the Dutch-German border.

For the inland region, no significant trends in pre-
cipitation or soil moisture were found. The synthes-
ized (non-significant) trend towards more precipita-
tion is 1.6 % (95% CI−1.2 % to 4.4 %). In soil mois-
ture we find no trend, but the uncertainties are large.
For temperature, there is a clear trend, although cli-
mate models do not capture the size of the observed
trend; the trend calculated from E-OBS observations
is 1.9 K (95% CI 1.3 K to 2.4 K), whereas the trend
averaged over models is only 0.9 K (95% CI 0.3 K
to 1.4 K). We therefore conclude that at least half
of the trend towards higher Apr-Sep temperatures
can be attributed to human induced climate change.
Although there are other factors than temperature
influencing PET, we expected a positive trend in PET
given the trend in temperature. This is indeed what is
found for the synthesized PET trends.

We thus conclude that although the trend in
inland Apr-Sep precipitation is non-significant, agri-
culture droughts occur more frequently in 2018 than
in 1950, which is due to trends towards higher tem-
peratures and PET. For the future, we can expect
either a continuation of the past trends in drought
variables or even stronger drying trends due to
changes in atmospheric circulation. This will have
implications for the sectors that are affected by agri-
cultural droughts, as they will have to deal with

this increase in summer agricultural droughts in the
Netherlands.
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