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Abstract
Risk prediction is one of the central goals of medicine. However, ultimate prediction–perfectly predicting whether individu-
als will actually get a disease–is still out of reach for virtually all conditions. One crucial assumption of ultimate personal-
ized prediction is that individual risks in the relevant sense exist. In the present paper we argue that perfect prediction at 
the individual level will fail–and we will do so by providing pragmatic, epistemic, conceptual, and ontological arguments.
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Joe

Meet Joe. Joe, a 60-year-old male, with hypertension, over-
weight and hypercholesterolemia, wants to know his car-
diovascular risk. Based on the Framingham risk score, you 
calculate his predicted 10-year risk for myocardial infarc-
tion to be 10%. Joe, not completely satisfied, asks whether 
a more precise estimation would be possible, maybe even a 
truly ‘personalized risk estimation’. You decide for a more 
personalized approach, a risk prediction model including 
measured circulating proteins [1], and provide Joe with a 
5.8% 5-year predicted risk. Joe tries to reformulate this risk: 
‘Suppose I have seventeen identical copies, one of us will 
get a myocardial infarction in the next 5 years.’ But realiz-
ing that his predicted risk, although more personalized now, 
seems still a population average, Joe further challenges the 
risk prediction: ‘Now I know I’m one of those seventeen 
identical copies. But why is it not possible to tell me which 
one of those I am? Why can’t you provide me with a truly 
individualized risk?’ Joe challenges you to come up with a 
risk score of either 0 or 1 (for the given time-frame). (Mind 
that Joe explicitly adopts a frequentist’s approach to risk. 

Although such an approach is often displayed in epidemiol-
ogy [2], other approaches to risks are possible [3]).

Risk classification for different conditions is an old enter-
prise; and the Framingham study for instance, with its devel-
oped risk scores, has clearly contributed to cardiovascular 
risk management [4]. However, Joe is right in challenging 
the risk prediction, for the ultimate prediction–perfectly pre-
dicting whether individuals will actually get a disease–is still 
out of reach for virtually all conditions (ignoring predic-
tion over exceedingly short time frames, the only plausible 
exceptions are monogenetically caused diseases). The opti-
mists may hasten to add: ‘not yet, but in the future, we will 
be able to have perfect predictions’, an optimism echoed 
in the promise of personalized medicine, which takes into 
account individual variability for example in genes, environ-
ment, and lifestyle for each person [2].

In the present paper, we define ultimate personalized pre-
diction (or ultimate prediction for short) as the prediction 
that assigns individuals a 0 or 1 true estimated risk (within 
a well-defined time-interval). In this paper we will argue 
philosophically that ultimate personalized disease prediction 
will fail; the concepts developed will apply likewise to pre-
dictions of disease occurrence and treatment effects. For the 
sake of the argument, we will assume that variables used for 
prediction are perfectly measured, and that prediction tools 
are modelled both optimally and validly. We also assume 
that for perfect prediction, whether at the individual or 
group level, all independent causal pathways of a condition 
should be included in the prediction model (for a technical 
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exploration of causal thinking in risk prediction see [5], for 
a conceptual exploration see [6]).

One crucial assumption of ultimate personalized predic-
tion is that individual risks in the relevant sense exist, i.e. 
that at some level it is inevitable that someone will (not) get 
a disease. Challenging this ultimate prediction can go in 
two directions: one can challenge the possibility of know-
ing this individual risk (a so-called epistemic position), or 
one can challenge the existence of a true individual risk (an 
ontological position). Clearly, if such individual risk does 
not exist, it can also not be known, whereas the opposite is 
not necessarily true, as, if such risk exists, we may still not 
be able to determine the risk for an individual.

On the need for complete information

Imperfect prediction is often interpreted epistemically, i.e., 
attributed to our limited state of knowledge: we must have 
failed to measure or take into account certain factors that 
are relevant for the prediction. It could then be argued that 
more detailed knowledge about disease causes will improve 
prediction, and finally enable ultimate prediction.

But what is the scope of this claim? Suppose, to take a 
rather extreme example, that a big asteroid crashes into the 
Earth, eliminating all life on Earth, two weeks after we gave 
Joe his estimated 5-year risk of 5.8% for a myocardial infarc-
tion. Had we taken the approaching asteroid into account, 
we would of course have had to change our calculation for 
Joe–after all, his chance for a myocardial infarction within 
the two remaining weeks of his life would have been close 
to zero. Now, although ‘relevant for the prediction’ in a very 
broad sense, this is not the sort of information that prediction 
should be based on. Prediction in medicine should be based 
on information that lies within the purview of medicine. 
What falls outside of that purview must simply be treated as 
background assumptions–when assessing his cardiovascular 
risk, we assume that this background will, for Joe’s lifetime, 
remain roughly stable (no asteroids, no war). And that in 
turn implies that, even if an ultimate prediction for Joe’s 
case is possible (i.e., one which assigns a cardiovascular risk 
of either 1 or 0), this result will be conditional on that large 
and largely unspecifiable background assumption. This is a 
major qualification that we need for our notion of ultimate 
prediction to make sense, even though this assumption of 
stable background conditions remains mostly implicit.

We should note that, without this qualification, the idea 
of perfect prediction boils down to the metaphysical thesis 
of determinism: that, given the precise state of the entire 
universe right now, all future states of the universe are 
already predetermined, so that there is only one possible 
future course of events. And, given quantum mechanics, 
we do have good scientific reason to think that this grand 

metaphysical thesis is false. (A more detailed philosophical 
discussion on determinism falls outside the scope of this 
paper; see [7, 8]).

Disease outcomes are predicted on the basis of a set of 
measured variables X1-Xn at time T = 0. For example, in 
prediction of cardiovascular diseases, this usually com-
prises classical risk factors such as cholesterol, smoking, 
blood pressure, diabetes, currently combined with data from 
genomics, metabolomics and lipidomics. However, ultimate 
prediction will only be successful if the set of variables is 
complete, in the qualified sense we have just introduced: 
that all medically relevant and independent risk predictors 
are included. For, if medically relevant factors outside the 
variables included make a difference regarding cardiovas-
cular risk, ultimate prediction will fail. Now, clearly, car-
diovascular risk is determined over the course of life by 
many determinants which are not constant over time. Think 
of cortisol, a stress hormone associated with cardiovascular 
risk. Cortisol levels change per day, per hour and even per 
minute. Arguably, ultimate cardiovascular risk prediction 
requires continuous measurements of cortisol over life, up 
till T = 0. The same holds for variables like blood pressure, 
or dietary patterns. As most variables are non-constant over 
time, the only exception probably being genes, this require-
ment of lifetime measurements applies to all risk factors 
X1-Xn up to T = 0. We call this the Variable-Lifetime matrix. 
A completely filled-out variable-lifetime matrix at T = 0 may 
now be thought sufficient (though probably not necessary) 
for ultimate prediction in our qualified sense. It may be, of 
course, that for certain variables the information included in 
the matrix displays a simple recurring pattern (say), in which 
case including the recurring pattern is sufficient. However, 
this makes no substantial difference to our picture, also as at 
least some variables do not display strong recurring patterns 
(diet, perceived stress).

Obviously, such a complete Variable-Lifetime matrix is 
highly unlikely to be realized, which is a first argument why 
ultimate prediction will not materialize. This may strike 
one as a mere epistemic point reflecting our limited knowl-
edge state, or even just a pragmatic point concerning what 
is practically feasible in the foreseeable future, and not a 
fundamental argument. In response, one may point out that 
measurement itself is in fact an intervention which has real 
(ontological) biological as well as psychological conse-
quences, so that increasing measurement intervals and scope 
will increasingly change the one that is being measured in 
ways that may make a difference [9] for the prospective risk 
assessments–and frequent and invasive measurement may 
even make a difference in what is being measured itself. For 
example, cortisol levels are likely influenced by (the knowl-
edge of) measuring it, even if the actual effects of meas-
urement may be very small. It would be rather awkward, 
of course, if Joe learned that his ultimate personalized risk 
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for myocardial infarction was 1, but that this was partly so 
because he was being measured all the time (perhaps his 
risk would have been 0 if personalized medicine had simply 
left him alone). Then again, future techniques may allow 
for instant data accumulation over time in humans, in which 
case one could treat the measurement itself not as an event-
ful intervention, but simply as a constant factor that is there 
anyway (a very smart smartwatch). We will not further dis-
cuss this topic here; our aim was just to highlight the concep-
tual point that such measurement is not just subject to merely 
pragmatic constraints but involves serious ontological and 
epistemic intricacies as well.

The fundament and limitation of prediction: 
comparing like with like

Generally speaking, the current concept of risk prediction is 
based on the course of a reference population to predict dis-
ease risks in new patients [2]. For example, the Framingham 
Risk score was originally developed in a cohort of 5,209 
men and women [4]. These risk scores are now used for per-
sons like Joe to predict their cardiovascular risk. The basic 
assumption is thus that the reference population is similar 
to people like Joe: identical clinical characteristics implies 
identical predicted risk (the converse is obviously not neces-
sarily true as a similar predicted risk may be due to different 
underlying risk patterns).

Assigning a person to a reference population to deter-
mine someone’s risk invites two problems. The first is that 
someone can be assigned to different reference populations 
based on different sets of predictors. Each individual has 
innumerable characteristics and can therefore potentially be 
assigned to innumerable reference populations; this is known 
as the reference class problem [10]. Joe, for example, was 
assigned to a reference population based on classical risk 
factors combined with measured proteins, but could also 
have been assigned to a reference class based more on psy-
chological (perceived stress) and lifestyle factors (diet, sleep 
pattern, yoga). Interestingly, these different reference popu-
lations can lead to different risk estimations for the same 
person and the same outcome [11].

The second problem related to reference populations 
becomes clear when we consider the number of potential 
variables needed for ultimate prediction; for some diseases, 
like obesity or diabetes type 2, merely listing all the genetic 
loci associated with the condition already yields quite a large 
number of variables [12]. However, with only a modest set of 
20 dichotomous variables the number of potential reference 
classes exceeds one million. In fact, for many multifactorial 
diseases, considering more than 20 variables to predict their 
occurrence is not overdone. This means that for most refer-
ence populations no predicted risks have been established 

empirically, and that in turn implies that the ideal of per-
sonalized medicine, viz., taking into account all variables 
involved in disease risk, is bound to fail, given that the large 
number of predictors ‘strikes the curse of dimensionality’ 
[13]. One could again argue that this dimensionality problem 
is epistemic and may be solved by increasing computing 
power; however, it is difficult to see how we can increase 
the knowledge base for all these reference classes, as this 
knowledge is based on available data and available popula-
tions [14]. And these are limited. (Although it is admittedly 
always possible to generate more (relevant) data, there are 
surely both practical and ethical limits to (our possibilities 
of) increasing the available populations.) And so we may 
safely conclude that this problem can, theoretically, only be 
solved if we will be able to predict from biology and not just 
from population statistics.

Does biology behave deterministically? 
There may be a role for randomness

Back to Joe with his 5.8% predicted risk. The fundamental 
question is the ontological one whether indeed a true 1-or-0 
risk exists (for Joe). The existence of an individual 1-or-0 
risk would mean that if we would have 1,000 copies of Joe 
under identical conditions and we let time start at T = 0, all 
copies either will get the disease or will not get the disease. 
If a 1-or-0 risk at the individual level does not exist, then a 
population average is the closest we can get, even though 
the points discussed before would apply. Indeed, it has been 
claimed by several authors that such individual risks do not 
exist [11]. This question touches the basis of disease biol-
ogy. If individual 1-or-0 risks do not exist, the combination 
of all causal factors to predict risks at T = 0 does not fully 
determine this risk.

For several organs, it is an intriguing phenomenon that if 
cancer occurs in one of a pair of organs, there is little eleva-
tion of cancer risk on the contralateral organ [15]. This is 
for example the case for testis, breast and adrenal cancer. 
This may at first glance be a surprise, as major risk factors 
(diet, smoking, genes, circulating carcinogens) presumably 
behave largely identical for contralateral organs. Why then 
such risk-difference between contralateral organs, even 
though some local differences may be involved? This con-
sideration has given rise to the idea that chance may play an 
ontological role [16]. If so, then, even if we assume perfect 
knowledge and a complete variable-lifetime matrix, and treat 
our target individual as a closed system (on which more 
below), we will not be able to predict the event to occur–not 
because we missed something, but simply because there is 
nothing more to determine. Then, we have to conclude that 
what happens is ultimately partly a matter of mere chance. 
A second explanation would be that, although contralateral 
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organs are very similar, there are still minor differences 
which finally translate into very divergent future states, a 
feature described as ‘sensitive dependence on initial condi-
tions (SDIC)’ [17]; in such explanatory context, chance is 
not necessarily involved.

It is actually very hard to see how one could ever deter-
mine empirically whether chance plays an ontological 
role in medicine. It may also be that for some, but not for 
all diseases, chance plays a role [18]. If, however, chance is 
involved in disease development, it follows straightforwardly 
that we will never be able to give Joe his ultimate individual 
1-or-0 risk–simply because it does not exist. Reconceiv-
ing the individual risk, we could then say that it was, say, 
0.8–where the fact that it lies somewhere between 0 and 1 is 
then understood to reflect an ontological reality rather than 
epistemic limitations [3].

Here, we come in the vicinity of the vexed question what 
assigning an objective (ontological) probability to a single 
event really comes to. Very briefly, such assignment may be 
taken to rest on a distribution over a certain range of events, 
as in classical frequentist theories, or it can be genuinely 
single (as in, e.g., ‘single-case’ propensity theory; see [19, 
20]. See [21] for in-depth discussion.

The set of variables used to predict 
is not a closed system

Let us assume that everything in Joe is measured perfectly 
and let us also assume that we have perfect data on sev-
eral persons with a risk-profile identical to Joe’s (and let 
us assume that the reference class problem is solved and 
that chance plays no role). Will we be able to predict occur-
rence of a cardiovascular event in Joe with certainty, on the 
assumption that all things remain equal outside of the medi-
cally relevant sphere? Only if all future events and behaviour 
that affects cardiovascular risk can be perfectly predicted 
based on all measurements at T = 0.

But suppose Joe likes a drink, resulting in an alcoholic 
hepatitis, only a couple of weeks after he received his cal-
culated cardiovascular risk. Joe decides to become a total 
abstainer and succeeds in doing so. This will probably make 
a difference to his cardiovascular risk. If the previously cal-
culated risk must now be updated, it is shown to not have 
been ultimate after all. However, although not yet realistic, 
it is conceivable that behaviour prediction is possible when 
everything is measured (genes affecting behaviour, Joe’s 
responses to lifestyle events, etc.). If so, then the calculated 
cardiovascular risk will have already taken into account the 
hepatitis and Joe’s subsequent behavioural response, so that 
no update of that risk needs to be undertaken. If this is pos-
sible, the system to predict Joe’s risk may be called ‘closed’ 
at T = 0.

This suggests the following picture: setting aside the 
unlikely arrival of an apocalyptic asteroid and similar exter-
nal disruptions of the background against which Joe lives 
his life, we can treat him as a closed system; and then, the 
variable-lifetime matrix will be all we need to enable perfect 
prediction.

However, this picture rests on an ontological assumption 
that must be rejected, for there is no such thing as a closed 
system in medicine. Here are some examples that illustrate 
why; we will further develop the underlying philosophical 
point in the next section. Suppose that, the same day you 
provided Joe with his 5.8% predicted risk, he stumbles while 
descending the stairs, and is unfortunate enough to break 
his leg in the ensuing fall. His lifestyle changes, becom-
ing more sedentary for a few months. This will increase his 
cardiovascular risk, and though it is obviously an accident, 
it doesn’t look like we can assign it to a sudden change in 
the background assumption, as we could in the case of the 
apocalyptic asteroid. Similar examples can be easily thought 
of, such as a change in lifestyle because a good friend got 
a myocardial infarction, or Joe’s moving to Southern Italy 
and adopting a Mediterranean diet after having fallen in love 
with an Italian woman, or changing environmental condi-
tions because the city finally decides to shut down the air-
polluting coal plant, etc. Clearly, all of these circumstances 
will affect cardiovascular risk but could not have been pre-
dicted based on all variables known at T = 0. Perhaps some 
of the examples (changing environmental conditions) can 
be dismissed as they seemingly violate the assumption of 
background stability. But the more we do so, the more we 
lose Joe, in all his concreteness, entirely from sight, so that 
any ‘ultimate’ prediction that then in the end results will 
have little value, if at all, to Joe.

So even when we assume that the background against 
which Joe is living his life remains roughly constant, we 
cannot conceive of Joe as a closed system. Future factors not 
included in, or predicted by, the model, may influence risk, 
and because they were not included, ultimate prediction will 
fail. Even more, conveying to Joe what his cardiovascular 
risk is may be considered an intervention in Joe’s life, and 
as such may encourage Joe to change his behaviour. Joe may 
then decide, after being confronted with an ultimate risk 
prediction of 1, to eat more salad and do yoga every day. 
And paradoxically, the very idea of an ultimate prediction 
appears to preclude precisely such adjustments to one’s life 
based on the prediction: being ultimate, it must have already 
included whatever behavioural adaptations one is going to 
implement upon learning about it. This argument develops 
the argument displayed above, that measurement itself can 
affect human biology and psychology, and therefore risk.

It is a hallmark of biology that organisms are open sys-
tems, so that the processes in which living beings engage 
are interrupted or affected all the time [22, 23], and as we 
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have argued, this can occur by factors that were not included 
in the initial set of predictors. Cleary, the longer the time 
and the number of steps involved, the more difficult disease 
prediction will be as more events can affect the disease pro-
cess. As with the weather, predicting the rain likelihood for 
tomorrow will often work, though predicting the exact tem-
perature in Amsterdam three years hence is impossible [24].

Doesn’t this, again, merely reflect our limited (medical 
or meteorological) knowledge state? That suggestion takes 
us back to our above discussion of the unqualified idea of 
ultimate prediction, where we concluded that that idea ulti-
mately collapses into a mere statement of determinism, on 
which such ultimate prediction indeed seems possible (in 
theory), but in that case has to be based not on medically 
relevant factors but rather on the current state of the entire 
universe.

Biological processes

We have seen that there are practical, epistemic, conceptual, 
and ontological limits to the idea of ultimate prediction. The 
most central, philosophically speaking, is tied to our point 
that it is impossible to treat Joe as a ‘closed system’ in the 
sense that disease occurrence does not follow determinis-
tically from all variables known at T = 0 (not even if we 
assume stable background conditions). In fact, this is what 
medicine is about, as interventions aim to modify a disease 
process in such ways that the predicted course will differ 
from what would have occurred without the intervention. We 
will now attempt to sketch a more substantial philosophical 
underpinning for that observation.

To start, note that most of the variables used to predict 
Joe’s health capture the state in which Joe’s body, or a cer-
tain part of it, is. Examples are his cortisol level, blood 
pressure, or genetic make-up. The question is, now, how we 
should read such variables. According to one view, which 
found influential expression in the philosophy of the so-
called ‘new mechanism’ [25], biological entities are con-
ceived as ‘mechanisms’, and the entities or ‘things’ of which 
a mechanism is composed are fundamental. And biology is 
indeed full of descriptions of mechanisms, such as those of 
spindle formation and cancer genesis.

The question is whether such a mechanistic view can 
fully account for what happens in human biology. Think 
of a mechanical clock; it can be stopped, so that its parts, 
the ‘things’ that comprise the mechanism, do not engage 
in any clock-related processes for a while. Then, the clock 
can be wound up again, and the mechanism runs as it used 
to. By contrast, we cannot similarly take out Joe’s cortisol, 
store it in the fridge, put it back after 24 h and hope Joe 
will run again. More generally, stopping all the biological 
processes within an organism typically results in the death 

of that organism. Also, the cortisol that we measure today, 
is not the same as the cortisol we measured last week, as the 
cortisol is newly formed constantly. In the biological case 
the ‘things’ are by far not as stable and rigid as in the case of 
mechanisms. The crucial point, then, is that the components 
of biological mechanisms are typically dependent on the 
life-processes of their host organ or organism. In short, then, 
processes in biology are as fundamental as things [7, 23]. 
This can be thought of in a similar way to physics, where 
what happens is determined by the interplay between things 
and laws [17].

Now back to the measured variables. What we measure 
is the state in which (some part of) the organism is. Our 
measurements thus relate to the various biological entities 
or things at the time of measurement. On the mechanistic 
picture, then, these measurements indeed capture fundamen-
tally what goes on. But if processes are also fundamental in 
human biology, measuring entities may not capture the full 
picture. The tension between entities and processes can be 
seen when considering ‘aging’. Aging is clearly a process, 
but attempts to completely reduce aging to variables (actual 
age) or things (telomere length) have failed to fully capture 
the aging process.

This invites the question: how does one measure pro-
cesses? Well, one way to do so is, of course, to track the 
changes in (the relevant part of) an organism, and this might 
be done by successive measurements of the kind we have 
been considering. The variable-lifetime matrix introduced 
earlier in fact precisely does that. Suppose Joe has a grand-
son whose height is now 104 cm, one year later 109 cm. 
This growth is the result of a (growth) process, even if we 
have not directly measured the process itself. And when pre-
dicting growth, for example in Joe’s grandson, we generally 
combine information on actual height and the parents’ final 
height with information from growth curves. Such growth 
curves, based on combined growth data from many children, 
can be said to represent the growth process. Not including 
such growth curves when predicting height, will make the 
predicting task quite difficult and likely more inaccurate. 
However, there are not many instances in medicine where 
processes are included in the prediction model–not even via 
a proxy, like the growth curves. Still, standard textbooks in 
physiology and medicine are full of references to biologi-
cal processes, such as clot formation, cell-growth, aging or 
metabolism. (We will not discuss the semantic-philosophical 
issue whether ‘force’, ‘power’ or ‘process’ is a better term 
describing the dynamic part of biology; also, for our argu-
ment, it is not extremely important that a full definition of 
process seems lacking [23, 26]).

If, now, dynamic processes and not only things are onto-
logically fundamental yet not incorporated in our prediction 
models, this may be another reason why ultimate prediction 
will fail. Think of cholesterol as included in Joe’s prediction. 
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Although relevant for the development of atherosclerosis, 
a single value may not well capture the dynamic process 
of atherosclerosis formation in Joe. The same applies to 
actual age, which may not well capture Joe’s aging process; 
in fact, medicine agrees that aging is a relevant process, 
without good variables representing this process. Second, 
several processes coincide, and the same material entity may 
induce different effects depending on which processes are 
active [22]. Similarly, genes unfold their effects depending 
on spatial, mechanical and electromechanical interactions 
with other molecules [13]. And silencing processes should 
be taken into account as well, which are typically not states 
or things. This means that, not considering processes and 
their interactions, we will fail to estimate the dynamics of 
disease development.

Now, again, one may argue that this is an epistemic or 
merely practical issue, as we currently lack tools to observe 
and measure the dynamics of disease processes directly. But 
there is more. The point is that processes are ontologically 
different from things and the states they are in. Processes can 
be interrupted and influenced; processes combine in non-
trivial ways–in a word, processes are by their very nature 
‘open’. And this, we argue, is the philosophical reason 
why one cannot meaningfully treat Joe as a closed system. 
Accordingly, this is how health is generally considered, as a 
system that is open to interventions and changes in lifestyle.

Conclusions

We have argued that perfect prediction at the individual level 
will, with some rare exceptions, fail–and we have done so by 
providing pragmatic, epistemic, conceptual, and ontological 
considerations. And indeed, large scale genomic data, for 
instance, only add little to the prediction of complex condi-
tions like obesity [27] or cardiovascular disease [28], nor 
have they brought prediction at the individual level closer 
[29]. It is also fundamentally unlikely that adding to the 
complexity of the data by combining different -omics, even 
when combined with machine learning techniques to master 
these data, will enable perfect prediction [30]. This does 
not mean that predicted population averages are not improv-
ing as a result of a more personalized approach; and such 
population averages may indeed be helpful to inform policy 
makers. And arguably, personalized medicine can be seen 
as an attempt to bring down a person’s medical situation to 
the smallest epidemiological unit for which population based 
evidence exists (be it treatment or prediction) [31]. Why 
then so much emphasis on the impossibility of ultimate pre-
diction? Isn’t any scientific effort worthwhile that improves 
prediction in for example cardiovascular medicine [32], even 
if ultimate prediction is impossible?

We think our exploration of the limits of ultimate pre-
diction is important as it highlights fundamental hurdles to 
disease prediction. Furthermore, we have highlighted fun-
damental questions relating to the philosophy of biology, in 
particular the question of chance and whether the ontologi-
cal relationship between things and processes is different in 
biology as opposed to the non-living world. And such reflec-
tions might help us to arrive at a deeper understanding of the 
reality that our predictions aim to latch onto, and thereby of 
the limits of prediction.
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