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Abstract. In this paper, we perform the parameter-dependent center manifold reduction near the generalized
Hopf (Bautin), fold-Hopf, Hopf-Hopf, and transcritical-Hopf bifurcations in delay differential equa-
tions (DDEs). This allows us to initialize the continuation of codimension one equilibria and cycle
bifurcations emanating from these codimension two bifurcation points. The normal form coefficients
are derived in the functional analytic perturbation framework for dual semigroups (sun-star calculus)
using a normalization technique based on the Fredholm alternative. The obtained expressions give
explicit formulas which have been implemented in the freely available numerical software package
DDE-BifTool. While our theoretical results are proven to apply more generally, the software im-
plementation and examples focus on DDEs with finitely many discrete delays. Together with the
continuation capabilities of DDE-BifTool, this provides a powerful tool to study the dynamics near
equilibria of such DDEs. The effectiveness is demonstrated on various models.
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1. Introduction. Great interest has recently been shown in the analysis of degenerate
Hopf bifurcations in delay differential equations (DDEs); see, e.g., [1, 20, 21, 28, 38, 39, 42,
43, 52, 53, 54, 56, 59, 64, 67, 68, 69]. In the simplest case, often encountered in applications,
such DDEs have the form

(1) \.x(t) = f(x(t), x(t - \tau 1), . . . , x(t - \tau m), \alpha ), t \geq 0,

where x(t) \in \BbbR n, \alpha \in \BbbR p, f : \BbbR n\times (m+1) \times \BbbR p \rightarrow \BbbR n is a smooth mapping, and the delays
0 < \tau 1 < \cdot \cdot \cdot < \tau m are constant. They are known as discrete DDEs.

Using the framework of perturbation theory for dual semigroups developed in [6, 7, 8, 9],
the existence of a finite dimensional smooth center manifold for DDEs can be rigorously es-
tablished [17]. As a consequence the normalization method for local bifurcations of ODEs
developed in [46] can be lifted [40] rather easily to the infinite dimensional setting of DDEs.
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SWITCHING TO NONHYPERBOLIC CYCLES IN DDEs 253

One of the advantages of this normalization technique is that the center manifold reduc-
tion and the calculation of the normal form coefficients are performed simultaneously by
solving the so-called homological equation. The method gives explicit expressions for the coef-
ficients rather than a procedure as developed in [25, 26]. The critical normal form coefficients
for all five generic codimension two bifurcations of equilibria of DDEs have been derived
in [40]. They were partially implemented into the fully GNU Octave compatible MATLAB pack-
age DDE-BifTool [24, 58, 62].

In this paper, we will perform the parameter-dependent center manifold reduction and
normalization for three codimension two Hopf cases: the generalized Hopf, fold-Hopf, and
Hopf-Hopf bifurcations. This will allow us to initialize the continuation of codimension one
bifurcation curves of nonhyperbolic equilibria and cycles emanating from the codimension two
points. These are the only codimension two bifurcation points of equilibria in generic DDEs
where codimension one bifurcation curves of nonhyperbolic cycles could originate. We also
treat the transcritical-Hopf bifurcation which is frequently found in applications.

The center manifold theorem for parameter-dependent DDEs as presented in [17] assumes
explicitly that the equilibrium exists for all nearby parameter values. However, for a generic
fold-Hopf bifurcation this assumption is not satisfied. An attempt to deal with this complica-
tion has been made in [32], where it is discussed how to reduce a parameter-dependent DDE to
a DDE without parameters by appending the trivial equation \.\alpha = 0. However, the reduction
in [32] is based on the formal adjoint approach [35] and applies specifically to DDEs, while
at times it lacks consistency. Therefore, we demonstrate in this paper how the reduction to
the parameter-independent case can be done in the sun-star framework, enabling a rigorous
approach to the existence of parameter-dependent center manifolds for a class of evolution
equations that includes DDEs. This allows us to treat bifurcations of equilibria with zero
eigenvalues in generic DDEs while at the same time achieving applicability of our results to
other classes of delay equations.

This paper is organized as follows. In section 2, we offer a concise review of perturbation
theory for dual semigroups (also called sun-star calculus), both on an abstract level as well as
in application to the analysis of classical DDEs as dynamical systems. We also recall from [40]
various results that are needed for the normalization.

In section 3, we show how the theory from the previous section also applies to parameter-
dependent classical DDEs by converting them into a parameter-independent system on a
product state space. We again present the material in two stages: results are first established at
a more abstract semigroup level and next applied to classical DDEs depending on parameters.
In particular, we define the parameter-dependent local center manifold and give an explicit
ODE for solutions that are confined to it.

In section 4, we describe the general technique used to derive expressions for the nor-
mal form coefficients on the parameter-dependent center manifold in the infinite dimensional
setting of classical DDEs.

In section 5, the method is then applied to the generalized Hopf (Bautin), fold-Hopf,
and Hopf-Hopf bifurcations in classical DDEs. We provide explicit expressions for all normal
form coefficients necessary for the predictors of codimension one bifurcation curves, as well
as explicit expressions for the predictors themselves. The critical normal form coefficients
for these bifurcations were already obtained in [40]. Here we briefly rederive them to ensureD
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254 M. M. BOSSCHAERT, S. G. JANSSENS, AND YU. A. KUZNETSOV

readability.
In section 6, we provide explicit computational formulas for the evaluation of the linear

and multilinear forms used in the normal form coefficients and predictors for the simplest
subclass (1) consisting of discrete DDEs. These formulas are implemented in version 3.2a of
DDE-BifTool.

In section 7, we employ our implementation in DDE-BifTool to illustrate the accuracy of
the codimension one bifurcation curve predictors through various example models displaying
all aforementioned codimension two Hopf cases.

All material related to the transcritical-Hopf bifurcation, including the normal form on
the center manifold and the predictors, can be found in Appendix A, where a relevant example
is also treated.

The accompanying supplementary materials (M124399 01.pdf [local/web 926KB]) provide
a complete step-by-step walk-through of the examples in section 7 and Appendix A.4, including
all code to reproduce the obtained numerical results and figures.

2. Dual perturbation theory and classical DDEs. We begin by presenting those general
elements of perturbation theory for dual semigroups that are useful for the study of classical
DDEs as dynamical systems. Throughout we assume sun-reflexivity --- a term that will be
introduced in subsection 2.1. From subsection 2.4 onward, we then explain how the general
results apply to classical DDEs. The standard reference for this entire section is [17], while
for the underlying theory of semigroups of linear operators we recommend [22, 23].

2.1. Duality structure and linear perturbation. The starting point is a \scrC 0-semigroup
T0 on a real or complex Banach space X. Let A0 with domain \scrD (A0) be the infinitesimal
generator (or generator, for short) of T0. We denote by X \star the topological dual space (or dual
space, for short) of X, and we use the prefix notation for the pairing between x \star \in X \star and
x \in X,

\langle x \star , x\rangle := x \star (x).

If X is not reflexive, then the adjoint semigroup T  \star 0 is in general only weak \star continuous on
X \star and A \star 0 generates T  \star 0 only in the weak \star sense. The maximal subspace of strong continuity

X\odot := \{ x \star \in X \star : t \mapsto \rightarrow T  \star 0 (t)x
 \star is norm-continuous on \BbbR +\} 

is invariant under T  \star 0 , and we have the characterization

X\odot = \scrD (A \star 0),

where the bar denotes the norm closure in X \star . By construction, the restriction of T  \star 0 to X\odot 

is a \scrC 0-semigroup that we denote by T\odot 
0 . Its generator A\odot 

0 is the part of A \star 0 in X\odot ,

\scrD (A\odot 
0 ) =

\bigl\{ 
x\odot \in \scrD (A \star 0) : A \star 0x

\odot \in X\odot \bigr\} , A\odot 
0 x

\odot = A \star 0x
\odot .

At this stage we again have a \scrC 0-semigroup T\odot 
0 with generator A\odot 

0 on a Banach space X\odot , so
we can iterate the above construction. On the dual spaceX\odot  \star we obtain the adjoint semigroup
T\odot  \star 
0 with weak \star generator A\odot  \star 

0 . By restriction to the maximal subspace of strong continuityD
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X\odot \odot = \scrD (A\odot  \star 
0 ), we end up with the \scrC 0-semigroup T\odot \odot 

0 . Its generator A\odot \odot 
0 is the part of A\odot  \star 

0

in X\odot \odot .
The canonical injection j : X \rightarrow X\odot  \star defined by

(2) \langle jx, x\odot \rangle := \langle x\odot , x\rangle 

maps X into X\odot \odot . If j maps X onto X\odot \odot , then X is called sun-reflexive with respect to T0.
One may define an equivalent norm on X with respect to which j becomes an isometry, but
this need not be assumed. However, sun-reflexivity of X with respect to T0 will be assumed
throughout.

With the abstract duality structure in place, we next turn our attention to perturbation.
Let L : X \rightarrow X\odot  \star be a bounded linear operator. Then there exists a unique \scrC 0-semigroup T
on X that satisfies the linear integral equation

(3) T (t)x = T0(t)x+ j - 1

\int t

0
T\odot  \star 
0 (t - \tau )LT (\tau )x d\tau , t \geq 0, x \in X,

where the weak \star Riemann integral takes values in X\odot \odot and the running assumption of sun-
reflexivity justifies the application of j - 1. By using (3) to express the difference T  - T0 of
the perturbed and the unperturbed semigroups, one proves that the maximal subspaces of
strong continuity X\odot and X\odot \odot are the same for T and T0, so there is no need to distinguish
them with a subscript. In particular, X is sun-reflexive also with respect to T . On X\odot  \star the
perturbation L appears additively in the action of A\odot  \star ,

(4) \scrD (A\odot  \star ) = \scrD (A\odot  \star 
0 ), A\odot  \star = A\odot  \star 

0 + Lj - 1.

We recover the generator A of T by considering the part of A\odot  \star in X\odot \odot . As a consequence,
L moves into the domain and we find

\scrD (A) =
\bigl\{ 
x \in X : jx \in \scrD (A\odot  \star 

0 ) and A\odot  \star 
0 jx+ Lx \in X\odot \odot \bigr\} , Ax = j - 1(A\odot  \star 

0 jx+ Lx).

For proofs of the statements so far, see [17, Appendix II.3 and Chapter III]. (Incidentally, the
symbol \odot is traditionally pronounced as sun. This explains the name sun-star calculus.)

2.2. Nonlinear perturbation and linearization. The \scrC 0-semigroup T arose as a linear
perturbation of the original \scrC 0-semigroup T0, so the next step is to introduce a nonlinear
perturbation of T itself. In keeping with the tradition for nonlinear problems [17, sections
VII.1 and VIII.1], we only regard the case that X is a real Banach space; also see Remark 1
below. Let R : X \rightarrow X\odot  \star be a Ck-operator for some k \geq 1 such that

R(0) = 0, DR(0) = 0,

and consider the nonlinear integral equation

(5) u(t) = T (t)x+ j - 1

\int t

0
T\odot  \star (t - \tau )R(u(\tau )) d\tau , t \geq 0, x \in X.D
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256 M. M. BOSSCHAERT, S. G. JANSSENS, AND YU. A. KUZNETSOV

Due to the nonlinearity, for a given initial condition x \in X one can at most guarantee existence
of a maximal solution ux : Ix \rightarrow X of (5) on a forward time interval Ix := [0, tx) for some
0 < tx \leq \infty [17, Chapter VII]. The family of all such maximal solutions defines a nonlinear
semiflow \Sigma : \scrD (\Sigma ) \rightarrow X,

(6) \scrD (\Sigma ) := \{ (t, x) \in [0,\infty )\times X : t \in Ix\} , \Sigma (t, x) := ux(t),

that may in addition depend on parameters [17, Definitions VII.2.1 and VII.2.9]. (For reasons
discussed in section 3, we will treat parameter dependence differently and separately. Until
then, the reader can consider all parameters to be held fixed and absent in the notation.) The
domain of \Sigma is open in [0,\infty )\times X, and 0 \in X is an equilibrium of \Sigma ,

I0 = [0,\infty ), \Sigma (t, 0) = 0 \forall t \geq 0.

The semiflow \Sigma is (in fact, uniformly) differentiable with respect to the state at (t, 0) \in \scrD (\Sigma ),
with the partial derivative

(7) D2\Sigma (t, 0) = T (t) \forall t \geq 0,

where T is the \scrC 0-semigroup that satisfies (3).

Remark 1. For nonlinear problems, it is customary to work on a real Banach spaceX. The
reason is that these problems often come from concrete equations with nonlinear right-hand
sides for which it is unclear whether and how they can be extended to complex arguments.
Consequently, if we want to analyze the linearization of \Sigma at 0 \in X using spectral theory,
then it becomes necessary to complexify X and the linear operators acting on X [17, section
III.7 and last part of section IV.2], [55, section 1.3]. In particular, by the spectrum of A we
mean the spectrum of its complexification on the complexified Banach space.

2.3. Critical local center manifolds. As in subsection 2.2, we continue to assume that
T0 is a \scrC 0-semigroup on a real Banach space X that is sun-reflexive with respect to T0. In
addition, we assume that T0 is eventually compact and L is a compact operator. This implies
that the perturbed semigroup T defined by (3) is eventually compact as well [14, Theorem
2.8].

When considering solutions that exist for all (positive and negative) time --- such as
periodic orbits --- it is useful to write (5) in the translation invariant form

(8) u(t) = T (t - s)u(s) + j - 1

\int t

s
T\odot  \star (t - \tau )R(u(\tau )) d\tau ,  - \infty < s \leq t <\infty .

A solution of (8) is a continuous function u : I \rightarrow X on some nondegenerate --- possibly
unbounded --- interval I \subseteq \BbbR that satisfies (8) for all s, t \in I with s \leq t. Naturally, u is a
solution of (8) if and only if

t - s \in Iu(s), u(t) = \Sigma (t - s, u(s)) \forall s, t \in I with s \leq t,

where \Sigma : \scrD (\Sigma ) \rightarrow X is the nonlinear semiflow from (6). The interval I is often left implicit.D
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The general center manifold theorems from [17, Chapter IX] for equations of the type (8)
apply to the particular case where T is an eventually compact \scrC 0-semigroup on a real, sun-
reflexive Banach space. Let us therefore suppose that 0 \in X is a nonhyperbolic equilibrium
of \Sigma , so the generator A of T possesses 1 \leq n0 < \infty purely imaginary eigenvalues, counting
algebraic multiplicities; see Remark 1. LetX0 \subseteq X be the real center eigenspace corresponding
to these eigenvalues. Then there exists a Ck-smooth n0-dimensional local center manifold
\scrW c

\mathrm{l}\mathrm{o}\mathrm{c} that is tangent to X0 at the origin. Any solution u : I \rightarrow X of (8) that lies on \scrW c
\mathrm{l}\mathrm{o}\mathrm{c} is

differentiable on I and satisfies

(9) j \.u(t) = A\odot  \star ju(t) +R(u(t)) \forall t \in I,

where A\odot  \star is the weak \star generator of T\odot  \star . We note that (9) is an identity in X\odot  \star .

2.4. The special case of classical DDEs. It will now be explained how the general results
from subsections 2.1 to 2.3 apply to classical DDEs. We choose the nonreflexive Banach space
X := C([ - h, 0],\BbbR n) as the state space, introduce a Ck-smooth operator F : X \rightarrow \BbbR n, and
consider an equation with a finite delay 0 < h <\infty of the form

(DDE) \.x(t) = F (xt), t \geq 0,

with an initial condition

(IC) x0 = \varphi \in X.

For each t \geq 0, the function xt : [ - h, 0] \rightarrow \BbbR n defined by

xt(\theta ) := x(t+ \theta ) \forall \theta \in [ - h, 0]

is called the history of the unknown function x at time t. Equations of the type (DDE) will
be called classical DDEs. Note that (1) is quite literally a case in point. By a solution of the
initial value problem (DDE)--(IC) we mean a continuous function x : [ - h, t+) \rightarrow \BbbR n for some
0 < t+ \leq \infty that is differentiable on [0, t+) and satisfies (DDE) and (IC). When t+ = \infty , we
call x a global solution.

We want to study (DDE) near an equilibrium at the origin, so assume that F (0) = 0 and
split F into its linear and nonlinear parts,

F (\varphi ) =

\int h

0
d\zeta (\theta )\varphi ( - \theta ) +G(\varphi ), \varphi \in X.

Here \zeta : [0, h] \rightarrow \BbbR n\times n is a matrix-valued function of bounded variation, normalized by the
requirement that \zeta (0) = 0 and \zeta is right-continuous on the open interval (0, h). The integral
is of the Riemann--Stieltjes type, and G : X \rightarrow \BbbR n is a Ck-smooth nonlinear operator with
G(0) = 0 and DG(0) = 0. It is common to denote the linear part more succinctly as

(10) \langle \zeta , \varphi \rangle :=
\int h

0
d\zeta (\theta )\varphi ( - \theta ),D

ow
nl

oa
de

d 
01

/0
6/

21
 to

 1
31

.2
11

.1
2.

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

258 M. M. BOSSCHAERT, S. G. JANSSENS, AND YU. A. KUZNETSOV

so that

(11) F (\varphi ) = \langle \zeta , \varphi \rangle +G(\varphi ), \varphi \in X.

We first consider the case G = 0, whence (DDE) reduces to the linear equation

(12) \.x(t) = \langle \zeta , xt\rangle , t \geq 0.

In order to understand the relationship between (12) and (3), we begin by observing that the
trivial DDE

(13) \.x(t) = 0, t \geq 0,

with initial condition (IC) has the obvious solution

x\varphi (t) =

\Biggl\{ 
\varphi (t), t \in [ - h, 0],
\varphi (0), t > 0.

Using this solution, we define the strongly continuous shift semigroup T0 on X by

(14) (T0(t)\varphi )(\theta ) := x\varphi (t+ \theta ) =

\Biggl\{ 
\varphi (t+ \theta ), t+ \theta \in [ - h, 0],
\varphi (0), t+ \theta > 0.

We note that T0(h) is a compact operator, so T0 is eventually compact. For this particular
combination ofX and T0, the abstract duality structure from subsection 2.1 can be constructed
systematically and explicitly [17, section II.5]. We only summarize the few facts that will be
used in what follows.

Remark 2 (notation). For \BbbK \in \{ \BbbR ,\BbbC \} , let \BbbK n be the linear space of column vectors and
let \BbbK n \star be the linear space of row vectors, both over \BbbK . Elements of \BbbK n are denoted by
q = (q1, q2, . . . , qn) --- commas between the entries --- while elements in \BbbK n \star are denoted by
p = (p1 p2 \cdot \cdot \cdot pn) --- no commas between the entries. We sometimes use the pairing defined
by the row-column matrix multiplication:

p \cdot q := pq =

n\sum 
j=1

pjqj , p \in \BbbK n \star , q \in \BbbK n.

Note that the standard Hermitian inner product between two vectors pT , q \in \BbbC n should be
written as \=p \cdot q and not as p \cdot q.

On \bfitX \odot : The maximal domain of strong continuity of T  \star 0 has the representation

(15) X\odot = \BbbR n \star \times L1([0, h],\BbbR n \star ),

and the duality pairing between \varphi \odot = (c, g) \in X\odot and \varphi \in X is

(16) \langle \varphi \odot , \varphi \rangle = c\varphi (0) +

\int h

0
g(\theta )\varphi ( - \theta ) d\theta .D
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On \bfitX \odot \star : Switching to the dual space of (15) yields the representation

X\odot  \star = \BbbR n \times L\infty ([ - h, 0],\BbbR n),

and the duality pairing between \varphi \odot  \star = (a, \psi ) \in X\odot  \star and \varphi \odot = (c, g) \in X\odot is

(17) \langle \varphi \odot  \star , \varphi \odot \rangle = ca+

\int h

0
g(\theta )\psi ( - \theta ) d\theta .

The canonical injection (2) sends \varphi \in X to j\varphi = (\varphi (0), \varphi ), mapping X onto X\odot \odot .
Therefore, X is sun-reflexive with respect to the shift semigroup T0.

Next, we specify the linear and nonlinear perturbations L and R in (3) and (5), respec-
tively, and we relate these two abstract integral equations in X to the linear and nonlinear
initial value problems for (DDE). For i = 1, . . . , n, we denote r\odot  \star i := (ei, 0), where ei is the
ith standard basis vector of \BbbR n. It is conventional and convenient to introduce the shorthand

wr\odot  \star :=
n\sum 
i=1

wir
\odot  \star 
i \forall w = (w1, . . . , wn) \in \BbbR n,

and we note that wr\odot  \star = (w, 0) \in X\odot  \star . First we define the compact linear perturbation in
(3) as

(18) L\varphi := \langle \zeta , \varphi \rangle r\odot  \star ,

where the pairing in the right-hand side is given by (10). Now (12) with (IC) is equivalent to
(3) with (18) in the following sense: If T is the unique \scrC 0-semigroup on X satisfying (3) with
(18), then x\varphi : [ - h,\infty ) \rightarrow \BbbR n defined by

x\varphi 0 := \varphi , x\varphi (t) := (T (t)\varphi )(0) \forall t \geq 0

is the unique global solution of (12) with (IC) and

x\varphi t = T (t)\varphi \forall t \geq 0.

It remains to specify the nonlinear perturbation R in (5) as

(19) R(\varphi ) := G(\varphi )r\odot  \star ,

where G is the nonlinear operator appearing in the splitting (11). Let \Sigma as in (6) be the
nonlinear semiflow generated by the family of maximal solutions of (5) with (19). The equiv-
alence between (DDE)--(IC) and (5) with (19) can be formulated as follows [17, Proposition
VII.6.1]. The function x\varphi : [ - h, t\varphi ) \rightarrow \BbbR n defined by

x\varphi 0 := \varphi , x\varphi (t) := \Sigma (t, \varphi )(0) \forall t \in I\varphi 

is the maximal solution of (DDE)--(IC), in the sense that any other solution necessarily exists
only on a subinterval [ - h, t+) for some 0 < t+ \leq t\varphi and coincides with x\varphi there. Moreover,

x\varphi t = \Sigma (t, \varphi ) \forall t \in I\varphi .

It is the content of (7) that generation and linearization commute: Starting with (DDE),
linearization of the semiflow \Sigma at the equilibrium 0 \in X yields precisely the eventually compact
\scrC 0-semigroup T corresponding to the linearized DDE (12).D
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2.5. Spectral computations for classical DDEs. The eventual compactness of T implies
that the spectrum of its generator A--- see Remark 1 --- consists entirely of isolated eigenvalues
of finite algebraic multiplicity. These will be called the eigenvalues of the equilibrium 0 \in X.
It is clear from (18) that L is not just compact but actually of finite rank. This implies that
all spectral information about A is contained in a holomorphic characteristic matrix function
\Delta : \BbbC \rightarrow \BbbC n\times n defined by

(20) \Delta (z) := zI  - \^\zeta (z) with \^\zeta (z) :=

\int h

0
e - z\theta d\zeta (\theta ),

where \zeta is the real kernel from (10) [17, sections IV.4 and IV.5]. In particular, the eigenvalues
of A are the roots of the characteristic equation

(21) det\Delta (z) = 0,

and the algebraic multiplicity of an eigenvalue equals its order as a root of (21).
We will be concerned exclusively with simple eigenvalues, for which the geometric and

algebraic multiplicities are both equal to one. Let \lambda \in \BbbC be such a simple eigenvalue of A.
There exist nonzero right and left null vectors q \in \BbbC n and p \in \BbbC n \star of \Delta (\lambda ),

\Delta (\lambda )q = 0, p\Delta (\lambda ) = 0.

The second equation is of course equivalent to pT being a nonzero right null vector of \Delta T (\lambda ).
The one-dimensional eigenspaces of A and A \star corresponding to \lambda are spanned by eigenfunc-
tions \varphi and \varphi \odot , respectively, with

(22) \varphi (\theta ) = e\lambda \theta q, \theta \in [ - h, 0]

and

(23) \varphi \odot =

\biggl( 
p, \theta \mapsto \rightarrow p

\int h

\theta 
e\lambda (\theta  - \tau ) d\zeta (\tau )

\biggr) 
, \theta \in [0, h].

We note that we have implicitly used --- and will use consistently --- the complexifications of
X and of the representation (15) of X\odot . For a simple eigenvalue \lambda ,

\langle \varphi \odot , \varphi \rangle \not = 0,

where the duality pairing is understood to be the complexification of (16). This nonequality
implies that the eigenfunctions can be normalized to satisfy \langle \varphi \odot , \varphi \rangle = 1. In fact, from (16)
and (22) one computes

(24) \langle \varphi \odot , \varphi \rangle = p\Delta \prime (\lambda )q,

so this normalization can be effectuated by scaling p and q such that p\Delta \prime (\lambda )q = 1. Finally, it
is easily seen that if \mu \not = \lambda is another simple eigenvalue of A with eigenvector \psi and adjoint
eigenvector \psi \odot , then

(25) \langle \varphi \odot , \psi \rangle = 0, \langle \psi \odot , \varphi \rangle = 0.D
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2.6. Solvability of linear operator equations. When computing the normal form coeffi-
cients in section 5 using the homological equation as introduced in section 4, we will frequently
encounter linear operator equations of the form

(26) (zI  - A\odot  \star )(v0, v) = (w0, w),

where z is a complex number, (w0, w) \in X\odot  \star is given, and (v0, v) \in D(A\odot  \star ) is the unknown.
In general, both z and the right-hand side will have a nontrivial imaginary part, so here and
from here onward, it is necessary to regard systems of the form (26) as the complexification
of the original operator equations. We will, however, not attach additional subscripts to the
operator symbols, hoping that this omission will not cause confusion.

Since \sigma (A) consists exclusively of point spectrum, there are two situations to consider
depending on whether or not z is an eigenvalue. If z is not an eigenvalue of A, then z belongs
to the resolvent set \rho (A) of A and (26) admits a unique solution,

(v0, v) =
\bigl( 
zI  - A\odot  \star \bigr)  - 1

(w0, w).

In order to actually find this solution, one needs a representation of the resolvent operator of
A\odot  \star . The general result can be found in [17, Corollary IV.5.4], but here we only require a
special case.

Lemma 3. Suppose that z is not an eigenvalue of A, so (26) has a unique solution (v0, v).
If the right-hand side is represented by

(w0, w) =
\Bigl( 
w0, \theta \mapsto \rightarrow ez\theta \Delta  - 1(z)\eta 

\Bigr) 
for some fixed vector \eta \in \BbbC n, then this solution has the representation

v0 = v(0), v(\theta ) = \Delta  - 1(z)
\Bigl( 
ez\theta w0 +

\bigl( 
\Delta \prime (z) - I  - \theta \Delta (z)

\bigr) 
w(\theta )

\Bigr) 
.

Proof. Write (w0, w) = (w0, 0) + (0, \theta \mapsto \rightarrow ez\theta \Delta  - 1(z)\eta ), use the linearity of (zI  - A\odot  \star ) - 1,
and apply both cases of [40, Corollary 3.4].

On the other hand, suppose that z = \lambda is an eigenvalue. Then (26) need not be consistent.
In fact, a solution exists if and only if

(FSC) \langle (w0, w), \varphi 
\odot \rangle = 0 \forall \varphi \odot \in \scrN (\lambda I  - A \star ).

A proof can be found in [40, Lemma 3.2]. This condition is often referred to as the Fredholm
solvability condition. We note that the duality pairing in (FSC) may be evaluated in concrete
cases using (22) and the complexification of (17). This will be done many times in section 5
when we apply (FSC) to specific operator equations.

If z = \lambda is an eigenvalue and (26) is consistent, then clearly its solutions are not unique.
The bordered operator inverse

(\lambda I  - A\odot  \star )\mathrm{I}\mathrm{N}\mathrm{V} : \scrR (\lambda I  - A\odot  \star ) \rightarrow \scrD (A\odot  \star )D
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is used to select a particular solution in a systematic and convenient way. For the case that
\lambda is a simple eigenvalue, it assigns the unique solution of the extended linear system

(27) (\lambda I  - A\odot  \star )(v0, v) = (w0, w), \langle (v0, v), \varphi \odot \rangle = 0

to every (w0, w) for which (26) is consistent. The following lemma from [40, Corollary 3.7]
gives an explicit representation for a special case, while a more general result can be found
in [40, Proposition 3.6].

Lemma 4. Let z = \lambda be a simple eigenvalue with eigenvector \varphi and adjoint eigenvector \varphi \odot 

as in (22), normalized to \langle \varphi \odot , \varphi \rangle = 1. Suppose (26) is consistent for a given right-hand side
of the form

(w0, w) = (\eta , 0) + \kappa (q, \varphi ),

where \eta \in \BbbC n and \kappa \in \BbbC . Then the unique solution (v0, v) of (27) is given by

v0 = \xi + \gamma q, v(\theta ) = e\lambda \theta (v0  - \kappa \theta q),

with \xi = \Delta \mathrm{I}\mathrm{N}\mathrm{V}(\lambda )(\eta + \kappa \Delta \prime (\lambda )q) and \gamma =  - p\Delta \prime (\lambda )\xi + 1
2\kappa p\Delta 

\prime \prime (\lambda )q.

In section 5, we will use the shorthand notation

v = B\mathrm{I}\mathrm{N}\mathrm{V}
\lambda (\eta , \kappa )

for the solution in Lemma 4. We observe that the expression for \xi itself involves a bordered
matrix inverse,

\Delta \mathrm{I}\mathrm{N}\mathrm{V}(\lambda ) : \scrR (\Delta (\lambda )) \rightarrow \BbbC n,

which assigns the unique solution of the extended linear system

\Delta (\lambda )x = y, p \cdot x = 0

to every y \in \BbbC n for which the system \Delta (\lambda )x = y is consistent; also see Remark 2 for the
notation. In practice, x = \Delta \mathrm{I}\mathrm{N}\mathrm{V}(\lambda )y can be obtained by solving the nonsingular bordered
matrix system \biggl( 

\Delta (\lambda ) q
p 0

\biggr) \biggl( 
x
s

\biggr) 
=

\biggl( 
y
0

\biggr) 
for the unknown (x, s) \in \BbbC n+1 that necessarily satisfies s = 0. The properties of (finite
dimensional) bordered linear systems and their role in numerical bifurcation analysis are
discussed more extensively in [44] and [30, Chapter 3].

3. Parameter dependence and classical DDEs. In subsection 3.1, we motivate our ap-
proach by explaining why the standard literature result does not apply to the problem at
hand. This is most easily done at the concrete level of classical DDEs. The structure of
the remaining subsections parallels that of section 2. Namely, we first solve the problem of
parameter dependence at the more abstract level of dual perturbation theory. In the final
subsection (subsection 3.6) we then return to classical DDEs to see how the general results
apply in this special case.D
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3.1. Motivation. We are concerned with the situation where the right-hand side of (DDE)
depends explicitly on parameters. Specifically, we consider

(28) \.x(t) = F (xt, \alpha ), t \geq 0,

where F : X \times \BbbR p \rightarrow \BbbR n is Ck-smooth for some k \geq 1 with F (0, 0) = 0. We assume that at
the critical parameter value \alpha = 0 the linearization of (28) has 1 \leq n0 <\infty purely imaginary
eigenvalues, counting multiplicities. The goal of section 3 is to obtain a parameter-dependent
family of local center manifolds for a class of evolution equations that includes (28).

In [17, section IX.9.1], this problem is approached as follows. One augments (28) with a
trivial equation for the constant parameter dynamics. This gives the system

(29)

\Biggl\{ 
\.x(t) = F (xt, \mu (t)),

\.\mu (t) = 0,
t \geq 0,

on the state space \bfitX := X \times \BbbR p, with X = C([ - h, 0],\BbbR n) as before in subsection 2.4. Then
the right-hand side of the first equation of (29) is split as

(30) F (\varphi , \alpha ) = D1F (0, 0)\varphi + \~G(\varphi , \alpha ),

which defines \~G : \bfitX \rightarrow \BbbR n; cf. [17, equation (9.7) in section IX.9.1]. The first term on the
right-hand side of (30) acts only on the X-component of the state in \bfitX , so the semigroup \~\bfitT 
on \bfitX obtained by perturbing the shift-semigroup \bfitT 0 is diagonal.

However, there is an obstruction. In order to satisfy the hypotheses of the parameter-
independent center manifold theorem, \~G must be a pure nonlinearity on \bfitX , i.e.,

\~G(0, 0) = 0, D1
\~G(0, 0) = 0, D2

\~G(0, 0) = 0.

The first two of these conditions are clearly fulfilled, but in general there is no reason for the
third condition to be met. It does hold when \~G(0, \alpha ) = 0 for all \alpha \in \BbbR p in a neighborhood
of zero, i.e., when the zero equilibrium of (28) persists under small parameter variations. For
a generic fold-Hopf bifurcation --- as well as for a generic Bogdanov--Takens bifurcation that
we do not discuss here --- there is no such persistence.

In this article, the above difficulty is resolved by considering instead of (30) the splitting

(31) F (\varphi , \alpha ) = D1F (0, 0)\varphi +D2F (0, 0)\alpha +G(\varphi , \alpha ).

Using this splitting, (29) is written as

(32)

\Biggl\{ 
\.x(t) = D1F (0, 0)xt +D2F (0, 0)\mu (t) +G(xt, \mu (t)),

\.\mu (t) = 0,
t \geq 0.

Now both D1F (0, 0) as well as D2F (0, 0) appear in the perturbation of \bfitT 0. As a consequence,
the perturbed semigroup \bfitT is no longer diagonal but still simple enough for a complete
analysis. Moreover,

(33) G(0, 0) = 0, D1G(0, 0) = 0, D2G(0, 0) = 0,

so the parameter-independent center manifold theorem can be applied without having to
assume equilibrium persistence. Of course, G = \~G and \bfitT = \~\bfitT whenever D2F (0, 0) = 0.D
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Remark 5. In a first attempt, we regarded the augmented system (29) as a classical DDE
on the state space C([ - h, 0],\BbbR n+p) (also see [32]), but we found this approach to be a bit
unsatisfactory. Namely, the proofs in subsections 3.2 to 3.5 do not depend on the details of
the class of delay equations under consideration, so their structure is most clearly explained
at a more abstract level. Had we insisted on working in the state space C([ - h, 0],\BbbR n+p), then
that structure would have been obfuscated by the appearance of inessential details particular
to classical DDEs.

3.2. Duality structure and linear perturbation. We work in the setting of subsection 2.1.
Namely, let T0 be a \scrC 0-semigroup on a real or complex Banach space X that is sun-reflexive
with respect to T0. We write \BbbK \in \{ \BbbR ,\BbbC \} for the underlying scalar field as in Remark 2. Define
\bfitT 0 on \bfitX by

(34) \bfitT 0(t) := diag (T0(t), Ip).

The procedure of taking adjoints and restrictions (twice) then yields semigroups \bfitT  \star 
0, \bfitT 

\odot 
0 , \bfitT 

\odot  \star 
0

and \bfitT \odot \odot 
0 on \bfitX  \star \simeq X \star \times \BbbK p, \bfitX \odot \simeq X\odot \times \BbbK p, \bfitX \odot  \star \simeq X\odot  \star \times \BbbK p, and \bfitX \odot \odot \simeq X\odot \odot \times \BbbK p. (The

symbol\simeq indicates an identification via a natural isometric isomorphism.) It is straightforward
to check that on \bfitX \odot  \star we have

(35) \bfitT \odot  \star 
0 (t) = diag (T\odot  \star 

0 (t), Ip),

and that the canonical injection \bfitj : \bfitX \rightarrow \bfitX \odot  \star has the form

(36) \bfitj = diag (j, Ip),

where j : X \rightarrow X\odot  \star is the canonical injection from (2). In particular, \bfitX is sun-reflexive with
respect to \bfitT 0.

As in subsection 2.1, we now introduce a bounded linear perturbation \bfitL : \bfitX \rightarrow \bfitX \odot  \star of
\bfitT 0. We let it be of the form

(37) \bfitL =

\biggl( 
L Lp
0 0

\biggr) 
,

with L : X \rightarrow X\odot  \star and Lp : \BbbK p \rightarrow X\odot  \star bounded linear operators. Perturbing T0 by L and
\bfitT 0 by \bfitL yields \scrC 0-semigroups T on X and \bfitT on \bfitX , respectively. Let A and \bfitA be their
generators.

Remark 6. There are at least two equivalent ways to compute \bfitT and \bfitA on \bfitX and their
weak \star counterparts \bfitT \odot  \star and\bfitA \odot  \star on\bfitX \odot  \star . One approach --- suggested to us by Odo Diekmann
--- uses integrated semigroup theory to calculate first \bfitT and next \bfitT \odot  \star . Then \bfitA \odot  \star and \bfitA are
calculated, in that order.

Here we go the other way around: We start by calculating \bfitA \odot  \star and use it to obtain \bfitT \odot  \star .
If desired, \bfitA and \bfitT can then be found by application of (36) and its inverse. This approach
is more elementary --- we use only theory that was already introduced in subsection 2.1 ---
and it yields the same outcome, as it should.D
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Proposition 7. The weak \star generator \bfitA \odot  \star of \bfitT \odot  \star has the representation

\scrD (\bfitA \odot  \star ) = \scrD (A\odot  \star )\times \BbbK p, \bfitA \odot  \star =

\biggl( 
A\odot  \star Lp
0 0

\biggr) 
,

where A\odot  \star is the weak \star generator of T\odot  \star .

Proof. According to the general theory of subsection 2.1 and (4) in particular, we have

\scrD (\bfitA \odot  \star ) = \scrD (\bfitA \odot  \star 
0 ), \bfitA \odot  \star = \bfitA \odot  \star 

0 +\bfitL \bfitj  - 1.

From (35) we see that

\scrD (\bfitA \odot  \star 
0 ) = \scrD (A\odot  \star 

0 )\times \BbbK p, \bfitA \odot  \star 
0 = diag (A\odot  \star 

0 , 0).

Using (36) and (37), we calculate

\bfitA \odot  \star 
0 +\bfitL \bfitj  - 1 =

\biggl( 
A\odot  \star 

0 0
0 0

\biggr) 
+

\biggl( 
L Lp
0 0

\biggr) \biggl( 
j - 1 0
0 Ip

\biggr) 
,

and the result follows.

Lemma 8. Let L\odot 
p : X\odot \rightarrow \BbbK p be the restriction of L \star p to X\odot . Then L\odot  \star 

p = Lp.

Proof. We begin by noting that --- strictly speaking --- this statement involves two canon-
ical identifications. Namely, let i : X\odot \rightarrow X\odot  \star  \star and ip : \BbbK p \rightarrow \BbbK p \star  \star be the canonical injection
and bijection, respectively. Then L\odot 

p := L \star pi and we need to prove that L\odot  \star 
p ip = Lp. For this,

it is not difficult to show that

\langle L\odot  \star 
p ip\alpha ,\varphi 

\odot \rangle = \langle Lp\alpha ,\varphi \odot \rangle 

for all \alpha \in \BbbK p and for all \varphi \odot \in X\odot .

For the purpose of notation, we define the integrated semigroup W\odot  \star for T\odot  \star as

(38) W\odot  \star (t)\varphi \odot  \star :=

\int t

0
T\odot  \star (\tau )\varphi \odot  \star d\tau , t \geq 0,

with on the right-hand side a weak \star Riemann integral of the same type as the integral in (3).

Proposition 9. The semigroup \bfitT \odot  \star that is weakly \star generated by \bfitA \odot  \star has the representation

(39) \bfitT \odot  \star (t) =

\biggl( 
T\odot  \star (t) W\odot  \star (t)Lp

0 Ip

\biggr) 
, t \geq 0.

Proof. We define a one-parameter family \bfitS of bounded linear operators on \bfitX \odot by

\bfitS (t) =

\biggl( 
T\odot (t) 0

L\odot 
pW

\odot (t) Ip

\biggr) 
, t \geq 0,

where

W\odot (t)\varphi \odot :=

\int t

0
T\odot (\tau )\varphi \odot d\tau , t \geq 0.D
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It is easy to check that \bfitS is a \scrC 0-semigroup on \bfitX \odot . By Lemma 8, the adjoint semigroup
\bfitS  \star (t) equals the right-hand side of (39) for all t \geq 0. We will show that the weak \star generator
\bfitA \odot  \star of \bfitT \odot  \star is also the weak \star generator of \bfitS  \star . This will then imply that \bfitT \odot  \star = \bfitS  \star .

We use Proposition 7. Let \bfitC be the generator of \bfitS , so \bfitC  \star is the weak \star generator of \bfitS  \star .
For any (\varphi \odot  \star , \alpha ) in \bfitX \odot  \star and any t > 0, we have

1

t

\bigl( 
\bfitS  \star (t)(\varphi \odot  \star , \alpha ) - (\varphi \odot  \star , \alpha )

\bigr) 
=

1

t

\biggl( 
T\odot  \star (t)\varphi \odot  \star  - \varphi \odot  \star 

0

\biggr) 
+

1

t

\biggl( 
W\odot  \star (t)Lp\alpha 

0

\biggr) 
.

We note that t - 1W\odot  \star (t)Lp\alpha \rightarrow Lp\alpha weakly \star as t \downarrow 0. It follows that the right-hand side
converges weakly \star if and only if \varphi \odot  \star \in D(A\odot  \star ), and in that case the weak \star -limit equals
(A\odot  \star \varphi \odot  \star + Lp\alpha , 0) = \bfitA \odot  \star (\varphi \odot  \star , \alpha ). We conclude that \bfitC  \star = \bfitA \odot  \star .

3.3. Spectral theory and the center eigenspace. Let T0 be a \scrC 0-semigroup on a complex
Banach space X that is sun-reflexive with respect to T0. For the purpose of spectral theory, we
explicitly take \BbbC as the underlying scalar field. In examples, X will often be a complexification
of a real Banach space; see Remark 1.

We are interested in a description of the spectrum and the corresponding (generalized)
eigenspaces of the generator \bfitA of \bfitT . In particular, Propositions 11 and 14 below guaran-
tee, respectively, the existence and smooth parametrization of the parameter-dependent local
center manifold in subsection 3.5.

Proposition 10. The spectrum \sigma (\bfitA \odot  \star ) = \sigma (A\odot  \star ) \cup \{ 0\} with resolvent operator

(40) Rz(\bfitA 
\odot  \star ) =

\biggl( 
Rz(A

\odot  \star ) z - 1Rz(A
\odot  \star )Lp

0 z - 1Ip

\biggr) 
for every z in the resolvent set \rho (\bfitA \odot  \star ).

Proof. From Proposition 7 we have

zI  - \bfitA \odot  \star =

\biggl( 
zI  - A\odot  \star  - Lp

0 zIp

\biggr) 
.

This upper triangular operator matrix has a bounded inverse if and only if both entries on its
diagonal have bounded inverses, which happens if and only if z \in \rho (A\odot  \star ) and z \not = 0. In that
case, the inverse is given precisely by the stated expression for Rz(\bfitA 

\odot  \star ) := (zI  - \bfitA \odot  \star ) - 1.

In addition, we assume that T0 is eventually compact and the perturbation L in (37) is
compact. As a consequence, the spectral analysis of \bfitA \odot  \star reduces to an analysis of the poles
of its resolvent operator [22, Corollary V.3.2], [60, section V.10].

Proposition 11. \bfitT is an eventually compact \scrC 0-semigroup.

Proof. The eventual compactness of T0, the finite rank of Ip, and (34) together imply that
\bfitT 0 is eventually compact. Since Lp has finite rank and L is compact by assumption, it follows
from (37) that \bfitL is compact, so \bfitT is eventually compact by [14, Theorem 2.8].

Theorem 12. The generalized eigenspace corresponding to \lambda \in \sigma (\bfitA \odot  \star ) is given by

\scrM \lambda (\bfitA 
\odot  \star ) =

\Biggl\{ 
\scrM \lambda (A

\odot  \star )\times \{ 0\} if \lambda \not = 0,

\scrM 0(A
\odot  \star )\times \{ 0\} \oplus \{ (\Gamma 0Lp\alpha , \alpha ) : \alpha \in \BbbC p\} if \lambda = 0,D
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where \Gamma 0 is a bounded linear operator on X\odot  \star mapping into X\odot \odot .

Proof. Let \lambda \in \sigma (\bfitA \odot  \star ) be arbitrary. Taking residues at z = \lambda in (40), we obtain

(41) \bfitP \odot  \star 
\lambda =

\biggl( 
P\odot  \star 
\lambda \Gamma \lambda Lp
0 Ip\delta \lambda 

\biggr) 
, \Gamma \lambda := Res

z=\lambda 
z - 1Rz(A

\odot  \star ),

where \delta \lambda := \delta \lambda ,0 is the Kronecker delta and \bfitP \odot  \star 
\lambda and P\odot  \star 

\lambda are the spectral projectors corre-
sponding to \lambda for \bfitA \odot  \star and A\odot  \star . (If \lambda is in the resolvent set of the respective operator, then
the residue --- and hence the spectral projector --- is identically zero.) \Gamma \lambda is pointwise equal
to a contour integral with an integrand in the closed subspace X\odot \odot of X\odot  \star , so \Gamma \lambda maps into
X\odot \odot .

We will now calculate the range of \bfitP \odot  \star 
\lambda from (41). In general,

(42) \scrM \lambda (\bfitA 
\odot  \star ) =

\biggl\{ \biggl( 
P\odot  \star 
\lambda \varphi \odot  \star 

0

\biggr) 
+

\biggl( 
\Gamma \lambda Lp\alpha 
\alpha \delta \lambda 

\biggr) 
: (\varphi \odot  \star , \alpha ) \in \bfitX \odot  \star 

\biggr\} 
.

First we assume that \lambda \not = 0, so \delta \lambda = 0. We are going to show that

(43)
\bigl\{ 
P\odot  \star 
\lambda \varphi \odot  \star + \Gamma \lambda Lp\alpha : (\varphi \odot  \star , \alpha ) \in \bfitX \odot  \star \bigr\} = \scrM \lambda (A

\odot  \star ).

Together with (42) this will then prove the theorem for \scrM \lambda (\bfitA 
\odot  \star ). To verify (43), let p \in \BbbN 

be the order of \lambda as a pole of Rz(A
\odot  \star ). For n = 1, . . . , p, let Bn be the coefficient of (z - \lambda ) - n

in the Laurent series for Rz(A
\odot  \star ). A small computation shows that

(44) \Gamma \lambda =

p\sum 
k=1

( - 1)k+1\lambda  - kBk.

From [60, section V.10] we recall the relation Bn+1 = (A\odot  \star  - \lambda I)nB1 for all n \in \BbbN . Since
B1 = P\odot  \star 

\lambda and its range \scrM \lambda (A
\odot  \star ) is an invariant subspace of A\odot  \star , this relation implies that

Bk takes values in \scrM \lambda (A
\odot  \star ) for all k = 1, . . . , p, so the same is true for \Gamma \lambda by (44). From this

it follows that (43) holds.
For the remaining case \lambda = 0, we have \delta \lambda = 1, so from (42) we get the direct sum

\scrM 0(\bfitA 
\odot  \star ) =

\biggl\{ \biggl( 
P\odot  \star 
0 \varphi \odot  \star 

0

\biggr) 
: \varphi \odot  \star \in X\odot  \star 

\biggr\} 
\oplus 
\biggl\{ \biggl( 

\Gamma 0Lp\alpha 
\alpha 

\biggr) 
: \alpha \in \BbbC p

\biggr\} 
.

The first summand equals \scrM 0(A
\odot  \star )\times \{ 0\} , and this gives the result.

Corollary 13. The center eigenspace \bfitX 0 corresponding to the purely imaginary eigenvalues
of \bfitA is given by

\bfitX 0 = X0 \times \{ 0\} \oplus 
\bigl\{ \bigl( 
j - 1\Gamma 0Lp\alpha , \alpha 

\bigr) 
: \alpha \in \BbbC p

\bigr\} 
,

with dim\bfitX 0 = dimX0 + p.

Proof. By Proposition 10, we have the disjoint union \sigma (\bfitA \odot  \star ) = (\sigma (A\odot  \star ) \setminus \{ 0\} ) \cup \{ 0\} .
Using this and Theorem 12, we first compute the center eigenspace for \bfitA \odot  \star as

\bfitX \odot  \star 
0 = X\odot  \star 

0 \times \{ 0\} \oplus \{ (\Gamma 0Lp\alpha , \alpha ) : \alpha \in \BbbC p\} ,

and then we apply \bfitj  - 1 from (36) to both sides of this equality.D
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In subsections 3.4 to 3.6, we will consider nonlinear problems on a real Banach space.
In this case, spectral analysis must be preceded by complexification; see Remark 1 and in
particular [17, last part of section IV.2].

Proposition 14. Suppose that X = Y\BbbC is a complexification of a real Banach space Y , and
let Y0 \subseteq Y be the real center eigenspace associated with X0. Then the real center eigenspace
\bfitY 0 associated with \bfitX 0 is

(45) \bfitY 0 = Y0 \times \{ 0\} \oplus \{ (Q\alpha ,\alpha ) : \alpha \in \BbbR p\} \subseteq Y \times \BbbR p,

where Q : \BbbR p \rightarrow Y is a bounded linear operator. Furthermore, \iota : \bfitY 0 \rightarrow Y0 \times \BbbR p defined by
\iota (\psi , \alpha ) := (\psi  - Q\alpha ,\alpha ) is a linear isomorphism.

Proof. \bfitX is naturally identified with \bfitY \BbbC where \bfitY = Y \times \BbbR p. Let \bfitP \Lambda with range\bfitX 0 be the
spectral projector on \bfitX for the spectral set \Lambda = \Lambda of all purely imaginary eigenvalues of \bfitA \BbbC .
A direct generalization of [17, Corollary IV.2.19] implies that \bfitP \Lambda is the complexification of a
projector \bfitP Y

\Lambda on \bfitY and the range \bfitY 0 of \bfitP Y
\Lambda --- identified with a subspace of \bfitY --- is the real

center eigenspace for \bfitA . Also, \Gamma 0 on X
\odot  \star is self-conjugate by (41). Together with Corollary 13

this implies (45). It is easily verified that the linear operator \iota is an isomorphism.

Remark 15. We will not make a notational distinction between the real and complex center
eigenspaces, indicating both X0 and Y0 with X0 and both \bfitX 0 and \bfitY 0 with \bfitX 0, respectively.
We hope that the underlying scalar field will be clear from the immediate context.

3.4. Nonlinear perturbation. Let T0 be a \scrC 0-semigroup on a real Banach space X that
is sun-reflexive with respect to T0. Introduce a nonlinear perturbation \bfitR : \bfitX \rightarrow \bfitX \odot  \star of the
form

(46) \bfitR (\varphi , \alpha ) = (R(\varphi , \alpha ), 0),

where R : \bfitX \rightarrow X\odot  \star is Ck-smooth, satisfying

(47) R(0, 0) = 0, D1R(0, 0) = 0, D2R(0, 0) = 0.

We associate with \bfitT and \bfitR the integral equation

(48) \bfitu (t) = \bfitT (t - s)\bfitu (s) + \bfitj  - 1

\int t

s
\bfitT \odot  \star (t - \tau )\bfitR (\bfitu (\tau )) d\tau ,  - \infty < s \leq t <\infty .

We expect all nontrivial dynamics to be contained in the first component, and this is indeed
the case.

Proposition 16. The function \bfitu = (u, up) : I \rightarrow \bfitX is a solution of (48) if and only if up
is constant on I and u : I \rightarrow X is a solution of

(49) u(t) = T (t - s)u(s) + j - 1

\int t

s
T\odot  \star (t - \tau )(Lp\alpha +R(u(\tau ), \alpha )) d\tau ,  - \infty < s \leq t <\infty ,

where \alpha \in \BbbR p denotes the constant value of up.
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Proof. We use Proposition 9 and (36). For any continuous function \bfitu = (u, up) : I \rightarrow \bfitX ,
we compute

\bfitT (t - s)\bfitu (s) = \bfitj  - 1\bfitT \odot  \star (t - s)\bfitj \bfitu (s) =

\biggl( 
T (t - s)u(s) + j - 1W\odot  \star (t - s)Lpup(s)

up(s)

\biggr) 
,

while another computation shows that

\bfitj  - 1

\int t

s
\bfitT \odot  \star (t - \tau )\bfitR (\bfitu (\tau )) d\tau =

\biggl( 
j - 1

\int t
s T

\odot  \star (t - \tau )R(\bfitu (\tau )) d\tau 
0

\biggr) 
.

From the above together with the definition (38) of W\odot  \star (t) we see that (48) is equivalent to
the system\left\{     u(t) = T (t - s)u(s) + j - 1

\int t

s
T\odot  \star (t - \tau )(Lpup(s) +R(u(\tau ), up(\tau ))) d\tau ,

up(t) = up(s)

for  - \infty < s \leq t <\infty . The statement now follows.

3.5. Parameter-dependent local center manifolds. We consider again a \scrC 0-semigroup
T0 on a real Banach space X that is sun-reflexive with respect to T0. We also assume that T0
is eventually compact and L in (37) is compact, so Proposition 11 implies that \bfitT is eventually
compact. If, furthermore, the nonlinearity \bfitR satisfies (47), then all conditions are fulfilled for
the application of the center manifold theory from [17, Chapter IX] to (48).

Therefore, if the generator A of T has 1 \leq n0 <\infty purely imaginary eigenvalues, counting
algebraic multiplicities, then by Proposition 14 the real center eigenspace \bfitX 0 has dimension
n0 + p. There exists a Ck-smooth local center manifold \bfscrW c

\mathrm{l}\mathrm{o}\mathrm{c} in \bfitX that is tangent at the
origin to \bfitX 0. In fact, Proposition 14 implies that \bfscrW c

\mathrm{l}\mathrm{o}\mathrm{c} is the image of a Ck-smooth map

\bfscrC : U \times Up \subseteq X0 \times \BbbR p \rightarrow \bfitX ,

where U \subseteq X0 and Up \subseteq \BbbR p are neighborhoods of the origin. Since (46) has a zero in the
second component, it follows from [17, equation (5.1) in section IX.5] that \bfscrC has the form

(50) \bfscrC (\varphi , \alpha ) = (\scrC (\varphi , \alpha ), \alpha ) \forall (\varphi , \alpha ) \in U \times Up,

where \scrC : U \times Up \rightarrow X is the first component function.

Definition 17. The image \scrW c
loc(\alpha ) := \scrC (U,\alpha ) is a local center manifold for (49) at \alpha \in Up.

It is a direct consequence of the above definition that for every \alpha \in Up we can parametrize
\scrW c

\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ) by coordinates on the real center eigenspace X0 that depend Ck-smoothly on \alpha . This
will be important for the discussion of the normalization method following (55) in section 4.

Proposition 18. If \alpha \in Up is sufficiently small, then \scrW c
loc(\alpha ) is locally positively invariant

for the semiflow generated by (49).D
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Proof. Let \Sigma and \Sigma be the semiflows generated by (48) and (49), respectively. By Propo-
sition 16,

(51) \Sigma (s, (\psi , \alpha )) = (\Sigma (s, \psi ), \alpha ) \forall \psi \in X,\alpha \in \BbbR p

and for all s in a common interval of existence I\psi ,\alpha . By [17, Theorem IX.5.3(i)], there exists
\delta > 0 such that if (\psi , \alpha ) \in \bfscrW c

\mathrm{l}\mathrm{o}\mathrm{c} and if

\| \Sigma (s, (\psi , \alpha ))\| = \| \Sigma (s, \psi )\| + | \alpha | \leq \delta \forall s \in [0, t],

then \Sigma (t, (\psi , \alpha )) \in \bfscrW c
\mathrm{l}\mathrm{o}\mathrm{c}, which by (51) implies that \Sigma (t, \psi ) \in \scrW c

\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ).
We note that if \psi \in \scrW c

\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ), then by (50) it follows that (\psi , \alpha ) \in \bfscrW c
\mathrm{l}\mathrm{o}\mathrm{c}. Therefore, if

| \alpha | \leq \delta 
2 and \psi \in \scrW c

\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ), then

\| \Sigma (s, \psi )\| \leq \delta 

2
\forall s \in [0, t]

implies that \Sigma (t, \psi ) \in \scrW c
\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ). This is precisely local positive invariance of \scrW c

\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ) for \Sigma .

Next, we consider a solution u : I \rightarrow X of (49) that lies in \scrW c
\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ). By Proposition 16,

the function \bfitu = (u, \alpha ) : I \rightarrow \bfitX is a solution of (48). Also, since u lies in \scrW c
\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ), we see

from (50) that \bfitu lies in \bfscrW c
\mathrm{l}\mathrm{o}\mathrm{c} and therefore satisfies the differential equation

\bfitj \.\bfitu (t) = \bfitA \odot  \star \bfitj \bfitu (t) +\bfitR (\bfitu (t)) \forall t \in I;

cf. (9). By (36) and (46) and Proposition 7, the first component of this equation gives the
differential equation

(52) j \.u(t) = A\odot  \star ju(t) + Lp\alpha +R(u(t), \alpha ) \forall t \in I,

which is satisfied by u.
In summary, we have the following.

Theorem 19 (parameter-dependent local center manifold). Let T0 be an eventually compact
\scrC 0-semigroup on a sun-reflexive real Banach space X, and let T be the \scrC 0-semigroup on X
defined by (3) where L is a compact perturbation. Suppose that the generator A of T has
1 \leq n0 < \infty purely imaginary eigenvalues with corresponding n0-dimensional real center
eigenspace X0. Furthermore, assume that R is Ck-smooth and (47) holds.

Then there exists a Ck-smooth map \scrC : U \times Up \rightarrow X defined in a neighborhood of the
origin in X0 \times \BbbR p and such that for every sufficiently small \alpha \in \BbbR p the manifold \scrW c

loc(\alpha ) :=
\scrC (U,\alpha ) is locally positively invariant for the semiflow generated by (49) at parameter value \alpha .
Furthermore, any solution u : I \rightarrow X of (49) that lies on \scrW c

loc(\alpha ) satisfies (52).

3.6. The special case of parameter-dependent classical DDEs. In this section, we will
formulate a corollary of Theorem 19 that applies specifically to the parameter-dependent
classical DDE (28). As in subsection 2.4, our starting point is (32) with F = 0,

(53)

\Biggl\{ 
\.x(t) = 0,

\.\mu (t) = 0,
t \geq 0,D

ow
nl

oa
de

d 
01

/0
6/

21
 to

 1
31

.2
11

.1
2.

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SWITCHING TO NONHYPERBOLIC CYCLES IN DDEs 271

in the unknown (x, \mu ) with initial condition (\varphi , \alpha ) in the state space \bfitX := X \times \BbbR p, where
X := C([ - h, 0],\BbbR n). So, we interpret the first component of (53) as a DDE but the second
component as an ODE. By comparison with (13), it is clear that the solution of the initial
value problem for (53) defines a \scrC 0-semigroup \bfitT 0 on \bfitX ,

\bfitT 0(t) := diag (T0(t), Ip),

with T0 the eventually compact shift semigroup on X from (14) and Ip the identity on \BbbR p.
Next, we specify the perturbations L and Lp in (37) as

L\varphi = (D1F (0, 0)\varphi )r
\odot  \star , Lp\alpha = (D2F (0, 0)\alpha )r

\odot  \star .

Then L is of finite rank, so certainly it is compact. Finally, we choose the nonlinear pertur-
bation R in (46) as

(54) R(\varphi , \alpha ) = G(\varphi , \alpha )r\odot  \star ,

where G is defined by the splitting in (31). Then (33) implies that the conditions in (47) hold.

Corollary 20 (parameter-dependent local center manifold for classical DDEs). Consider the
particular case of the classical DDE in (28),

\.x(t) = F (xt, \alpha ), t \geq 0,

where F : X \times \BbbR p \rightarrow \BbbR n is Ck-smooth for some k \geq 1 with F (0, 0) = 0. Let T be the \scrC 0-
semigroup on X corresponding to the linearization of (28) at 0 \in X for the critical parameter
value \alpha = 0. Suppose that the generator A of T has 1 \leq n0 <\infty purely imaginary eigenvalues
with corresponding n0-dimensional real center eigenspace X0.

Then there exists a Ck-smooth map \scrC : U\times Up \rightarrow X defined in a neighborhood of the origin
in X0 \times \BbbR p and such that for every sufficiently small \alpha \in \BbbR p the manifold \scrW c

loc(\alpha ) := \scrC (U,\alpha )
is locally positively invariant for the semiflow generated by (28) at parameter value \alpha .

Furthermore, if the history xt associated with a solution of (28) exists on some nonde-
generate interval I and xt \in \scrW c

loc(\alpha ) for all t \in I, then u : I \rightarrow X defined by u(t) := xt is
differentiable and satisfies

j \.u(t) = A\odot  \star ju(t) + (D2F (0, 0)\alpha )r
\odot  \star +G(u(t), \alpha )r\odot  \star \forall t \in I,

where A\odot  \star is the weak \star generator of T\odot  \star and the operator G : X \times \BbbR p \rightarrow \BbbR n defined by (31),

G(\varphi , \alpha ) := F (\varphi , \alpha ) - D1F (0, 0)\varphi  - D2F (0, 0)\alpha ,

is the nonlinear part of F .

Remark 21. For discrete DDEs (1), one may want to use one or more of the discrete
delays \tau 1, . . . , \tau m as parameters. However, in this case F is typically no longer C1-smooth.
For example, consider the case that (28) is a discrete DDE of the form

\.x(t) =M0x(t) + \cdot \cdot \cdot +Mjx(t - (\tau j + \alpha )) + \cdot \cdot \cdot +Mmx(t - \tau m) +\scrO (\| xt\| 2), t \geq 0,D
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where M0, . . . ,Mm \in \BbbR n\times n \setminus \{ 0\} are constant matrices with Mj nonsingular, \alpha is a scalar
parameter that varies in a neighborhood of its critical value \alpha = 0, and the remainder is of
class C\infty and independent of \alpha . It follows that F corresponding to the above DDE is given
by

F (\varphi , \alpha ) =M0\varphi (0) + \cdot \cdot \cdot +Mj\varphi ( - (\tau j + \alpha )) + \cdot \cdot \cdot +Mm\varphi ( - \tau m) +\scrO (\| \varphi \| 2),

but F is not C1-smooth in any neighborhood of (0, 0). To see this, fix \varphi \in X arbitrarily close
to 0 \in X but such that \varphi is not differentiable at \theta =  - \tau j . Then

1

\alpha 
[F (\varphi , \alpha ) - F (\varphi , 0)] =

Mj

\alpha 
[\varphi ( - (\tau j + \alpha )) - \varphi ( - \tau j)] ,

which does not have a limit as \alpha \rightarrow 0, implying that D2F (\varphi , 0) does not exist.
There are (at least) two possible ways around this complication. First, if there is only

a single discrete delay among the parameters, then of course the problem can be avoided
by a linear rescaling of time. Second, one can elaborate on the observation that history
functions on local center manifolds have a higher degree of regularity than arbitrary points
in X; see [17, Remark IX.9.2] and also [34]. Indeed, from the above example it is clear that
D2F (\varphi , 0) exists as soon as \varphi \in C1([ - h, 0],\BbbR n).

4. Normal forms on the parameter-dependent center manifold. The normalization tech-
nique described in this section goes back to [10]. In [46], it was applied to obtain expressions
for the critical normal form coefficients of all generic codimension one and two bifurcations of
equilibria in ODEs; also see [47, section 8.7]. In this context, these expressions are indepen-
dent of the (finite) dimension of the phase space and they involve only critical eigenvectors
of the Jacobian matrix and its transpose as well as higher-order derivatives of the right-hand
side at the critical equilibrium. These properties make them suitable for both symbolic and
numerical evaluation.

In [50], the same technique was applied to parameter-dependent normal forms to start the
continuation of nonhyperbolic cycles emanating from generalized Hopf, fold-Hopf, and Hopf-
Hopf bifurcation points of ODEs. The resulting predictors were implemented in the freely
available software package MatCont [13], a MATLAB toolbox for continuation and bifurcation
analysis of finite dimensional dynamical systems. This makes it possible to verify transversality
conditions and to initialize the continuation of the nonhyperbolic cycles mentioned above. A
similar switching problem for iterated maps was solved earlier in [29].

In [40], the normalization technique was lifted to an infinite dimensional setting, providing
explicit expressions for the critical normal form coefficients of generic codimension one and two
equilibrium bifurcations in classical DDEs. These expressions were partially implemented in
the software DDE-BifTool. This package can be considered as the DDE equivalent of MatCont
in command line mode.

In this section, we extend the normalization method from [40] to include parameters in
the spirit of [50]. Suppose 0 \in X is an equilibrium of (28) at the critical parameter value
0 \in \BbbR p, and assume there are n0 \geq 1 eigenvalues of this equilibrium on the imaginary axis,
counting algebraic multiplicities. Let P0 be the corresponding real spectral projector on X,
so the range X0 of P0 is the real n0-dimensional center eigenspace. Corollary 20 applies to
give a parameter-dependent local center manifold \scrW c

\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ) for (28).
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SWITCHING TO NONHYPERBOLIC CYCLES IN DDEs 273

We allow for the introduction of a new parameter \beta such that \alpha = K(\beta ) for some locally
defined Ck-diffeomorphism K : \BbbR p \rightarrow \BbbR p that is to be determined below, up to a certain
order. If u : I \rightarrow X with u(t) := xt \in \scrW c

\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ) is as in Corollary 20, then u is differentiable on
I and satisfies

(55) j \.u(t) = A\odot  \star ju(t) + (D2F (0, 0)K(\beta ))r\odot  \star +R(u(t),K(\beta )) \forall t \in I,

where R encodes the nonlinear part of F as in (54). Choose a basis \Phi of X0, and let \scrH :
\BbbR n0 \times \BbbR p \rightarrow X be a locally defined Ck-smooth parametrization of \scrW c

\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ) with respect to \Phi 
and in terms of the new parameter \beta ; see the remark following Definition 17. For every t \in I,
we define v(t) \in \BbbR n0 as the coordinate vector of P0u(t) with respect to \Phi . Then v : I \rightarrow \BbbR n0

satisfies a parameter-dependent ODE of the form

(56) \.v =
\sum 

| \nu | +| \mu | \geq 1

1

\nu !\mu !
g\nu \mu v

\nu \beta \mu ,

where the Ck-smooth vector field on the right-hand side has been expanded up to some
sufficiently large --- but finite --- order. The multi-indices \nu and \mu have lengths n0 and p,
respectively. We assume that (56) is a smooth normal form with unfolding parameters \beta .
Since \scrH parametrizes \scrW c

\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ),

u(t) = \scrH (v(t), \beta ), t \in I,

with both u and v depending on the parameters, although this is left implicit in the notation.
Substituting the above relation into (55) produces the homological equation

(HOM) A\odot  \star j\scrH (v, \beta ) + (D2F (0, 0)K(\beta ))r\odot  \star +R(\scrH (v, \beta ),K(\beta )) = jD1\scrH (v, \beta ) \.v,

with \.v given by the parameter-dependent normal form (56). The unknowns in (HOM) are \scrH ,
K, and the normal form coefficients g\nu \mu from (56). For r, s \geq 0 with r + s \geq 1, we denote
by Dr

1D
s
2F (0, 0) : X

r \times [\BbbR p]s \rightarrow \BbbR n the mixed Fr\'echet derivative of order r + s, evaluated at
(0, 0) \in X \times \BbbR p, with the understanding that at most one of the factor spaces Xr or [\BbbR p]s is
absent if either r = 0 or s = 0. We expand the nonlinearity R as

(57) R(\varphi , \alpha ) =
\sum 
r+s>1

1

r!s!
Dr

1D
s
2F (0, 0)(\varphi 

(r), \alpha (s))r\odot  \star ,

where \varphi (r) := (\varphi , . . . , \varphi ) \in Xr and \alpha (s) := (\alpha , . . . , \alpha ) \in [\BbbR p]s. The mappings \scrH and K can be
expanded as

(58) \scrH (v, \beta ) =
\sum 

| \nu | +| \mu | \geq 1

1

\nu !\mu !
H\nu \mu v

\nu \beta \mu , K(\beta ) =
\sum 
| \mu | \geq 1

1

\mu !
K\mu \beta 

\mu .

Substituting (56)--(58) into (HOM), collecting coefficients of terms v\nu \beta \mu from lower to higher
order and solving the resulting linear systems, one can solve recursively for the unknown
coefficients g\nu \mu , H\nu \mu , and K\mu by applying the Fredholm alternative and taking ordinary or
bordered inverses, as explained in subsection 2.6.D
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5. Coefficients of parameter-dependent normal forms and predictors. We will now use
the method outlined in section 4 to derive the coefficients needed for the predictors of the
nonhyperbolic equilibria and cycles emanating from generalized Hopf, fold-Hopf, and Hopf-
Hopf bifurcations and to write these predictors explicitly as in [50]. While doing so, we also
obtain the critical normal form coefficients, which were first derived in [40]. The transcritical-
Hopf bifurcation is treated in Appendix A. We focus exclusively on classical DDEs depending
on two active parameters, so p = 2.

For the derivation of the coefficients in this section, it is sufficient to expand the nonlin-
earity R in (57) and the parameter transformation K in (58) as

(59)

R(u, \alpha ) =
\Bigl( 
1
2B(u, u) +A1(u, \alpha ) +

1
6C(u, u, u) +

1
2B1(u, u, \alpha )

+ 1
24D(u, u, u, u) + 1

6C1(u, u, u, \alpha ) +
1

120E(u, u, u, u, u)

+\scrO (\| u\| \| \alpha \| 2 + \| \alpha \| 2 + \| u\| 4\| \alpha \| + \| u\| 6)
\Bigr) 
r\odot  \star 

and

(60) \alpha = K(\beta ) = K10\beta 1 +K01\beta 2 +\scrO (\| \beta \| 2).

Here u \in X, while \alpha , \beta \in \BbbR 2 and B, A1, C, B1, D, C1, and E are the standard multilinear
forms arising from the expansion of F (or, equivalently, G) at (0, 0) \in X \times \BbbR p. For example,

B(u, u) = D2
1F (0, 0)(u, u), A1(u, \alpha ) = D1

1D
1
2F (0, 0)(u, \alpha ),

B1(u, u, \alpha ) = D2
1D

1
2F (0, 0)(u, u, \alpha ), etc.

These multilinear forms are \BbbR n-valued on real-valued arguments and linearly extended (com-
plexified) to \BbbC n-valued multilinear forms on complex-valued arguments. Finally, we introduce

(61) J1 := D2F (0, 0).

Explicit formulas to compute the multilinear forms for the special case of discrete DDEs (1)
are given in section 6.

The following three subsections have a similar structure. First, we formulate relevant bifur-
cation conditions and give the corresponding smooth normal form on the parameter-dependent
local center manifold. Then we write explicitly the case-specific homological equation and the
center manifold expansion. Next, we compute the critical and parameter-related coefficients of
the normal form. Finally, we use asymptotic expressions for equilibrium and cycle bifurcations
in the normal form on the local center manifold to construct the corresponding predictors.

5.1. Generalized Hopf bifurcation. Suppose that (28) has an equilibrium x = 0 at the
critical parameter value \alpha 0 = (0, 0) \in \BbbR 2 with purely imaginary simple eigenvalues

(62) \lambda 1,2 = \pm i\omega 0, \omega 0 > 0,

which are the only eigenvalues on the imaginary axis. Furthermore, suppose that the first
Lyapunov coefficient \ell 1(0) = 0, while the second Lyapunov coefficient \ell 2(0) \not = 0. Then theD
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SWITCHING TO NONHYPERBOLIC CYCLES IN DDEs 275

restriction of (28) to the two-dimensional center manifold \scrW c
\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ) can be transformed into

the smooth local normal form

(63) \.z = \lambda (\alpha )z + c1(\alpha )z| z| 2 + c2(\alpha )z| z| 4 +\scrO (| z| 6);

see [3, section 33] or [47, section 8.3, Lemma 8.3], where \lambda (\alpha ), c1(\alpha ), and c2(\alpha ) are complex-
valued smooth functions with \ell 1(0) =

1
\omega 0

Re c1(0) = 0 and \ell 2(0) =
1
\omega 0

Re c2(0) \not = 0. Separat-
ing real and imaginary parts, we write\Biggl\{ 

\lambda (\alpha ) = \mu (\alpha ) + i\omega (\alpha ),

c1(\alpha ) = Re c1(\alpha ) + i Im c1(\alpha ),

which defines the real-valued smooth functions \mu (\alpha ) and \omega (\alpha ). Assume that the map \alpha \mapsto \rightarrow 
(\mu (\alpha ),Re c1(\alpha )) is regular at \alpha = 0, and define new parameters \beta = (\beta 1, \beta 2) = (\mu (\alpha ),Re c1(\alpha )).

In the next step, we could now introduce these new parameters in (63) and truncate
the resulting smooth normal form (56) to fifth order. Indeed, this is the approach taken in
subsections 5.2 and 5.3 and Appendix A. However, given that we are interested in obtaining a
linear approximation (60) of the parameter transformation K, for the case of the generalized
Hopf bifurcation it is advantageous to instead follow [4, 50], expand \lambda (\alpha ) and c1(\alpha ) in the
normal form (63) in the original parameters \alpha , and truncate to fifth order,

(64) \.z = (i\omega 0 + \gamma 110\alpha 1 + \gamma 101\alpha 2) z + (c1(0) + \gamma 210\alpha 1 + \gamma 201\alpha 2) z| z| 2 + c2(0)z| z| 4,

with \gamma jkl \in \BbbC . Namely, this approach greatly simplifies the systems obtained from the homo-
logical equation. Only in subsection 5.1.3 shall we use the parameters \beta for the purpose of
expressing the predictors for the codimension one branches.

Remark 22. We note that this approach is less practical if one is interested in a higher-
order approximation of \alpha in terms of \beta --- i.e., a higher-order approximation of the parameter
transformation K --- as needed, for example, in [2].

Since the eigenvalues (62) are simple, there exist eigenfunctions \varphi and \varphi \odot such that

A\varphi = i\omega 0\varphi , A \star \varphi \odot = i\omega 0\varphi 
\odot , \langle \varphi \odot , \varphi \rangle = 1.

The eigenfunctions \varphi and \varphi \odot are explicitly given by (22) and (23) with q \in \BbbC n and p \in \BbbC n \star 
satisfying

\Delta (i\omega 0)q = 0, p\Delta (i\omega 0) = 0, p\Delta \prime (i\omega 0)q = 1.

Any point y \in X0 in the real critical eigenspace can be represented as

y = z\varphi + \=z \=\varphi , z \in \BbbC ,

where z = \langle \varphi \odot , y\rangle . The homological equation (HOM) becomes

(65) A\odot  \star j\scrH (z, \=z, \beta (\alpha )) + J1\alpha r
\odot  \star +R(\scrH (z, \=z, \beta (\alpha )), \alpha )

= j (Dz\scrH (z, \=z, \beta (\alpha )) \.z +D\=z\scrH (z, \=z, \beta (\alpha )) \.\=z) ,D
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where \.z is given by (64) and \scrH admits the expansion

(66) \scrH (z, \=z, \beta (\alpha )) = z\varphi + \=z \=\varphi +H0010\alpha 1 +H0001\alpha 2 +
\sum 

j+k+| \mu | \geq 2

1

j!k!\mu !
Hjk\mu z

j\=zk\alpha \mu 

and R is given by (59).

5.1.1. Critical normal form coefficients. We start by calculating the critical normal form
coefficients following [40]. Collecting the coefficients of the quadratic terms z2 and z\=z in the
homological equation (65) yields two nonsingular linear systems:\bigl( 

2i\omega 0  - A\odot  \star \bigr) jH2000 = B(\varphi ,\varphi )r\odot  \star ,

 - A\odot  \star jH1100 = B(\varphi , \=\varphi )r\odot  \star .

They are solved using Lemma 3 to give

H2000(\theta ) = e2i\omega 0\theta \Delta  - 1(2i\omega 0)B(\varphi ,\varphi ),

H1100(\theta ) = \Delta  - 1(0)B(\varphi , \=\varphi ).

For the cubic terms, the system corresponding to z3 is also nonsingular,\bigl( 
3i\omega 0  - A\odot  \star \bigr) jH3000 = [3B(\varphi ,H2000) + C(\varphi ,\varphi , \varphi )] r\odot  \star ,

with solution

H3000(\theta ) = e3i\omega 0\theta \Delta  - 1(3i\omega 0) (3B (\varphi ,H2000) + C (\varphi ,\varphi , \varphi )) .

On the other hand, the system corresponding to z2\=z is singular,\bigl( 
i\omega 0  - A\odot  \star \bigr) jH2100 = [B ( \=\varphi ,H2000) + 2B (\varphi ,H1100) + C (\varphi ,\varphi , \=\varphi )] r\odot  \star  - 2c1(0)j\varphi .

The Fredholm solvability condition (FSC) requires that

c1(0) =
1

2
p \cdot (B ( \=\varphi ,H2000) + 2B (\varphi ,H1100) + C (\varphi ,\varphi , \=\varphi )) ,

and from Lemma 4 we then obtain the unique solution satisfying \langle \varphi \odot , H2100\rangle = 0 as

H2100(\theta ) = B\mathrm{I}\mathrm{N}\mathrm{V}
i\omega 0

(B ( \=\varphi ,H2000) + 2B (\varphi ,H1100) + C (\varphi ,\varphi , \=\varphi ) , - 2c1(0)) (\theta ).

We continue by collecting the coefficients corresponding to the fourth-order terms z3\=z and
z2\=z2 in the homological equation (65). The corresponding nonsingular systems may be solved
using Lemma 3 and the fact that Re(c1(0)) = 0. For H2200, this easily gives

H2200(\theta ) = \Delta  - 1(0)[2B( \=\varphi ,H2100) + 2B(\varphi , \=H2100) +B( \=H2000, H2000)

+ 2B(H1100, H1100) + C(\varphi ,\varphi , \=H2000) + 4C(\varphi , \=\varphi ,H1100)

+ C( \=\varphi , \=\varphi ,H2000) +D(\varphi ,\varphi , \=\varphi , \=\varphi )],D
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but for H3100 the solution is a bit more subtle. The linear system is\bigl( 
2i\omega 0  - A\odot  \star \bigr) jH3100 = [B ( \=\varphi ,H3000) + 3B (\varphi ,H2100) + 3B (H1100, H2000) + 3C (\varphi , \=\varphi ,H2000)

+ 3C (\varphi ,\varphi ,H1100) +D (\varphi ,\varphi , \varphi , \=\varphi )] r\odot  \star  - 6c1(0)jH2000,

so Lemma 3 applies with w0 = [\cdot \cdot \cdot ] - 6c1(0)H2000(0) and w =  - 6c1(0)H2000 and we find

H3100(\theta ) = e2i\omega 0\theta \Delta  - 1(2i\omega 0)[B( \=\varphi ,H3000) + 3B(\varphi ,H2100) + 3B(H1100, H2000)

+ 3C(\varphi , \=\varphi ,H2000) + 3C(\varphi ,\varphi ,H1100) +D(\varphi ,\varphi , \varphi , \=\varphi )]

 - 6c1(0)\Delta 
 - 1(2i\omega 0)[\Delta 

\prime (2i\omega 0) - \theta \Delta (2i\omega 0)]H2000(\theta ).

The critical normal form coefficient c2(0) is calculated by applying (FSC) to the singular linear
system corresponding to the fifth-order term z3\=z2 in the homological equation (65). This gives

c2(0) =
1

12
p \cdot 
\bigl[ 
2B ( \=\varphi ,H3100) + 3B (\varphi ,H2200) +B

\bigl( 
H2000, H3000

\bigr) 
+ 6B (H1100, H2100)

+ 3B
\bigl( 
H2100, H2000

\bigr) 
+ 6C ( \=\varphi ,H1100, H2000) + 6C (\varphi , \=\varphi ,H2100) + C ( \=\varphi , \=\varphi ,H3000)

+ 3C
\bigl( 
\varphi ,\varphi ,H2100

\bigr) 
+ 3C

\bigl( 
\varphi ,H2000, H2000

\bigr) 
+ 6C (\varphi ,H1100, H1100)

+D
\bigl( 
\varphi ,\varphi , \varphi ,H2000

\bigr) 
+ 6D (\varphi ,\varphi , \=\varphi ,H1100) + 3D (\varphi , \=\varphi , \=\varphi ,H2000) + E (\varphi ,\varphi , \varphi , \=\varphi , \=\varphi )

\bigr] 
.

The second Lyapunov coefficient is now given by \ell 2(0) =
1
\omega 0

Re(c2(0)).
We remark that the expression for the third-order coefficient c1(0) had already been ob-

tained by various other methods (see the chapter on Hopf bifurcation in [17] and the references
therein), well before being rederived in [40] as a by-product of computing the fifth-order critical
normal form for the generalized Hopf bifurcation using the method from section 4.

5.1.2. Parameter-related coefficients. Next, we derive the parameter-related coefficients
that provide a linear approximation to the parameter transformation. Collecting the coeffi-
cients of the terms \alpha and z\alpha in the homological equation (65) yields the systems

 - A\odot  \star jH00\mu = J1v\mu r
\odot  \star ,\bigl( 

i\omega 0  - A\odot  \star \bigr) jH10\mu = [A1 (\varphi , v\mu ) +B (\varphi ,H00\mu )] r
\odot  \star  - \gamma 1\mu j\varphi ,

where \mu = (10), (01) and v10 = (1, 0), v01 = (0, 1). We solve these systems using subsection 2.6.
By the first part of Lemma 3, the first system has the (constant) solutions

H00\mu (\theta ) = \Delta  - 1(0)J1v\mu 

and (FSC) gives

\gamma 1\mu = p \cdot (A1 (\varphi , v\mu ) +B (\varphi ,H00\mu )) .

Using Lemma 4, we obtain the solutions

H10\mu (\theta ) = B\mathrm{I}\mathrm{N}\mathrm{V}
i\omega 0

(A1 (\varphi , v\mu ) +B (\varphi ,H00\mu ) , - \gamma 1\mu )(\theta )D
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for the second equation. To determine \gamma 2\mu , we first collect the coefficients corresponding to
the z2\alpha and z\=z\alpha terms in the homological equation (65). We obtain the equations\bigl( 
2i\omega 0  - A\odot  \star \bigr) jH20\mu = [A1 (H2000, v\mu ) + 2B (\varphi ,H10\mu ) +B (H2000, H00\mu ) +B1 (\varphi ,\varphi , v\mu )

+ C (\varphi ,\varphi ,H00\mu )] r
\odot  \star  - 2\gamma 1\mu jH2000,

 - A\odot  \star jH11\mu = [A1 (H1100, v\mu ) + 2Re (B ( \=\varphi ,H10\mu )) +B (H1100, H00\mu ) +B1 (\varphi , \=\varphi , v\mu )

+ C (\varphi , \=\varphi ,H0\mu )] r
\odot  \star  - 2Re(\gamma 1\mu )jH1100.

Lemma 3 implies that solutions of the first two equations are given by

H20\mu (\theta ) = e2i\omega 0\theta \Delta  - 1(2i\omega 0) [A1 (H2000, v\mu ) + 2B (\varphi ,H10\mu ) +B (H2000, H00\mu ) +B1 (\varphi ,\varphi , v\mu )

+ C (\varphi ,\varphi ,H00\mu )] - 2\gamma 1\mu \Delta (2i\omega 0)
 - 1
\bigl( 
\Delta \prime (2i\omega ) - \theta \Delta (2i\omega 0)

\bigr) 
H2000(\theta ),

H11\mu (\theta ) = \Delta  - 1(0) [A1 (H1100, v\mu ) + 2Re (B ( \=\varphi ,H10\mu )) +B (H1100, H00\mu ) +B1 (\varphi , \=\varphi , v\mu )

+ C (\varphi , \=\varphi ,H0\mu )] - 2Re(\gamma 1\mu )\Delta (0) - 1
\bigl( 
\Delta \prime (0) - \theta \Delta (0)

\bigr) 
H1100(\theta ).

Applying (FSC) to z2\=z\alpha terms in the homological equation (65) results in

\gamma 2\mu =
1

2
p \cdot [A1 (H2100, v\mu ) +B ( \=\varphi ,H20\mu ) + 2B (\varphi ,H11\mu ) +B (H2100, H00\mu )

+B
\bigl( 
H2000, \=H10\mu 

\bigr) 
+ 2B (H1100, H10\mu ) +B1 (H2000, \=\varphi , v\mu ) + 2B1 (\varphi ,H1100, v\mu )

+ 2C (\varphi , \=\varphi ,H10\mu ) + C (H2000, \=\varphi ,H00\mu ) + C (\varphi ,\varphi ,H01\mu ) + 2C (\varphi ,H1100, H00\mu )

+ C1 (\varphi ,\varphi , \=\varphi , v\mu ) +D (\varphi ,\varphi , \=\varphi ,H00\mu )] .

5.1.3. Hopf and LPC predictors. Using the above introduced parameters (\beta 1, \beta 2), we
can rewrite (63) as

\.z = (\beta 1 + i\omega (\beta ))z + (\beta 2 + i Im c1(\beta ))z| z| 2 + c2(\beta )z| z| 4 +\scrO (| z| 6),

where

(67) \omega (\beta ) = \omega 0 + \omega 1\beta 1 + \omega 2\beta 2 +\scrO (\| \beta \| 2).

Note that to simplify notation, we write here \omega (\beta ) and cj(\beta ) instead of \omega (\alpha (\beta )) and cj(\alpha (\beta )),
respectively. Similar conventions are adopted in other cases ahead.

The parameters \alpha and \beta are related via

(68) \alpha =

\biggl( 
Re

\biggl( 
\gamma 110 \gamma 101
\gamma 210 \gamma 201

\biggr) \biggr)  - 1

\beta +\scrO (\| \beta \| 2),

so for the coefficient \omega 2 in (67) we get

(69) \omega 2 = Im

\Biggl( \bigl( 
\gamma 110 \gamma 101

\bigr) \biggl( 
Re

\biggl( 
\gamma 110 \gamma 101
\gamma 210 \gamma 201

\biggr) \biggr)  - 1\biggl( 
0
1

\biggr) \Biggr) 
.D

ow
nl

oa
de

d 
01

/0
6/

21
 to

 1
31

.2
11

.1
2.

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SWITCHING TO NONHYPERBOLIC CYCLES IN DDEs 279

Now we are ready to specify the predictors for the original parameter-dependent DDE (28),
using [50]. To approximate the Hopf parameter values \alpha and the corresponding equilibrium,
we merely substitute \beta from

(70) (\beta 1, \beta 2, z) = (0, \epsilon , 0),

with small \epsilon \not = 0 into (68), and then put the result together with z = 0 into (66).
To approximate the LPC parameter values at which there is a cycle with a nontrivial

multiplier 1, we substitute \beta from

(71) \beta 1 = 0, \beta 2 =  - 2Re(c2(0))\epsilon 
2, \epsilon > 0,

into (68). The cycle period is approximated by

(72) T = 2\pi 
\big/ \bigl( 
\omega 0 + (Im(c1(0)) - 2Re c2(0)\omega 2) \epsilon 

2
\bigr) 
,

with \omega 2 given by (69). To obtain a predictor for the periodic orbit in the phase space, we put
z = \epsilon ei\psi and the obtained \alpha values into (66). Truncating to the second order in \epsilon then yields

u = 2Re(ei\psi \varphi )\epsilon +
\Bigl( 
H1100  - 2Re(c2(0))H0001 +Re(e2i\psi H2000)

\Bigr) 
\epsilon 2, \psi \in [0, 2\pi ].

5.2. Fold-Hopf bifurcation. Suppose that (28) has an equilibrium x = 0 at the critical
parameter value \alpha 0 = (0, 0) \in \BbbR 2 with simple eigenvalues

(73) \lambda 1 = 0, \lambda 2,3 = \pm i\omega 0, \omega 0 > 0,

which are the only eigenvalues on the imaginary axis. The restriction of (28) to the three-
dimensional center manifold \scrW c

\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ) can generically be transformed to the smooth local nor-
mal form

(74)

\left\{     
\.z0 = \gamma (\alpha ) + g200(\alpha )z

2
0 + g011(\alpha )| z1| 2 + g300(\alpha )z

3
0 + g111(\alpha )z0| z1| 2

+\scrO 
\bigl( 
\| (z0, z1, z1) \| 4

\bigr) 
,

\.z1 = \lambda (\alpha )z1 + g110(\alpha )z0z1 + g210(\alpha )z
2
0z1 + g021(\alpha )z1| z1| 2 +\scrO 

\bigl( 
\| (z0, z1, z1) \| 4

\bigr) 
;

see [47, section 8.5, Lemma 8.9]), where z0 \in \BbbR , z1 \in \BbbC , \gamma (0) = 0, \lambda (0) = i\omega 0, and the
smooth functions gjkl(\alpha ) are real in the first equation and complex in the second. Let \lambda (\alpha ) =
\mu (\alpha ) + i\omega (\alpha ), and suppose that the map \alpha \mapsto \rightarrow (\gamma (\alpha ), \mu (\alpha )) is regular at \alpha = 0. Introducing
new parameters \beta = (\beta 1, \beta 2) = (\gamma (\alpha ), \mu (\alpha )), we obtain the truncated normal form

(75)

\Biggl\{ 
\.z0 = \beta 1 + g200(\beta )z

2
0 + g011(\beta )| z1| 2 + g111(\beta )z0| z1| 2 + g300(\beta )z

3
0 ,

\.z1 = (\beta 2 + i\omega 0 + ib1(\beta ))z1 + g110(\beta )z0z1 + g210(\beta )z
2
0z1 + g021(\beta )z1| z1| 2,

where

(76) b1(\beta ) = \omega 1\beta 1 + \omega 2\beta 2 +\scrO (\| \beta \| 2).D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

280 M. M. BOSSCHAERT, S. G. JANSSENS, AND YU. A. KUZNETSOV

Letting z1 = \rho ei\psi and separating the real and imaginary parts yields the system

(77)

\left\{     
\.z0 = \beta 1 + g200(\beta )z

2
0 + g011(\beta )\rho 

2 + g111(\beta )z0\rho 
2 + g300(\beta )z

3
0 ,

\.\rho = \rho 
\bigl( 
\beta 2 +Re(g110(\beta ))z0 +Re(g210(\beta ))z

2
0 +Re(g021(\beta ))\rho 

2
\bigr) 
,

\.\psi = \omega 0 + b1(\beta ) + Im(g110(\beta ))z0 + Im(g210(\beta ))z
2
0 + Im(g021(\beta ))\rho 

2,

where the first two equations are decoupled from the third.
Since the eigenvalues (73) are simple, there exist eigenfunctions \varphi 0,1 and \varphi \odot 

0,1 satisfying

A\varphi 0 = 0, A\varphi 1 = i\omega 0\varphi 1, A \star \varphi \odot 
0 = 0, A \star \varphi \odot 

1 = i\omega 0\varphi 
\odot 
1 ,

as well as the mutual normalization condition

\langle \varphi \odot 
i , \varphi j\rangle = \delta ij , 0 \leq i, j \leq 1.

The eigenfunctions \varphi 0,1 and \varphi 
\odot 
0,1 can be explicitly computed using (22) and (23) with q0 \in \BbbR n,

q1 \in \BbbC n, p0 \in \BbbR n \star , and p1 \in \BbbC n \star satisfying

\Delta (0)q0 = 0, \Delta (i\omega 0)q1 = 0, p0\Delta (0) = 0, p1\Delta (i\omega 0) = 0,

as well as
p0\Delta 

\prime (0)q0 = 1, p1\Delta 
\prime (i\omega 0)q1 = 1.

Any point y \in X0 in the real critical eigenspace can be represented as

y = z0\varphi 0 + z1\varphi 1 + \=z1 \=\varphi 1, (z0, z1) \in \BbbR \times \BbbC ,

where z0 = \langle \varphi \odot 
0 , y\rangle and z1 = \langle \varphi \odot 

1 , y\rangle . Therefore, the homological equation (HOM) can be
written as

(78)
A\odot  \star j\scrH (z, \beta ) + J1(\beta )r

\odot  \star +R(\scrH (z, \beta ),K(\beta ))

= j (Dz0\scrH (z, \beta ) \.z0 +Dz1\scrH (z, \beta ) \.z1 +D\=z1\scrH (z, \beta ) \.\=z1) ,

where z = (z0, z1, \=z1), \beta = (\beta 1, \beta 2), and \.z is given by the normal form (75). Here, the mapping
\scrH admits the expansion

(79)

\scrH (z0, z1, \=z1, \beta ) = z0\varphi 0 + z1\varphi 1 + \=z1 \=\varphi 1 +H00010\beta 1 +H00001\beta 2

+
\sum 

j+k+l+| \mu | \geq 2

1

j!k!l!\mu !
Hjkl\mu z

j
0z
k
1 \=z

l
1\beta 

\mu ,

and the functions R and K are as in (59) and (60), respectively.

5.2.1. Critical normal form coefficients. We start by computing the critical normal form
coefficients following [40]. Collecting the quadratic terms z20 , z

2
1 , z0z1, and z1\=z1 in (78), we

obtain one nonsingular and three singular linear systems. By (FSC), the singular systems are
consistent if and only if

g200(0) =
1

2
p0 \cdot B(\varphi 0, \varphi 0), g110(0) = p1 \cdot B(\varphi 0, \varphi 1), g011(0) = p0 \cdot B(\varphi 1, \=\varphi 1).D
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This yields the three quadratic normal form coefficients. The corresponding solutions may
then be obtained using Lemmas 3 and 4. Namely,

H20000(\theta ) = B\mathrm{I}\mathrm{N}\mathrm{V}
0 (B(\varphi 0, \varphi 0), - 2g200(0))(\theta ),

H02000(\theta ) = e2i\omega 0\theta \Delta  - 1(2i\omega 0)B(\varphi 1, \varphi 1),

H11000(\theta ) = B\mathrm{I}\mathrm{N}\mathrm{V}
i\omega 0

(B(\varphi 0, \varphi 1), - g110(0))(\theta ),
H01100(\theta ) = B\mathrm{I}\mathrm{N}\mathrm{V}

0 (B(\varphi 1, \=\varphi 1), - g011(0))(\theta ).

For the four remaining cubic normal form coefficients, we collect the coefficients of the resonant
terms zj0z

k
1 \=z

l
1 in (78) with j + k + l = 3. This yields four singular linear systems. As before,

by (FSC) these systems are consistent if and only if

g300(0) =
1

6
p0 \cdot (3B(\varphi 0, H20000) + C(\varphi 0, \varphi 0, \varphi 0)) ,

g111(0) = p0 \cdot 
\bigl( 
B(\varphi 0, H01100) +B(\varphi 1, \=H11000) +B( \=\varphi 1, H11000) + C(\varphi 0, \varphi 1, \=\varphi 1)

\bigr) 
,

g210(0) =
1

2
p1 \cdot (2B(\varphi 0, H11000) +B(\varphi 1, H20000) + C(\varphi 0, \varphi 0, \varphi 1)) ,

g021(0) =
1

2
p1 \cdot (2B(\varphi 1, H01100) +B( \=\varphi 1, H02000) + C(\varphi 1, \varphi 1, \=\varphi 1)) .

5.2.2. Parameter-related coefficients. The parameter-related linear terms in (78) give

 - A\odot  \star jH00010 = J1K10r
\odot  \star  - j\varphi 0,

 - A\odot  \star jH00001 = J1K01r
\odot  \star .

Let \gamma = (\gamma 1 \gamma 2) = p0J1. Then by (FSC) we obtain the orthogonal frame

(80) K10 = s1 + \delta 1s2, K01 = \delta 2s2,

where

sT1 = \gamma /\| \gamma \| 2, sT2 = ( - \gamma 2 \gamma 1),

and \delta 1,2 \in \BbbR are constants. Using Lemma 4 from subsection 2.6, we get

(81)

H00010(\theta ) = \Delta \mathrm{I}\mathrm{N}\mathrm{V}(0)
\bigl( 
J1K10  - \Delta \prime (0)q0

\bigr) 
+ \delta 3q0 + \theta q0

= r1 + \delta 1r2 + \delta 3q0  - r3(\theta ),

H00001(\theta ) = \delta 2r2 + \delta 4q0,

where

r1 = \Delta \mathrm{I}\mathrm{N}\mathrm{V}(0) (J1s1) , r2 = \Delta \mathrm{I}\mathrm{N}\mathrm{V}(0) (J1s2) , r3(\theta ) = \Delta \mathrm{I}\mathrm{N}\mathrm{V}(0)
\bigl( 
\Delta \prime (0)q0

\bigr) 
 - \theta q0,

and the real constants \delta 3 and \delta 4 are not chosen such that \langle \varphi \odot 
0 , H00010\rangle = 0 and \langle \varphi \odot 

0 , H00001\rangle =
0 but will be determined below. Collecting the z0\beta and z1\beta terms in the homological equationD
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(78) yields the systems

 - A\odot  \star jH10010 = [B(\varphi 0, H00010) +A1(\varphi 0,K10)] r
\odot  \star  - jH20000,

 - A\odot  \star jH10001 = [B(\varphi 0, H00001) +A1(\varphi 0,K01)] r
\odot  \star ,\bigl( 

i\omega 0  - A\odot  \star \bigr) jH01010 = [B(\varphi 1, H00010) +A1(\varphi 1,K10)] r
\odot  \star  - j (i\omega 1\varphi 1 +H11000) ,\bigl( 

i\omega 0  - A\odot  \star \bigr) jH01001 = [B(\varphi 1, H00001) +A1(\varphi 1,K01)] r
\odot  \star  - (1 + i\omega 2) j\varphi 1.

(82)

To determine \delta i (i = 1, 2, 3, 4), we substitute (80) and (81) into (82). Then by (FSC) we
obtain the system\biggl( 

p0 \cdot B(\varphi 0, r2) + p0 \cdot A1(\varphi 0, s2) 2g200(0)
Re(p1 \cdot B(\varphi 1, r2) + p1 \cdot A1(\varphi 1, s2)) Re(g110(0))

\biggr) \biggl( 
\delta 1 \delta 2
\delta 3 \delta 4

\biggr) 
=

\biggl( 
 - p0 \cdot (A1(\varphi 0, s1) +B(\varphi 0, r1  - r3)) 0

 - Re(p1 \cdot (A1(\varphi 1, s1) +B(\varphi 1, r1  - r3))) 1

\biggr) 
.

Subsequently, the coefficients \omega 1 and \omega 2 in the expansion (76) are given by

\omega 1 = Im (p1 \cdot B(\varphi 1, H00010) + p1 \cdot A1(\varphi 1,K10)) ,

\omega 2 = Im (p1 \cdot B(\varphi 1, H00001) + p1 \cdot A1(\varphi 1,K01)) .

5.2.3. Hopf, fold, and Neimark--Sacker predictors. To approximate the fold and Hopf
curves and their corresponding equilibria in (77), one should substitute the expressions for \beta 
and the equilibrium coordinates into the expansions (79) and (60). It follows that the fold
curve is approximated by

(z0, \rho , \beta 1, \beta 2) = (0, 0, 0, \epsilon )

and the Hopf curve by

(z0, \rho , \beta 1, \beta 2) =

\biggl( 
 - \beta 2
Re(g110(0))

, 0, - g200(0)

Re(g110(0))2
\epsilon 2, \epsilon 

\biggr) 
for | \epsilon | small.

To approximate the periodic orbit at the Neimark--Sacker bifurcation where it has a pair
of complex multipliers with unit absolute value, we substitute z1 = \epsilon ei\psi and

(83)

\left\{             

\beta 1 =  - g011(0)\epsilon 2,

\beta 2 =
Re(g110(0)) (2Re(g021(0)) + g111(0)) - 2Re(g021(0))g200(0)

2g200(0)
\epsilon 2,

z0 =  - 2Re (g021(0)) + g111(0)

2g200(0)
\epsilon 2

into (79); see [50]. After a truncation, this gives

u = 2Re
\Bigl( 
ei\psi \varphi 1

\Bigr) 
\epsilon +

\biggl( 
Re(g110(0)) (2Re(g021(0)) + g111(0)) - 2Re(g021(0))g200(0)

2g200(0)
H00001

 - g011(0)H00010 +H01100  - 
\biggl( 
2Re(g021(0)) + g111(0)

2g200(0)

\biggr) 
\varphi 0 +Re

\Bigl( 
e2i\psi \=H02000

\Bigr) \biggr) 
\epsilon 2,

D
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where \psi \in [0, 2\pi ]. The period of the cycle is approximated by

T = 2\pi 
\big/ \bigl( 
\omega 0 + \omega 1\beta 1 + \omega 2\beta 2 + Im(g110(0))z0 + Im(g021(0))\epsilon 

2
\bigr) 
.

Here (z0, \beta 1, \beta 2) are as in (83), and all other quantities are defined earlier.

5.3. Hopf-Hopf bifurcation. Suppose that (28) has an equilibrium x = 0 at the critical
parameter value \alpha 0 = (0, 0) \in \BbbR 2 with two pairs of simple purely imaginary eigenvalues

(84) \lambda 1,4 = \pm i\omega 1, \lambda 2,3 = \pm i\omega 2,

where \omega 1 > \omega 2 > 0. When no other eigenvalues on the imaginary axis exist, this phenomenon is
called the Hopf-Hopf or double-Hopf bifurcation. Assume, furthermore, that the nonresonance
conditions k\omega 1 \not = l\omega 2, with 0 < k + l \leq 5, are satisfied. Then the restriction of (28) to the
four-dimensional center manifold \scrW c

\mathrm{l}\mathrm{o}\mathrm{c}(\alpha ) can be transformed to the smooth local normal form\left\{         
\.z1 = \lambda 1(\alpha )z1 + g2100(\alpha )z1| z1| 2 + g1011(\alpha )z1| z2| 2 + g3200(\alpha )z1| z1| 4

+ g2111(\alpha )z1| z1| 2| z2| 2 + g1022(\alpha )z1| z2| 4 +\scrO 
\bigl( 
\| z1, z1, z2, z2\| 6

\bigr) 
,

\.z2 = \lambda 2(\alpha )z2 + g1110(\alpha )z2| z1| 2 + g0021(\alpha )z2| z2| 2 + g2210(\alpha )z2| z1| 4

+ g1121(\alpha )z2| z1| 2| z2| 2 + g0032(\alpha )z2| z2| 4 +\scrO 
\bigl( 
\| z1, z1, z2, z2\| 6

\bigr) 
;

see [47, section 8.6, Lemma 8.13]), where z1,, z2 \in \BbbC 2 and gjklm(\alpha ) are smooth complex-valued
functions. Let \Biggl\{ 

\lambda 1(\alpha ) = \mu 1(\alpha ) + i\nu 1(\alpha ),

\lambda 2(\alpha ) = \mu 2(\alpha ) + i\nu 2(\alpha ),

where \mu 1,2(\alpha ) and \nu j(\alpha ) are smooth functions such that \mu 1(0) = \mu 2(0) = 0, \nu j(0) = \omega j (j =
1, 2), and suppose that the map \alpha \mapsto \rightarrow (\mu 1(\alpha ), \mu 2(\alpha )) is regular at \alpha = 0. Then we can introduce
new parameters \beta = (\beta 1, \beta 2) = (\mu 1(\alpha ), \mu 2(\alpha )) to obtain the normal form\left\{         

\.z1 = (\beta 1 + i\nu 1(\beta ))z1 + g2100(\beta )z1| z1| 2 + g1011(\beta )z1| z2| 2 + g3200(\beta )z1| z1| 4

+ g2111(\beta )z1| z1| 2| z2| 2 + g1022(\beta )z1| z2| 4 +\scrO 
\bigl( 
\| z1, z1, z2, z2\| 6

\bigr) 
,

\.z2 = (\beta 2 + i\nu 2(\beta ))z2 + g1110(\beta )z2| z1| 2 + g0021(\beta )z2| z2| 2 + g2210(\beta )z2| z1| 4

+ g1121(\beta )z2| z1| 2| z2| 2 + g0032(\beta )z2| z2| 4 +\scrO 
\bigl( 
\| z1, z1, z2, z2\| 6

\bigr) 
.

Truncate the normal form to third order,

(85)

\Biggl\{ 
\.z1 = (\beta 1 + i\omega 1 + ib1(\beta )) z1 + g2100(\beta )z1| z1| 2 + g1011(\beta )z1| z2| 2,
\.z2 = (\beta 2 + i\omega 2 + ib2(\beta )) z2 + g1110(\beta )z2| z1| 2 + g0021(\beta )z2| z2| 2,

where

(86) bj(\beta ) = bj1\beta 1 + bj2\beta 2 +\scrO (\| \beta \| 2), j = 1, 2.D
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Letting (z1, z2) =
\bigl( 
\rho 1e

i\psi 1 , \rho 2e
i\psi 2
\bigr) 
and separating the real and imaginary parts yields

(87)

\left\{           
\.\rho 1 = \rho 1

\bigl( 
\beta 1 +Re(g2100(\beta ))\rho 

2
1 +Re(g1011(\beta ))\rho 

2
2

\bigr) 
,

\.\rho 2 = \rho 2
\bigl( 
\beta 2 +Re(g1110(\beta ))\rho 

2
1 +Re(g0021(\beta ))\rho 

2
2

\bigr) 
,

\.\psi 1 = \omega 1 + b1(\beta ) + Im(g2100(\beta ))\rho 
2
1 + Im(g1011(\beta ))\rho 

2
2,

\.\psi 2 = \omega 2 + b2(\beta ) + Im(g1110(\beta ))\rho 
2
1 + Im(g0021(\beta ))\rho 

2
2.

Since the eigenvalues (84) are simple, there exist eigenfunctions \varphi 1,2 and \varphi \odot 
1,2,

(88) A\varphi 1 = i\omega 1\varphi 1, A\varphi 2 = i\omega 2\varphi 2, A \star \varphi \odot 
1 = i\omega 1\varphi 

\odot 
1 , A \star \varphi \odot 

2 = i\omega 2\varphi 
\odot 
2 ,

satisfying the mutual normalization conditions

\langle \varphi \odot 
i , \varphi j\rangle = \delta ij , 1 \leq i, j \leq 2.

The eigenfunctions \varphi 1,2 and \varphi 
\odot 
1,2 can be explicitly computed using (22) and (23) with q1,2 \in \BbbC n

and p1,2 \in \BbbC n \star such that both

\Delta (i\omega 1)q1 = 0, \Delta (i\omega 2)q2 = 0, p1\Delta (i\omega 1) = 0, p2\Delta (i\omega 2) = 0

and

p1\Delta 
\prime (i\omega 1)q1 = 1, p2\Delta 

\prime (i\omega 2)q2 = 1.

Any point y \in X0 in the real critical eigenspace can be represented as

y = z1\varphi 1 + \=z1 \=\varphi 1 + z2\varphi 2 + \=z2 \=\varphi 2, z1,2 \in \BbbC ,

where z1 = \langle \varphi \odot 
1 , y\rangle and z2 = \langle \varphi \odot 

2 , y\rangle . Therefore, the homological equation (HOM) can be
written as

(89)
A\odot  \star \scrH (z, \beta ) + J1(\beta )r

\odot  \star +R(\scrH (z, \beta ),K(\beta ))

= j (Dz1\scrH (z, \beta ) \.z1 +D\=z1\scrH (z, \beta ) \.\=z1 +Dz2\scrH (z, \beta ) \.z2 +D\=z2\scrH (z, \beta ) \.\=z2) ,

where z = (z1, \=z1, z2, \=z2), \beta = (\beta 1, \beta 2), and \.z is given by the normal form (85). The mapping
\scrH admits the expansion

(90)

\scrH (z1, \=z1, z2, \=z2, \beta 1, \beta 2) = z1\varphi 1 + \=z1 \=\varphi 1 + z2\varphi 2 + \=z2 \=\varphi 2 +H000010\beta 1 +H000001\beta 2

+
\sum 

j+k+l+m+| \mu | \geq 2

1

j!k!l!m!\mu !
Hjklm\mu z

j
1\=z
k
1z

l
2\=z
m
2 \beta 

\mu ,

and the functions R and K are as in (59) and (60), respectively.D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SWITCHING TO NONHYPERBOLIC CYCLES IN DDEs 285

5.3.1. Critical normal form coefficients. For initialization of the Neimark--Sacker curves
(94), we need the cubic critical normal form coefficients g2100(0), g1011(0), g1110(0), and
g0021(0). We compute these coefficients following [40].

Collecting the coefficients of the quadratic terms | z1| 2, z21 , z1z2, | z2| 2, z1\=z2, and z2\=z1 in the
homological equation (89), we obtain six nonsingular linear systems. By Lemma 3, their
solutions are

H110000(\theta ) = \Delta  - 1(0)B(\varphi 1, \=\varphi 1),

H200000(\theta ) = e2i\omega 1\theta \Delta  - 1(2i\omega 1)B(\varphi 1, \varphi 1),

H101000(\theta ) = ei(\omega 1+\omega 2)\theta \Delta  - 1(i (\omega 1 + \omega 2))B(\varphi 1, \varphi 2),

H001100(\theta ) = \Delta  - 1(0)B(\varphi 2, \=\varphi 2),

H100100(\theta ) = ei(\omega 1 - \omega 2)\theta \Delta  - 1(i (\omega 1  - \omega 2))B(\varphi 1, \=\varphi 2),

H002000(\theta ) = e2i\omega 2\theta \Delta  - 1(2i\omega 2)B(\varphi 2, \varphi 2).

The desired cubic critical normal form coefficients are obtained by collecting the coefficients
of the resonant cubic terms z1| z1| 2, z1| z2| 2, | z1| 2z2, and | z2| 2z2 in the homological equation.
This leads to four singular linear systems. By (FSC), these systems are solvable if and only if

g2100(0) =
1

2
p1 \cdot (2B(\varphi 1, H110000) +B( \=\varphi 1, H200000) + C(\varphi 1, \varphi 1, \=\varphi 1)) ,

g1011(0) = p1 \cdot (B( \=\varphi 2, H101000) +B(\varphi 1, H001100) +B(\varphi 2, H100100) + C(\varphi 1, \varphi 2, \=\varphi 2)) ,

g1110(0) = p2 \cdot 
\bigl( 
B( \=\varphi 1, H101000) +B(\varphi 1, \=H100100) +B(\varphi 2, H110000) + C(\varphi 1, \=\varphi 1, \varphi 2)

\bigr) 
,

g0021(0) =
1

2
p2 \cdot (2B(\varphi 2, H001100) +B( \=\varphi 2, H002000) + C(\varphi 2, \varphi 2, \=\varphi 2)) .

5.3.2. Parameter-related coefficients. The linear terms in (89) give back the eigenfunc-
tions (88) and the parameter-related equations

 - A\odot  \star jH0000\mu = J1K\mu r
\odot  \star ,

where \mu = (10), (01). Let

(91) K\mu = \gamma 1\mu e1 + \gamma 2\mu e2,

where e1 = (1, 0), e2 = (0, 1), and \gamma i\mu (i = 1, 2) \in \BbbR are constants to be determined. Then
Lemma 3 from subsection 2.6 implies

H0000\mu (\theta ) = \gamma 1\mu \Delta 
 - 1(0)J1e1 + \gamma 2\mu \Delta 

 - 1(0)J1e2.(92)

Collecting in (89) the zi\beta j-terms with 1 \leq i, j \leq 2 yields the systems\bigl( 
i\omega 1  - A\odot  \star \bigr) jH100010 = [A1(\varphi 1,K10) +B(\varphi 1, H000010)] r

\odot  \star  - (1 + ib11)j\varphi 1,\bigl( 
i\omega 1  - A\odot  \star \bigr) jH100001 = [A1(\varphi 1,K01) +B(\varphi 1, H000001)] r

\odot  \star  - ib12j\varphi 1,\bigl( 
i\omega 2  - A\odot  \star \bigr) jH001010 = [A1(\varphi 2,K10) +B(\varphi 2, H000010)] r

\odot  \star  - ib21j\varphi 2,\bigl( 
i\omega 2  - A\odot  \star \bigr) jH001001 = [A1(\varphi 2,K01) +B(\varphi 2, H000001)] r

\odot  \star  - (1 + ib22)j\varphi 2.

(93)
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To determine \gamma i\mu (i = 1, 2), we substitute (91) and (92) into (93). Then by (FSC) we obtain
the system

Re

\biggl[ \biggl( 
\Gamma 11 \Gamma 12

\Gamma 31 \Gamma 32

\biggr) \biggr] \biggl( 
\gamma 110 \gamma 210
\gamma 101 \gamma 201

\biggr) 
=

\biggl( 
1 0
0 1

\biggr) 
,

where

\Gamma ij := A1(\varphi i, ej) +B(\varphi i,\Delta 
 - 1(0)J1ej), 1 \leq i, j \leq 2.

Note that \Delta  - 1(0)J1ei is a constant function of \theta .
It now follows from (93) that the coefficients b11, b12, b21, and b22, introduced in (86) and

needed for the second-order approximation of the periods, are given by

b11 = Im (p1 \cdot (A1(\varphi 1,K10) +B(\varphi 1, H000010))) ,

b12 = Im (p1 \cdot (A1(\varphi 1,K01) +B(\varphi 1, H000001))) ,

b21 = Im (p2 \cdot (A1(\varphi 2,K10) +B(\varphi 2, H000010))) ,

b22 = Im (p2 \cdot (A1(\varphi 2,K01) +B(\varphi 2, H000001))) .

5.3.3. Hopf and Neimark--Sacker predictors. To approximate the Hopf curves and their
corresponding equilibria in (87), one should substitute the expressions for the equilibrium
coordinates and \beta , i.e.,

(\rho 1, \rho 2) =

\Biggl( \sqrt{} 
 - \beta 1
Re(g2100(0))

, 0

\Biggr) 
, (\rho 1, \rho 2) =

\Biggl( 
0,

\sqrt{} 
 - \beta 2
Re(g0021(0))

\Biggr) 

and

H1 = \{ (\beta 1, \beta 2) : \beta 1 = 0\} , H2 = \{ (\beta 1, \beta 2) : \beta 2 = 0\} ,

into the expansions (90) and (60).
For the approximation of the Neimark--Sacker periodic orbits, we follow [50] and substitute

(z1, z2) = (\epsilon ei\psi 1 , 0) and (z1, z2) = (0, \epsilon ei\psi 2) with

(\rho 1, \rho 2, \beta 1, \beta 2) =
\bigl( 
\epsilon , 0, - Re(g2100(0))\epsilon 

2, - Re(g1110(0))\epsilon 
2
\bigr) 
,(94a)

(\rho 1, \rho 2, \beta 1, \beta 2) =
\bigl( 
0, \epsilon , - Re(g1011(0))\epsilon 

2, - Re(g0021(0))\epsilon 
2
\bigr) 
,(94b)

respectively, into (90) with \epsilon > 0. After a truncation, we obtain

u1 = 2Re
\Bigl( 
ei\psi 1\varphi 1

\Bigr) 
\epsilon +

\Bigl( 
 - Re(g1110(0))H000001  - Re(g2100(0))H000010

+H110000 +Re
\Bigl( 
e2i\psi 1H200000

\Bigr) \Bigr) 
\epsilon 2, \psi 1 \in [0, 2\pi ],

and

u2 = 2Re
\Bigl( 
ei\psi 2\varphi 2

\Bigr) 
\epsilon +

\Bigl( 
 - Re(g0021(0))H000001  - Re(g1011(0))H000010

+H001100 +Re
\Bigl( 
e2i\psi 2H002000

\Bigr) \Bigr) 
\epsilon 2, \psi 2 \in [0, 2\pi ].D
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Approximations for the period of each cycle for the Neimark--Sacker predictors are\Biggl\{ 
T1 = 2\pi 

\big/ \bigl( 
\omega 1 + b11\beta 1 + b12\beta 2 + Im(g2100(0))\epsilon 

2
\bigr) 
,

T2 = 2\pi 
\big/ \bigl( 
\omega 2 + b21\beta 1 + b22\beta 2 + Im(g0021(0))\epsilon 

2
\bigr) 
.

Here we should use (\beta 1, \beta 2) as in (94a) and (94b) and bjk computed above.

6. Computation of derivatives for discrete DDEs. All predictors described in the previ-
ous sections are implemented in version 3.2a of DDE-BifTool for models of the type (1). The
discrete DDE (1) is a particular instance of (28) with h = \tau m and

F (\varphi , \alpha ) = f(\Xi \varphi , \alpha ),

where the linear evaluation operator \Xi : X \rightarrow \BbbR n\times (m+1) is defined by

(95) \Xi \varphi := (\varphi ( - \tau 0), \varphi ( - \tau 1), . . . , \varphi ( - \tau m)) ,

with the convention \tau 0 := 0. In particular, by the chain rule,

D1F (0, 0)\varphi = D1f(0, 0)\Xi \varphi =

m\sum 
j=0

D1,jf(0, 0)\varphi ( - \tau j), \varphi \in X,

with Mj := D1,jf(0, 0) \in \BbbR n\times n the partial derivative of f at the origin with respect to its jth
state argument. So, if (1) has an equilibrium at the origin for \alpha = 0, then the linear part of
the splitting (11) at \alpha = 0 is precisely the right-hand side of the above equation. Therefore,
\zeta : [0, h] \rightarrow \BbbR n\times n must be such that

\langle \zeta , \varphi \rangle =
m\sum 
j=0

Mj\varphi ( - \tau j) \forall \varphi \in X.

Hence \zeta has jump discontinuitiesMj at the points \tau j for j = 0, . . . ,m and is constant otherwise.
So, in this case the characteristic matrix (20) is given by

\Delta (z) = zI  - 
m\sum 
j=0

Mje
 - z\tau j , z \in \BbbC .

The multilinear forms appearing in (59) can be expressed in terms of the derivatives of the
function f : \BbbR n\times (m+1)\times \BbbR p \rightarrow \BbbR n from (1). For r, s \geq 0, with r+s \geq 1, the mixed derivative of
order r+s of f at (0, 0) is an (r+s)-linear form on [\BbbR n\times (m+1)]r\times [\BbbR p]s, with the understanding
that at most one factor may be absent in case r = 0 or s = 0. Let Q,Q1, . . . , Qr be matrices
in \BbbR n\times (m+1), and let \alpha , \alpha 1, . . . , \alpha s be vectors in \BbbR p. Then this derivative acts as

(96) Dr
1D

s
2f(0, 0)(Q

1, . . . , Qr, \alpha 1, . . . , \alpha s)

=
\sum 
j,k,\ell 

\partial r+sf(Q,\alpha )

\partial qj1k1 . . . \partial qjrkr\partial \alpha \ell 1 . . . \partial \alpha \ell s

\bigm| \bigm| \bigm| \bigm| 
(Q,\alpha )=(0,0)

q1j1k1 \cdot \cdot \cdot q
r
jrkr\alpha 

1
\ell 1 \cdot \cdot \cdot \alpha 

s
\ell s ,
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where the multidimensional sum runs over

1 \leq j1, . . . , jr \leq n, 0 \leq k1, . . . , kr \leq m, 1 \leq \ell 1, . . . , \ell s \leq p.

The multilinear forms appearing in (59), as well as (61), are computed from (96) by compo-
sition with \Xi from (95) as

Dr
1D

s
2F (0, 0)(\varphi 1, . . . , \varphi r, \alpha 1, . . . , \alpha s) = Dr

1D
s
2f(0, 0)(\Xi \varphi 1, . . . ,\Xi \varphi r, \alpha 1, . . . , \alpha s)

for \varphi 1, . . . , \varphi r \in X and \alpha 1, . . . , \alpha s \in \BbbR p. For given r and s, the multidimensional array of
partial derivatives inside the sum in (96) is of course symmetric under permutation of the
state indices j1k1, . . . , jrkr and the parameter indices \ell 1, . . . , \ell s. This can be exploited for
efficient storage and access.

7. Examples. In this section, we will demonstrate the correctness of the normal form co-
efficients and the accuracy of the predictors in four different models. We do this twofold: first,
we compare the predictors in parameter space with the computed in DDE-BifTool bifurcation
curves, and, second, we perform simulations near the bifurcation point under consideration.
The simulation is done either with the built-in routine dde23 of MATLAB or with the Python
package pydelay [27]. The latter gives a significant speed performance when considering sim-
ulation over longer time intervals. This is usually the case when one wants to demonstrate
the existence of stable invariant manifolds. Since in this section only the main results are
given, we provide details (including simulation results) in the accompanying supplementary
materials (M124399 01.pdf [local/web 926KB]). Furthermore, the source code of the examples
has been included into the DDE-BifTool software package. This will hopefully provide a good
starting point when considering other models.

7.1. Generalized Hopf bifurcation in a coupled FHN neural system with delay. In [68],
the following system is considered:

(97)

\left\{   \.u1(t) =  - u
3
1(t)

3
+ (c+ \alpha )u21(t) + du1(t) - u2(t) + 2\beta f(u1(t - \tau )),

\.u2(t) = \varepsilon (u1(t) - bu2(t)).

Here (u1, u2) is the completely synchronous solution of the three coupled FitzHugh--Nagumo
(FHN) neuron system

(98)

\left\{                             

\.u1(t) =  - u
3
1(t)

3
+ (c+ \alpha )u21(t) + du1(t) - u2(t) + \beta [f(u3(t - \tau )) + f(u5(t - \tau ))] ,

\.u2(t) = \varepsilon (u1(t) - bu2(t)),

\.u3(t) =  - u
3
3(t)

3
+ (c+ \alpha )u23(t) + du3(t) - u4(t) + \beta [f(u3(t - \tau )) + f(u5(t - \tau ))] ,

\.u4(t) = \varepsilon (u3(t) - bu4(t)),

\.u5(t) =  - u
3
5(t)

3
+ (c+ \alpha )u25(t) + du5(t) - u6(t) + \beta [f(u1(t - \tau )) + f(u3(t - \tau ))] ,

\.u6(t) = \varepsilon (u5(t) - bu6(t)),
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where \alpha , \beta measure the synaptic strength in self-connection and neighborhood interaction,
respectively. The parameters b and \varepsilon are assumed to be positive such that 0 < b < 1 and
0 < \varepsilon \ll 1. The function f is a sufficiently smooth sigmoidal amplification function, and
\tau > 0 represents the time delay in signal transmission. For the derivation of (97) from
the system (98), as well as for stability conditions of the completely synchronous solution,
we refer the reader to [68]. In that article, a generalized Hopf point was analyzed using
the traditional formal adjoint method and the two-step center manifold reduction; see [33].
Numerical simulations where made to confirm their results. For this, (\beta , \alpha ) are taken as the
unfolding parameters and the parameters

b = 0.9, \varepsilon = 0.08, c = 2.0528, d =  - 3.2135, \tau = 1.7722

are fixed. The sigmoidal amplification function f(u) = tanh(u) is used.
According to [68], a generalized Hopf point is present at the origin with the parameter

values (\beta , \alpha ) = (1.9, - 0.9710). We took this point and calculated its stability and the corre-
sponding normal form coefficients. Although we do confirm that the point under consideration
is a Hopf point, the first Lyapunov coefficient does not vanish and we conclude that the point
cannot be a generalized Hopf point. However, the simulation in [68] does suggest a gener-
alized Hopf point for nearby parameter values. Therefore, we continued the Hopf point in
(\beta , \alpha ). Then a generalized Hopf point is located at (\beta , \alpha ) = (1.9, - 1.0429) with negative sec-
ond Lyapunov coefficient \ell 2(0) =  - 15.6733, indicating the existence of a stable steady state
inside an unstable cycle, which in turn is located inside a stable cycle. We remark that the
second Lyapunov coefficient found in [68] is positive. This contradicts the simulation of the
dynamics made in the same article. Indeed, when the second Lyapunov coefficient is positive
a time reversal must be taken into account when considering the bifurcation diagram in the
case when the second Lyapunov coefficient is negative; see [47]. Then the situation of a stable
steady state inside a stable cycle (separated by an unstable cycle) does not occur.

Using the predictors from subsection 5.1.3, the Hopf and LPC bifurcation curves ema-
nating from the generalized Hopf point were automatically approximated near that point. In
Figure 1, the resulting bifurcation diagram is shown.

7.2. Fold-Hopf bifurcation of the Rose--Hindmarsh model with time delay. In [52], a
Rose--Hindmarsh model [36, 37] with time delay in the self-feedback process, which takes the
form

(99)

\left\{     
\.x(t) = y(t) - ax3(t) + bx2(t - \tau ) - cz(t) + Iapp,

\.y(t) = c - dx2(t) - y(t),

\.z(t) = r(S(x(t) - \chi ) - z(t)),

is considered. Here x represents membrane potential, y represents a recovery variable, z
denotes the adaption current, and a, b, c, d > 0, S, and \chi are real constants. The external
current Iapp and r are control parameters, and \tau denotes the synaptic transmission delay. The
constants a, b, c, d, \chi , and r are fixed. Let (x \star , y \star , z \star ) be a steady state of (99); then

(100) y \star = c - dx2 \star , z \star = S(x \star  - \chi ).D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

290 M. M. BOSSCHAERT, S. G. JANSSENS, AND YU. A. KUZNETSOV

1.86 1.87 1.88 1.89 1.9 1.91 1.92 1.93 1.94

−1.4

−1.2

−1

−0.8

−0.6

−0.4

I

II

III

β

α

subcritical Hopf branch
supercritical Hopf branch
LPC branch
LPC predictor
generalized Hopf point

Figure 1. Bifurcation diagram near the generalized Hopf point in the system (97) with unfolding parameters
(\beta , \alpha ). The bifurcation curves are nearly identical to those in the bifurcation diagram of the topological normal
form as presented in [47, page 314]. Near the generalized Hopf point, there are no limit cycles in region
I, one stable limit cycle in region II, and two limit cycles (one stable and one unstable) in region III. In
subsection SM1.12, these predictions are confirmed by simulation.

The conditions for a fold-Hopf bifurcation have been derived in [52] analytically. Indeed, let
S be arbitrary and set

x \star =
1

3a

\biggl( 
b - d\pm 

\sqrt{} 
(b - d)2  - 3acS

\biggr) 
,

Iapp = x2 \star (ax \star  - b+ d) + c(S(x \star  - \chi ) - 1),(101)

A = x2 \star 
\bigl( 
(3ax \star + 2d)2  - 4b2

\bigr) 
 - 2rx \star (2dx \star  - 1)(3ax \star  - 2b+ 2d)

+ r2(4dx \star ( - 2bx \star + dx \star  - 1) + 1),

B = 9a2x4 \star + 2rx \star (3ax \star  - 2b+ 2d) - 4b2x2 \star  - 4dx \star + r2 + 1,

\omega 1,2 =

\sqrt{} 
 - B \pm 

\sqrt{} 
B2  - 4A.

Then a fold-Hopf bifurcation occurs when

\tau =

\Biggl\{ 
1

\omega 1,2
(arcsinY + 2k\pi ) , Z \geq 0,

1
\omega 1,2

(\pi  - arcsinY + 2k\pi ) , Z \leq 0,D
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where k = 0, 1, 2, . . . and

Y =
\omega 1,2

2b

\Biggl( 
r(2b - 2d - 3ax \star )

r2 + \omega 2
1,2

+
2d

\omega 2
1,2 + 1

 - 1

x \star 

\Biggr) 
,

Z =
\omega 1,2

2b

\Biggl( 
r2(2b - 2d - 3ax \star )

r2 + \omega 2
1,2

+
2d

\omega 2
1,2 + 1

+ 3ax \star 

\Biggr) 
.

In [52], the parameter values

(102) a = 1.0, b = 3.0, c = 1.0, d = 5.0, \chi =  - 1.6, r = 0.001

are fixed. It follows that a fold-Hopf bifurcation is located at

x \star = 0.1308, S =  - 0.57452592, \tau = 5.768830916,

and Iapp, (y \star , z \star ) given by (101) and (100), respectively. To unfold the singularity, the ``pa-
rameters"" (x \star , S) are used; see [52]. Here we will take the more natural unfolding parameter
(Iapp, S). Calculating the stability with DDE-BifTool gives the eigenvalues

 - 0.0000\pm 1.0079i, 0.0000 + 0.0000i.

All other eigenvalues lie in the open left half of the complex plane. Calculating the normal
form coefficients reveals that

s := sgn(g200(0)g011(0)) = sgn(1.8487e - 05), \theta (0) =
Re(g110(0))

g200(0)
=  - 139.0315

and

E(0) = Re

\biggl[ 
g210(0) + g110(0)

\biggl( 
Re g021(0)

g011(0)
 - 3

2

g300(0)

g200(0)
+

g111(0)

2g011(0)

\biggr) 
 - g021(0)g200(0)

g011

\biggr] 
= 15.69;

see [47, page 338]. Since s = 1 and \theta (0) < 0, a global bifurcation curve or invariant tori are
present for parameters sufficiently close to the bifurcation; see [47, page 342]. However, since
the sign of E(0) is positive, the tori are unstable. Thus according to our analysis the simulated
torus in [52] cannot be attributed to the fold-Hopf bifurcation.

For demonstration purposes, we take the parameters r = 1.4 and S =  - 8, while keeping
the other parameters as in (102). Then a fold-Hopf bifurcation is located at x \star = 1.0972,
\tau = 0.9402, Iapp as in (101), and (y \star , z \star ) given by (100). The leading eigenvalues become

0.0000\pm 5.6042i, 0.0000 + 0.0000i,

while the normal form coefficients are given by

s = sgn(1.7700), \theta (0) =  - 0.1569, E(0) =  - 0.0378.

Thus the sign of s and \theta (0) remain unchanged. However, since the sign of E(0) is negative,
there is a time reversal to take into account. Therefore, we expect a stable torus to be present
for nearby parameter values. Using the predictors from subsection 5.2.3, we successfully
continued the fold, Hopf, and Neimark--Sacker bifurcation curves emanating from the point;
see Figure 2.D
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subcritical Hopf branch
supercritical Hopf branch
subcritical Hopf predictor
supercritical Hopf predictor
Neimark-Sacker branch
Neimark-Sacker predictor
fold-Hopf point

Figure 2. Bifurcation diagram near the fold-Hopf point in (99) with (r, S) = (1.4, - 8). The fold branch
is not included here since it is indistinguishable from the Hopf curve at this scale. Near the fold-Hopf point,
there is one stable periodic orbit and one stable two-dimensional torus in regions I and II, respectively. In
subsection SM2.11, these predictions are confirmed by simulation.

7.3. Hopf-Hopf and generalized Hopf bifurcations in active control system. An active
control system is used to control the response of structures to internal or external excitation.
The mathematical model with time delay can be described as follows [53]:

(103) m\"x(t) + c \.x(t) + kx(t) + ux(t - \tau ) + v \.x(t - \tau ) = \~f(t).

Here x(t) is the displacement of the controlled system, m > 0 is the mass, c and k are
the damping and the stiffness, respectively, \tau is the time delay represented in the relative
displacement feedback loop and in the relative velocity feedback loop, u and v are feedback
strengths, respectively, and \~f represents the external excitation. Let t\ast =

\sqrt{} 
k/mt, \zeta =

c/2m
\sqrt{} 
m/k, gu = u/k, gv = v/m

\sqrt{} 
m/k, and f(t) = \~f(t)/k . Then (103) becomes

\"x(t) + 2\zeta \.x(t) + x(t) + gux(t - \tau ) + gv \.x(t - \tau ) = f(t),

where the asterisks are omitted for simplicity. Following [19, 53], we consider the case when
f is replaced by a nonlinear position time delay feedback given by \beta x3(t  - \tau ); see also [65].
As in [19], we fix the parameters

gu = 0.1, gv = 0.52, \beta = 0.1D
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and take \zeta and \tau as control parameters. Let \.x(t) = y(t); then we obtain

(104)

\Biggl\{ 
\.x(t) = \tau y(t),

\.y(t) = \tau 
\bigl( 
 - x(t) - gux(t - 1) - 2\zeta y(t) - gvy(t - 1) + \beta x3(t - 1)

\bigr) 
.

Here the delay is scaled by using the transformation of time t \rightarrow t/\tau . In this way, the delay
can treated as an ordinary parameter.

The trivial equilibrium undergoes a Hopf-Hopf bifurcation at the parameter values

(105) (\zeta c, \tau c) = ( - 0.016225, 5.89802);

see [19] for the derivation. Using DDE-BifTool, we manually construct the Hopf-Hopf point
and compute its stability and normal form coefficients. We obtain the eigenvalues 0.0000 \pm 
4.5275i and  - 0.0000\pm 7.6449i. The quadratic critical normal form coefficients are

g2100(0) =  - 0.0915 + 0.1214i, g1110(0) = 0.2151 + 0.3876i,

g1011(0) =  - 0.3084 + 0.4096i, g0021(0) = 0.1813 + 0.3268i.

From

(Re g2100(0))(Re g0021(0)) =  - 0.0166 < 0,

we conclude that this Hopf-Hopf bifurcation is of ``difficult"" type; see [47, page 361]. Further-
more, since the quantities

\theta = \theta (0) =
Re g1011(0)

Re g0021(0)
=  - 1.7009, \delta = \delta (0) =

Re g1101(0)

Re g2100(0)
=  - 2.3517

are such that \theta < 0, \delta < 0, \theta \delta > 1, it follows that we are in case VI of the ``difficult"" type;
cf. [47, page 365]. We continue the Neimark--Sacker and Hopf bifurcation curves emanating
from the Hopf-Hopf point using the predictors from subsection 5.3.3. In Figure 3, a close-
up is given near the Hopf-Hopf point comparing the computed curves with the predictors in
parameter space.

Using the detection capabilities of DDE-BifTool, one additional Hopf-Hopf point and
three generalized Hopf points are located on the continued Hopf branches. The normal form
coefficients of the second Hopf-Hopf point are such that

(Re g2100(0))(Re g0021(0)) = 1.7331e - 04 > 0

and

\theta \geq \delta > 0, \theta \delta > 1.

We conclude that we are in case I of the ``simple"" type; see [47, page 360]. Therefore, no
stable invariant two-dimensional torus is predicted for nearby parameter values; only two
stable period orbits are expected. Using the predictors from subsections 5.1.3 and 5.3.3, we
can easily continue the codimension one cycle bifurcations from the located degenerate Hopf
points, showing the complicated bifurcation diagram in Figure 4.D
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Hopf branches
Neimark-Sacker branches
Neimar-Sacker predictors
Hopf predictors
Hopf-Hopf point

Figure 3. Bifurcation diagram near the Hopf-Hopf point at parameter values (105) in an active control
system with time delay given by (104). There are two supercritical Hopf curves (blue) and two Neimark--Sacker
curves (yellow). We see that the predictors (dotted) give good approximations near the codimension two point.

8. Concluding remarks. We have provided explicit formulas for the normal form coeffi-
cients needed to initialize codimension one equilibrium and nonhyperbolic cycle bifurcations
emanating from generalized Hopf, fold-Hopf, Hopf-Hopf, and transcritical-Hopf points in clas-
sical DDEs. Applications to four different models were given, confirming the correctness of the
derivation of the normal form coefficients and the asymptotic predictors. A paper providing a
second-order predictor for the homoclinic orbits emanating from the generic and transcritical
codimension two Bogdanov--Takens bifurcations in classical DDEs, along the lines of [49], is
in preparation.

Our proof of the existence of a smooth parameter-dependent center manifold is given in the
general context of perturbation theory for dual semigroups (sun-star calculus). Consequently,
the applicability of this result extends beyond classical DDEs, although here we did restrict
ourselves to the case of an eventually compact \scrC 0-semigroup on a sun-reflexive state space.
It follows that the results from subsections 3.2 to 3.5 are valid as well for other classes of
delay equations, such as renewal equations (also known as Volterra functional equations) and
systems of mixed type [14].

Furthermore, in [18, 61] the technique was used to calculate the critical normal form coef-
ficients for Hopf and Hopf-Hopf bifurcations occurring in neural field models with propagation
delays. For these models, sun-reflexivity is lost, which is typical for delay equations in abstract
spaces or with infinite delay. However, it is often possible to overcome this functional analytic
complication, so dual perturbation theory can still be employed successfully [15, 16, 41, 61].D
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Hopf branches
Neimark-Sacker branches
LPC branches
Hopf-Hopf points
generalized Hopf point

Figure 4. Bifurcation diagram obtained by continuing Hopf, Neimark--Sacker, and LPC bifurcation curves
from Hopf-Hopf and generalized Hopf bifurcation points in the active control system (104) using the predictors
from subsections 5.1.3 and 5.3.3 combined with the continuation capabilities from DDE-BifTool. Two Hopf-Hopf
points are connected by a Neimark--Sacker bifurcation curve. Also two of the three generalized Hopf points are
connected by a single LPC curve.

It has also been used in the context of semilinear hyperbolic systems [51].
For discrete DDEs, the right-hand side generally does not depend differentiably on the

delays; also see Remark 21. This leads to complications when one wants to apply the normal-
ization method as described in section 4 with two or more delays simultaneously in the role
of bifurcation parameters. We expect that the method can be extended without difficulty to
also cover this case by exploiting the additional smoothness of history functions that lie on a
local center manifold.

On a related note, in [57] it is demonstrated --- at a formal level --- that the normalization
method still works for DDEs with state-dependent delays. However, even for the case of critical
normal forms, a rigorous argument would likely require techniques beyond direct generalization
of the material from sections 2 and 3. This already becomes apparent at the fundamental level
of choosing a suitable state space. For state-dependent DDEs, the state space is in general
no longer a vector space but rather a C1-submanifold of codimension n of the Banach space
C1([ - h, 0],\BbbR n) that actually depends on the right-hand side of the DDE [63]. Moreover, the
question of existence of Ck-smooth local center manifolds for k \geq 2 still seems open and
under active investigation [45]. A successful extension of the normalization method to this
setting would presumably involve a combination of Ck-smoothness of local center manifolds
and Ck-smoothness of history functions lying on these manifolds, both for k \geq 2, of courseD
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assuming that such smoothness results were indeed available.
Returning to the setting of classical DDEs, the most obvious next challenge is to derive

normal forms for bifurcations of periodic orbits by generalizing [11, 12, 48]. The resulting
formulas can then be implemented in DDE-BifTool to facilitate numerical bifurcation analysis
of periodic orbits in supported types of classical DDEs.

Appendix A. Transcritical-Hopf bifurcation.

A.1. Normal form. A majority of papers in which fold-Hopf bifurcations in classical
DDEs are studied deals with models where the equilibrium remains fixed under variation
of parameters. In this case, the unfolding is not given by (74) anymore and we have to
consider the smooth local normal form\left\{   

\.z0 = \gamma (\alpha )z0 + g200(\alpha )z
2
0 + g011(\alpha )| z1| 2 + g300(\alpha )z

3
0 + g111(\alpha )z0| z1| 2

+\scrO 
\bigl( 
\| (z0, z1, z1) \| 4

\bigr) 
,

\.z1 = \lambda (\alpha )z1 + g110(\alpha )z0z1 + g210(\alpha )w
2z1 + g021(\alpha )z1| z1| 2 +\scrO 

\bigl( 
\| (z0, z1, z1) \| 4

\bigr) 
,

where \gamma (0) = 0 and \lambda (0) = i\omega 0, with \omega 0 > 0. The bifurcation analysis can be carried out
similarly to the fold-Hopf case; see [31, 43]. An alternative approach is presented in [66]. In
contrast with the fold-Hopf bifurcation, there are in general two Neimark--Sacker bifurcation
curves. Furthermore, the fold bifurcation curve becomes a transcritical bifurcation curve and
meets the Hopf bifurcation curve transversally.

Under the assumption that the map \alpha \mapsto \rightarrow (\gamma (\alpha ),Re\lambda (\alpha )) is regular at \alpha = 0, we introduce
new parameters \beta = (\beta 1, \beta 2) = (\gamma (\alpha ),Re\lambda (\alpha )) to obtain the truncated normal form

(106)

\Biggl\{ 
\.z0 = \beta 1z0 + g200(\beta )z

2
0 + g011(\beta )| z1| 2 + g111(\beta )z0| z1| 2 + g300(\beta )z

3
0 ,

\.z1 = (\beta 2 + i\omega 0 + ib1(\beta ))z1 + g110(\beta )z0z1 + g210(\beta )z
2
0z + g021(\beta )z1| z1| 2,

where

(107) b1(\beta ) = \omega 1\beta 1 + \omega 2\beta 2 +\scrO (\| \beta \| 2).

Letting z1 = \rho ei\psi and separating the real and imaginary parts yields the three-dimensional
system

(108)

\left\{     
\.z0 = \beta 1z0 + g200(\beta )z

2
0 + g011(\beta )\rho 

2 + g111(0)z0\rho 
2 + g300(\beta )z

3
0 ,

\.\rho = \rho 
\bigl( 
\beta 2 +Re(g110(\beta ))z0 +Re(g210(\beta ))z

2
0 +Re(g021(\beta ))\rho 

2
\bigr) 
,

\.\psi = \omega 0 + ib1(\beta ) + Im(g110(\beta ))z0 + Im(g210(\beta ))z
2
0 + Im(g021(\beta ))\rho 

2.

A.2. Coefficients. Compared with the fold-Hopf bifurcation in subsection 5.2, the ei-
genvalues, eigenfunctions, the homological equation, and the functions \scrH , K, and R remain
unchanged. It is only the truncated normal form on the center manifold that changes from
(75) to (106). Furthermore, also the critical normal form coefficients for the transcritical-Hopf
bifurcation remain the same as for the fold-Hopf bifurcation. Therefore, we proceed only with
the parameter-related equations.D
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Collecting the coefficients of the z0\beta and z1\beta terms in the homological equation, we obtain
the systems

 - A\odot  \star jH10010 = A1(\varphi 0,K10)r
\odot  \star  - j\varphi 0,

 - A\odot  \star jH10001 = A1(\varphi 0,K01)r
\odot  \star ,\bigl( 

i\omega 0  - A\odot  \star \bigr) jH01010 = A1(\varphi 1,K10) - i\omega 1j\varphi 1r
\odot  \star ,\bigl( 

i\omega 0  - A\odot  \star \bigr) jH01001 = A1(\varphi 1,K01) - (1 + i\omega 2)j\varphi 1r
\odot  \star .

(109)

Let

(110) K\mu = \gamma 1\mu e1 + \gamma 2\mu e2, \mu = (10), (01),

where e1 = (1, 0), e2 = (0, 1), and \gamma i\mu (i = 1, 2) \in \BbbR . To determine \gamma i\mu (i = 1, 2), we substitute
(110) into (109). Then by (FSC) we obtain the system\biggl( 

p0 \cdot A1(\varphi 0, e1) p0 \cdot A1(\varphi 0, e2)
Re (p1 \cdot A1(\varphi 1, e1)) Re (p1 \cdot A1(\varphi 1, e2))

\biggr) \biggl( 
\gamma 110 \gamma 210
\gamma 101 \gamma 201

\biggr) 
=

\biggl( 
1 0
0 1

\biggr) 
.

In order to make the last two systems in (109) consistent, we must have that the coefficients
in the expansion (107) are

(111) \omega 1 = Im (p1 \cdot A1(\varphi 1,K10)) , \omega 2 = Im (p1 \cdot A1(\varphi 1,K01)) .

A.3. Hopf, transcritical, and Neimark--Sacker bifurcation curves. The transcritical bi-
furcation curve in the normal form is obtained by substituting \rho = 0 in the amplitude system
of (108). Then \beta 2 is unrestricted and z0 =  - \beta 1/g200(0). The transcritical bifurcation curve
is therefore given by

(\beta 1, \beta 2) = (0, \beta 2) .

To obtain a predictor for the Hopf bifurcation curve, we truncate (108) to the second order.
We obtain a trivial equilibrium (z0, \rho ) = (0, 0), a semitrivial equilibrium (z0, \rho ) = ( - \beta 1

g200(0)
, 0),

and a nontrivial equilibrium

(z0, \rho ) =

\Biggl( 
 - \beta 2
Re (g110(0))

,

\sqrt{} 
\beta 2 (Re (g110(0))\beta 1  - g200(0)\beta 2)

Re (g110(0))
\sqrt{} 
g011(0)

\Biggr) 
.

It follows that the Hopf bifurcation curves are approximated by

\beta 2 =
Re (g110(0))

g200(0)
\beta 1, \beta 2 = 0.

Following the same procedure as in [50], we obtain that for g011(0)Re(g110(0)) < 0 there
are two Neimark--Sacker bifurcation curves in (108) approximated by \rho = 0 and

(112) (\beta 1, \beta 2, z0) =

\Biggl( 
\mp 2
\sqrt{} 
g011(0)g200(0)\epsilon , \mp Re (g110(0))

\sqrt{} 
g011(0)

g200(0)
\epsilon , \pm 

\sqrt{} 
g011(0)

g200(0)
\epsilon 

\Biggr) 
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for | \epsilon | small. The period of the corresponding cycle is approximated by

T = 2\pi /(\omega 0 + \omega 1\beta 1 + \omega 2\beta 2 + Im(g110(0))z0) .

Here (z0, \beta 1, \beta 2) are as in (112) and \omega 1,2 are the coefficients given in (111).
The predictors for the Hopf and transcritical bifurcation curves, as well as those for the

Neimark--Sacker bifurcation curves (including the cycle periods), can be easily obtained using
the asymptotics from above. In particular, to approximate the periodic orbits along the
Neimark--Sacker curves, we substitute z1 = \epsilon ei\psi and (112) into (79). This gives the following
linear approximations:

u =

\Biggl( 
\mp 

\sqrt{} 
g011(0)

g200(0)
\varphi 0 + 2Re

\Bigl( 
ei\psi \varphi 1

\Bigr) \Biggr) 
\epsilon , \psi \in [0, 2\pi ].

A.4. Example: An oscillator with delayed feedback. In [5], a generalization of the Van
der Pol oscillator with delayed feedback

(113) \"x(t) + \varepsilon (x2(t) - 1) \.x(t) + x(t) = g( \.x(t - \tau ), x(t - \tau )), 0 < \tau <\infty ,

is considered. Here g \in C3 satisfies the conditions g(0, 0) = 0, g \.x(0, 0) = a, and gx(0, 0) = b.
The linearization of (113) around the trivial solution x = 0 gives

\"x(t) - \varepsilon \.x(t) + x(t) = a \.x(t - \tau ) + bx(t - \tau ),

from which we obtain the characteristic equation

\Delta (\lambda , \tau ) = \lambda 2  - \varepsilon \lambda + 1 - (a\lambda + b)e - \lambda \tau = 0.

Let

(114) b = 1, \tau = \tau 0 \not = \varepsilon + a, \varepsilon 2  - a2 < 2;

then the characteristic equation has a simple zero and a pair of purely imaginary roots \lambda =
\pm i\omega 0. Here \omega 0 and \tau 0 are defined by

\omega 0 =
\sqrt{} 
2 - \varepsilon 2 + a2, \tau 0 =

1

\omega 0
arccos

\biggl( 
1 - (1 + \varepsilon a)\omega 2

0

a2\omega 2
0 + 1

\biggr) 
;

see [5, Proposition 2.1]. We set the function g to

g( \.x(t - \tau ), x(t - \tau )) = (1 + \mu 1)x(t - \tau ) - 0.2 \.x(t - \tau ) - 0.2x(t - \tau )2

 - 0.2x(t - \tau ) \.x(t - \tau ) - 0.2x(t - \tau )2 + 0.5x(t - \tau )3

and \varepsilon = 0.3. Then the conditions (114) are satisfied and

(115) \omega 0 \approx 1.396424004376894, \tau 0 \approx 1.757290761249588.D
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Figure 5. Bifurcation diagram near the transcritical-Hopf bifurcation in the delayed van der Pol oscillator
given by (116). There are two supercritical Hopf curves (blue), two subcritical Hopf curves (red), two Neimark--
Sacker curves (yellow), and one transcritical curve (green). We see that the predictors (dotted) give good
approximation for nearby values. Near the transcritical-Hopf point, there is one stable periodic orbit in regions
I and III and one stable torus in II and IV. In subsection SM4.9, the predictions in regions II and III are
confirmed by simulation.

To analyze the system with DDE-BifTool, we set y(t) = \.x(t) and transform the time with
t\rightarrow t/\tau to obtain the two-component system

(116)

\left\{         
\.x(t) = (\tau 0 + \mu 2) y(t),

\.y(t) = (\tau 0 + \mu 2)
\bigl[ 
 - x(t) - \varepsilon (x2(t) - 1)y(t) + (1 + \mu 1)x(t - 1) - 0.2y(t - 1)

 - 0.2x2(t - 1) - 0.2x(t - 1)y(t - 1) - 0.2y2(t - 1) + 0.5x3(t - 1)
\bigr] 
.

Here we introduced the unfolding parameters (\mu 1, \mu 2) := (b  - 1, \tau  - \tau 0) to translate the
singularity to the origin. One immediately sees that the trivial equilibrium ( \.x, x) = (0, 0) is an
equilibrium for all parameter values (\mu 1, \mu 2). Therefore, the parameter-dependent normal form
for the generic fold-Hopf cannot be used here. Instead, the normal form for the transcritical-
Hopf bifurcation must be used. Using DDE-BifTool, we compute the stability and the normal
form coefficients. The leading eigenvalues are 0.000 + 0.000i and  - 0.000 + 2.4539i, where
2.4539 \approx \omega 0\tau 0; see (115). Furthermore, the normal form coefficients are such that

g011(0)\times Re (g110(0)) = 0.4241\times Re ( - 0.1337 + 0.2672i) < 0.D
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Therefore, there are two Neimark--Sacker bifurcation curves predicted; see Appendix A.1.
Using the derived predictors, we continue the transcritical, Hopf, and Neimark--Sacker bi-
furcation curves emanating from the transcritical-Hopf bifurcation point. In Figure 5, the
bifurcation diagram is shown.
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