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Since the seminal work of Yarbus, multiple studies have
demonstrated the influence of task-set on oculomotor
behavior and the current cognitive state. In more recent
years, this field of research has expanded by evaluating
the costs of abruptly switching between such different
tasks. At the same time, the field of classifying
oculomotor behavior has been moving toward more
advanced, data-driven methods of decoding data. For
the current study, we used a large dataset compiled over
multiple experiments and implemented separate
state-of-the-art machine learning methods for decoding
both cognitive state and task-switching. We found that,
by extracting a wide range of oculomotor features, we
were able to implement robust classifier models for
decoding both cognitive state and task-switching. Our
decoding performance highlights the feasibility of this
approach, even invariant of image statistics.
Additionally, we present a feature ranking for both
models, indicating the relative magnitude of different
oculomotor features for both classifiers. These rankings
indicate a separate set of important predictors for
decoding each task, respectively. Finally, we discuss the
implications of the current approach related to
interpreting the decoding results.

Introduction

Visual attention is necessary to deal with the
enormous amount of information that is presented to
our visual system as it filters incoming information to
facilitate complex interactions with our environments.
A critical part of this filtering process is reserved for the
oculomotor system. The goal of this attention-guided
system is to focus the fovea on objects of interest by
moving our eyes. The decision where to move our eyes is
influenced by a range of different factors, including the
saliency of the scene in front of us, previous experiences,
and the goals and intentions of the observer (Itti &
Koch, 2001;Schütz, Braun, & Gegenfurtner, 2011; Van
Zoest, Van der Stigchel, & Donk, 2017). It is known,
for instance, that the pattern of viewing behavior
for identical natural scenes is influenced by the task
which has been given to the observer. This was initially
demonstrated by Yarbus, who provided convincing
evidence that different cognitive tasks produce profound
differences in viewing behavior (Yarbus, 1967).

Ever since then, a multitude of work has been
conducted regarding the effect of task-set on
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oculomotor behavior (for a review, see Henderson &
Hollingworth, 1998; Vo &Wolfe, 2015). Indeed, Yarbus’
first discoveries have been replicated many times over
the years. These studies have shown that oculomotor
measures, such as fixations and saccades, may vary as a
function of task set. Since then, the field of decoding
the underlying cognitive mechanisms behind these
task-induced differences has been influenced greatly
by advancements in pattern classification. In other
fields of research, state-of-the-art machine learning
methods for pattern classification have been applied to
a wide range of research domains, as well as practical
applications (Kotsiantis, Zaharakis, & Pintelas, 2007).
Using a more data driven perspective, recent work has
shown the application of such models in decoding the
underlying cognitive mechanisms behind differences
induced by different viewing tasks. Early data-driven
approaches at such decoding models were not deemed
successful (Greene, Liu, & Wolfe, 2012). However,
Borji and Itti found that it was indeed possible to
decode the observers’ task by eye-movement features
by expanding the search for a better model (Borji and
Itti, 2014). Additionally, Henderson and colleagues
have reported similar results during photograph, scene,
and text viewing by using a naïve Bayes classifier
model (Henderson et al., 2013). Similarly, other
work has propagated probabilistic models that enable
the modeling of time dimensions in eye-tracking
data (Haji-Abolhassani, & Clark, 2014; MacInnes,
Hunt, Clarke, & Dodd, 2018). Additionally, Tseng,
Cameron, Pari, Reynolds, Munoz, and Itti (2013) have
shown promising results applying a Support Vector
Machine classifier on viewing behavior in an attempt
at classifying neurological disorders. Finally, it seems
that human observers are also able to classify different
trial conditions. In a study by Bahle, Mills, and Dodd
(2017), human observers were able to correctly classify
conditions above chance when viewing images overlaid
with oculomotor metrics (e.g., fixation locations
and durations, scan paths) although to a very low
degree of proficiency. However, the results here imply
that humans themselves may not be able to parse
task information from eye movements alone, further
emphasizing the importance of machine-learning
approaching for decoding cognitive mechanisms.

Previous studies have mostly applied continuous
experimental designs to the study of task set. In these
studies, observers were instructed to perform individual
blocks of trials in which a single instruction was given
for each block (or task was manipulated between
participants). This design choice raises concerns related
to ecological validity. After all, in real-life situations,
attention-influenced viewing tasks change continuously
and abruptly. It is known that the ability to respond
fast and accurately decreases when switching between
tasks. For example, a number of studies have shown
that introducing a task-switching component in

the experimental design results in slower and more
error-prone responses (Monsell, 2003). More recent
work suggests that abrupt task-switching introduces
processing costs, which are represented by altered
patterns of viewing behavior compared to conventional
continuously continuous experimental designs (Mills,
Dalmaijer, Van der Stigchel, & Dodd, 2015). This
raises questions about the generalizability of earlier
classification models, given that they were applied to
data from experimental designs which are notably
different from real-life situations.

Another potential shortcoming regarding earlier
studies is that the datasets used for pattern classification
might not have been large enough to maximize the
potential of the models used. The ability of machine
learning-based methods to classify patterns is strongly
related to the amount of data available for these models.
Additionally, technological advancements regarding
machine learning algorithms allow for increasingly
better models. Therefore modern optimized machine
learning methods may provide for better classification
models for behavioral viewing data.

Here, we used a large dataset in which observers’
eye movements were recorded as they were presented
with a natural scene and were required to either (a)
rate the pleasantness of the scene, (b) memorize
the scene, or (c) perform a visual search task. To
minimize differences between real-life situations, all
data used in the current study were composed of
experimental designs which contain both task-switching
and “normal” continuous components. The main goal
of this study was to attempt decoding the observer’s
task. Additionally, we evaluated the mixed-block
subset of the dataset. For these trials, we attempted
to decode task-repeat from task-switch trials, also
known as task-switching. Both of these models were
implemented using a wide range of eye-movement
features and modern machine learning techniques.
The dataset used is different from earlier work in two
distinct ways. First, the dataset here was compiled over
multiple experiments, resulting in a significantly larger
volume of raw data. Additionally, all data used in the
current study consisted of both task-switching and
non-task-switching data, maximizing the similarity to
real-life scenarios. Finally, both models were evaluated
to examine which components of oculomotor behavior
(e.g., saccades, fixations) were informative for the
decoding performance of the classification models.

Method

Data

The dataset used as input for the models was
compiled from several eye-tracking experiments.
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Cognitive state Task-switching

Search Memory Rating Total Continuous Mixed

Participants 596 596 538 596 529 212
Trials 24,427 25,572 20,212 70,211 54,100 16,204
Fixations 972,802 1,010,340 827,493 2,810,635 2,802,175 428,136
Saccades 956,519 994,153 813,995 2,764,667 2,344,991 419,676

Table 1. Descriptive amounts of trials, fixations and saccades per cognitive trial type and task-switching trials.

The setup for these studies were compliant with the
guidelines agreed upon by the Declaration of Helsinki.
All participants of these studies provided informed
consent before participating. In these experiments,
596 observers (see Table 1 for full data description)
were instructed to look at computer-generated and
real-world images of various natural scenes. The stimuli
used in the experiment were 120 real-world images in
1024 by 768 pixels (23.84 × 17.99 visual degrees) in
color. There was one single set of images, from which
120 images were sampled for each participant, invariant
of conditions. This means that for each participant,
the order in which the images were presented was
random, in addition to the condition being randomized.
Therefore both trial type and block type conditions did
not influence luminance biases during the experiments.
Each image was unique and contained scene from a
variety of scene categories with multiple background
and foreground elements. The scenes contained indoor
(e.g., bedrooms) and outdoor (e.g., buildings) locations,
and none of them contained people. For the search
task, participants had to determine whether letter
N or Z was present. For data sampling purposes,
participants were informed before the experiment that,
intentionally, the target was hard to find yet present
in each search trial. Because it was important that
participants searched for the entire duration of every
single trial, the target was present in only five out of 32
to 48 (depending on the experiment) scenes. Afterward,
most participants indicated informally that they found
at most five to 10 targets. For the memory task, a test
display consisting of two side-by-side scenes (each 512
× 384 pixels; 12.05 × 9.05 visual degrees) was presented
at the end of each trial. Therefore, during search and
rating trials, a single image was used, whereas two
images were presented together during memory trials.
Test displays contained the same scene as presented
during the trial and a slightly modified version of that
same scene. It is important to note here that the eye
movements during the test phase were ignored, since
we were only interested in the eye-movement behavior
while the stimulus was presented and not the portion of
the trial when a decision was made by the participant.
This was true for all conditions. Modifications were
either feature substitutions, object substitutions, mirror
reversals, or magnitude changes, and were intended

to be unpredictable and difficult to detect so as to
encourage effortful memorization; modifications were
made using Adobe Photoshop 5.0. For each trial, there
was a pre-fixation period of 1000 ms. Drift corrections
were done after 35 trials. At the start of each trial,
a fixation point was shown, after which a question
appeared on the screen which determined the trial type:
“search for n or z” (search), “which of these two images
did you see?” (memory) or “input a numerical value
of pleasantness” (rating). The experiments had a total
running time of 60 to 85 minutes. The total amount of
trials varied slightly per experiment but was between
96 and 144 trials total, of which each trial type was
assigned one third of the trials. A visual representation
is shown in Figure 1.

Additionally, some experiments contained both
mixed-trial blocks and normal-trial blocks. During
normal trial-blocks, an initial instruction was presented
at the beginning of each block indicating the task
to-be-performed throughout. This was not the case
for mixed-trial blocks, in which the type of trial was
randomly shuffled within the block itself and task-set
was cued at the beginning of each trial. Each scene
was viewed for a duration of eight seconds. However,
in some conditions a probe was presented after six
seconds. Therefore all trials were cut after six seconds.
During these different types of trials, an SR Research
EyeLink 1000 System eye-tracker (Ottawa, Ontario,
Canada) recorded the eye movements of the observers.
For a full review of one of the experiments, see Mills et
al. (2015).

For simplicity, only event-related data were used for
compiling the dataset. These files were automatically
generated by the Eyelink and were preferred over raw
pupil coordinate data. This event-related data consisted
of all measurements related to saccades, fixations and
blinks for each trial.

Blinks are known to influence eye-tracking
measurements, including the number of saccades.
However, earlier analyses of the data found that there
weren’t any differences in blink rate across conditions.
Additionally, blink measurements were prone to data
loss and were therefore excluded from the dataset. Since
we did not have any theoretical preferences as to which
measurements were distinctive for classification, the
remaining event-related measurements were selected
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Figure 1. Visual example representation of search, rating and memory trials during test phase. For all but five trials, there was no
actual target present in the search condition to provoke search behavior. Before the start of the experiment, participants were
instructed to enter the pleasantness of the image on a seven-point Likert scale. The memory condition represents a mirror reversal
modification. Note that although the conditions were randomly sampled from 120 indoor scenes, the current example in this image
was not actually among them.

for further processing. For saccades, the number of
saccades, their duration, amplitude and peak velocity
were used. For fixations, the number of fixations,
their duration and the pupil size were used. Blink
measurements were excluded from the dataset, as they
were few in number and not consistently spread across
the dataset. In summary, a detailed description of the
data is shown in Table 1.

Machine learning methods for classification have
been around for at least a few decades and have served
multiple purposes in a wide range of areas (Weiss &
Kulikowski, 1991). Despite recent work, they have
not been extensively used with eye-tracking data.
What a machine learning classification model does,
conceptually, is pattern extraction on a pool of data.
In the current study, the classification model was
applied to eye-movement data collected from a set of
experiments. Therefore, the full data contains different
task types and consist of mixed and continuous data.
For decoding cognitive state, the full dataset was used
(n = 596). Task-switching trials were present only
in the mixed data. Therefore a smaller subset of the
data was used (n = 212) for decoding task-switching.
Consequently, two separate classifier models were
built, which were partially overlapping. In both the
cognitive state and task-switching models, the first steps
are related to cleaning and preparing the data which
will serve as input for the model. Subsequently, both
classifiers were applied to their respective datasets to
assess their ability to decode their respective problems.
To maximize the performance of the classifiers, they
were tweaked to optimize their fits on the data, using
an independent set. Finally, the performance of
both models was tested by evaluating the predictions
of the model. By doing so, each model was also
evaluated to examine which components of viewing
behavior were most distinctive for their prediction
performance.

Pupil foreshortening error analysis

Before beginning data preprocessing, we did
an explorative confound analysis into pupil size
confounds. Notable pupil size confounds, such as
pupil foreshortening error might influence pupil size
measurements and therefore introduce biases in
eye-tracking data (Hayes & Petrov, 2016). Since
machine learning approaches are sensitive to biases in
data, we decided to explore these possible biases in
more detail. First, we decided to include an additional
analysis into spatial biases in relation to the pupil size.
The reason for this is that possible spatial biases in
fixation planes could influence pupil size. Therefore,
we analyzed the cleaned data for possible biases in the
horizontal and vertical planes for both trial type and
block type conditions. We analyzed all endpoints of
fixations in both the horizontal and vertical planes in the
data, given the different trial/block types. Additionally,
we ran an additional statistical analysis to analyze
possible pupil foreshortening errors. To investigate
possible spatial biases given the different trial and
block types, we compared the differences between these
groups on fixation locations in both the horizontal and
vertical plane. The distributions of these locations were
found to violate normality assumptions, and therefore
required non-parametric testing. For all combinations
of comparisons (horizontal/vertical and trial type/block
type: 2x2) Kruskall-Wallis analysis of variance was
used to determine whether there are differences in the
average spatial biases per group. Results for both of
these analyses are found in Tables 2 and 3.

Although we found differences in spatial fixation
locations as a function of both trial type and block type
conditions, these are minor. As shown in Tables 2 and 3,
these typically are within a magnitude of a few (4–10)
pixels (0.09–0.24 visual degrees). As shown in Table 1,
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Trial type Search mean (SD) Memory mean (SD) Rating mean (SD) H p

Horizontal 512.38 (278.74) 519.63 (266.86) 523.59 (254.21) 757.229 <0.001*
Vertical 395.59 (183.04) 385.68 (163.56) 391.15 (162.87) 1357.117 <0.001*

Table 2. Overview of spatial means and standard deviations for trial type conditions. Deviations as a function of condition represent
differences in the horizontal/vertical plane. However, these differences were relatively small for trial type conditions. *Significant at
an alpha level of .01.

Block type Task-repeat mean (SD) Task-switch mean (SD) H p

Horizontal 518.36 (268.94) 517.87 (258.89) 12.28 <0.001*
Vertical 389.98 (171.89) 394.97 (161.60) 298.36 <0.001*

Table 3. Overview of spatial means and standard deviations for block type conditions. Deviations as a function of condition represent
differences in the horizontal/vertical plane. As in Table 2, these differences were relatively small for block type conditions. *Significant
at an alpha level of .01.

the number of fixations in the total dataset is very
large. This prompts the conclusion that the influence
of experimental conditions on spatial locations are
minimal. Therefore we can relatively safely conclude
that there are no major spatial biases present in the
data. Additionally, we examined the relationship
between pupil spatial locations and pupil size. If there
are strong correlations between pupil size and spatial
locations, this would indicate the existence of pupil
foreshortening errors as a result of spatial biases.
To assess these relationships, we used a spearman
correlation test as a nonparametric alternative to the
standard Pearson correlation. We found minor, but
significant correlations between pupil size and fixation
location in the horizontal plane (r = −0.026, p < 0.001)
and pupil size and fixation location in the vertical plane
(r = 0.078, p < 0.001). Again, the magnitude of the
found relation between pupil size and spatial location
was very minor. Given the fact that the size of the
included data set is very large, we conclude that altered
pupil sizes as a function of spatial biases are minimal.
Therefore we proceeded with the preprocessing our
dataset without altering it in respect to possible pupil
size confounds.

Pre-processing

Cleaning

Upon initial inspection, most measurements in the
data contained outliers. For instance, some saccade
amplitudes were extremely high compared to the mean
distribution. Machine learning models, like other
statistical models, are sensitive to noisy or skewed
data. Therefore we aggerated all fixation and saccade
measurements over all observers. We then denoted all
measurements outside of the 99.5th quantile as outliers,

which were subsequently removed. Additionally, all
missing values in the dataset were removed. The
resulting cleaned dataset, which contained 68330 trials
(97% of data), was used for the next step: feature
extraction. All data processing, manipulation and
analysis was done using the Python programming
language (Oliphant, 2007; version 3.7.3), using Pandas
(McKinney, 2010; version 0.24) and Numpy (Van Der
Walt, Colbert, & Varoquaux, 2011; version 1.16.4).

Feature extraction

In this step, the cleaned data were transformed into
features for the machine learning models. For each trial,
the number of saccades, their duration, their amplitude,
and their peak velocity were included. Additionally,
the number of fixations, their duration, and pupil size
were included in the recorded data. A first inspection of
these variables showed some differences in distributions,
depending on trial type. These differences indicate that
these variables may hold information for decoding both
trial type and block type. A visual representation of
these differences is shown in Figure 2.

The number of saccades and fixation were used as
standalone features. The other five base measurements
(saccade duration, saccade amplitude, saccade peak
velocity, fixation duration and fixation pupil size) per
trial were then used for computing new variables, or
features, used as input for the classification model.
As shown in Figure 2, the distributions of these base
variables mostly overlap considering the three trial
types. Therefore, a wide range of statistical features
were computed from these five base variables: range,
the tenth percentile, the ninetieth percentile, interquartile
range, absolute mean deviation, energy, root mean square,
entropy, uniformity, mean, variance, skew, and kurtosis.
A more complete description of these features is found
in Appendix B. These features were computed using the
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Figure 2. Distributions of the five (excluding saccade and fixation numbers) base features per cognitive trial type. Distribution shapes
show some deviations per type of trial.

Figure 3. Schematic representation of data pre-processing
steps.

stats section of scipy (version 1.2.1; Jones, Oliphant, &
Peterson, 2016). These features were computed for each
trial, resulting in 65 input features per trial. Adding
the number of saccades and fixations, this resulted in a
total of 67 input features for our classification models.
An overview of our preprocessing steps is shown
in Figure 3.

Data splitting

It is important to estimate the generalizability of a
trained classifier model beyond the input data set. In
particular, we had to estimate how well the model was
able to correctly predict cognitive tasks on data not
seen during training. To this end, the total dataset was
split into different parts on an observer level. The data
were split into a training set (60% of data) and a test
set (40% of data). During exploratory analysis of the
data set, it became apparent that class distributions
for both the full- and task-switching dataset were not
equally distributed. To avoid an overly pessimistic or
optimistic performance estimate, the train-test split for
both cognitive state and task-switching models was
performed in a stratified manner to ensure the training

and testing set had the same class proportions. The test
dataset is held separate until the final model has been
found. Note that this procedure was repeated for both
cognitive state and task-switching models.

Model implementation

Model selection

For both cognitive state and task-switching models,
a number of classifiers were probed to estimate
performance. For predicting trial type, a Random
Forest classifier was chosen. The reason for choosing
this type of model was twofold. First, the probe into
different classifier models suggested that the best
performance would be achieved using a Random
Forest. This may imply that our features contain
complex, non-linear relationships that are needed for
predicting trial type. Additionally, earlier work has
implicated the suitability of using Random Forest
classifiers with eye-tracking based data (Zemblys,
Niehorster & Komogortsev, 2018). On the other hand,
for the task-switching model, model probing returned
approximately equal performance across a range of
models. Therefore a logistic regression classifier was
chosen. Logistic regression models are straightforward,
linear models and are therefore easier to interpret than
nonlinear ones. Therefore analyzing which components
contributed most to decoding task-switch trials became
more straightforward.
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Both random Forest and logistic regression classifiers
were implemented using the Scikit-learn (version
0.21.2) toolbox, a machine learning library for Python
(Pedregosa et al., 2011). It could be expected that a
more elaborate model search could lead to better results.
However, for each model to be tested it is important to
optimize the architecture (hyperparameter tuning), as
well as providing a method for selection of the optimal
input for the model (feature selection). This process
can quickly become very computationally expensive
and can lead to optimistic model performances due to
implicit overfitting. Therefore we used techniques that
significantly reduced computational time, while still
pursuing optimal model implementation.

Hyperparameter tuning

All classifier models implement a number of
parameters which determine themodel architecture. The
model parameters—the so-called hyperparameters—
that lead to the best performance is strongly dependent
on the dataset, and thus requires proper tuning.
There are many automated implementations for
finding the best hyperparameters of a model. In the
current study, a more recently popularized method
named Bayesian Optimization was used, since it holds
significant advantages over more common approaches,
like requiring fewer model evaluations, which reduce
computation time costs (Shahriari, Swersky, Wang,
Adams & De Freitas, 2015). Bayesian optimization
was implemented within a 10-fold cross-validation
loop on the training set. Cross-validation enhances
hyperparameter tuning by reducing both bias and
variance of the hyperparameters (Kohavi, 1995). For
this implementation, our training data was split into
10 equal folds using the same stratified procedure as
above to account for class imbalance. From these 10
iterations, nine folds were combined into a training
set that was the training input for the model. The
remaining fold was used to validate the trained
model by predicting the trial type. This was done
iteratively, resulting in all folds being used to predict
on at least once. During the iterations, a different
combination of hyperparameters was tested. The result
of this training is a set of optimal hyperparameters,
cross validated across 10 folds. This procedure was
implemented separately for our cognitive state and
task-switching models, respectively. An overview of
tuned hyperparameters for each model is shown in
Appendix A.

Feature selection

In addition to the architecture of the model, the
model performance is also influenced by the input

feature. Since we extracted multiple related statistical
features for each base feature group, we expected
multiple features to be correlated. Indeed, base features
had some relationships, as shown below in Figure 4.

Typically, some features which are highly
interdependent contain no additional discriminative
information and can safely be omitted. Furthermore,
machine learning models are more susceptible to
overfitting when the number of features is large with
respect to the size of the dataset. Because we extracted
multiple statistical features from the data, collinearity
was presumed even more of a problem when expanding
from a single base feature to multiple statistical ones.
Therefore multiple methods were tried with the purpose
of omitting redundant features: Lasso regression,
t-SNE, PCA, tree-based feature selection, and recursive
feature elimination (RFE). To our surprise however, all
methods but RFE actually improved the performance
of the model. In terms of the features, this indicates
that although features were interdependent, most of
them still contained discriminative information. Thus,
to estimate the optimal subset of features, RFE was
implemented (Blum & Langley, 1997). Identical to
hyperparameter tuning, this was also implemented
within a 10-fold cross-validation loop on the training
set. This was implemented for both cognitive state and
task-switching classifier models. The method searches
for the optimal subset of features by recursively
selecting subsets of features for training and subsequent
predicting of the cognitive tasks. Although we used
a large number of features that came from the same
base distributions, we only found a small number of
redundant features. In the case of our cognitive state
classifier, an optimal model was found using 62 out of
67 features. For the task-switching model, this was the
case for a model with 43 out of 67 features. Given the
high number of features, the fact that our RFE model
found optimal performance for a relative high number
of features further indicates that expanding the feature
space was justified given our large dataset. An overview
of the full model implementation is shown in Figure 5.

Model evaluation

In the final step, both the random Forest classifier
for cognitive state and the logistic regression for task
switching were evaluated. Having optimized both the
architecture of the models and the selection of features,
the classifier was trained on the training dataset
and subsequently applied on the independent test
dataset. An additional important step when evaluating
classification models is to estimate how much the
performance of the model depends on the particular
training set. Therefore the classifier was applied onto
the same 10-folds as was used for the hyperparameter
tuning and feature selection. By using this process,
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Figure 4. Correlation matrix of base feature measurements.

Figure 5. Schematic representation of model implementation steps.

cross-validated average estimates of the classifier’s
performance could be calculated. A range of metrics
can be applied to evaluate the performance of the
model’s classification prediction on the test set. For the
current study, receiver operating characteristic (ROC)
metrics were used. ROCs are graphical plots where each
point on the curve relates to the number of correctly
classified instances and incorrect ones for a certain
threshold. These can be used to calculate the area under
curve (AUC) for performance estimation.

Feature ranking

To evaluate which components of viewing behavior
were important for decoding in both our random
Forest/trial type and logistic regression/block type
classifiers, we used additional modeling to determine a
ranking of feature magnitude in each model.

Random Forest classifier: ranking cognitive
state features

While our main model used a wide range of statistical
features, these were all calculated based on the five
aforementioned base variables (Saccades: duration,
peak velocity, amplitude. Fixations: duration and pupil
size). Additionally, the number of saccades, as well as
the number of fixations, were defined as two additional
base features, summing the total to 7. With this in
mind, we designed a two-step model to evaluate the
magnitude of each feature group within the random
Forest classifier model. During feature ranking, we
aimed to determine the relative important of the seven
base features included. These break down into two
groups:

1. the singular values number of saccades and number
of fixations,
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Figure 6. Schematic representation of the second step in our two-step model for determining the feature ranking for our cognitive
state classifier model.

2. the five variables (saccade duration, saccade
amplitude, saccade peak velocity, fixation duration
and fixation pupil size) as expressed in thirteen
statistics (Appendix B).

We devised this method to be able to determine,
on a group level, the relative importance of each base
feature. In our view, other methods for making this
inference were not applicable for the current model,
since our random Forest model is a tree-based solution.
Because there is little need to scale this approach beyond
interpretable features, scalability was not a concern. For
the first step, using the seven base features groups, we
deployed the final model with optimal hyperparameters.
Using seven base feature groups, there are 127 unique
possible combinations of nonempty feature group
sets that can be combined. For each of these unique
combinations, our final model was evaluated for
performance. This evaluation provided AUC scores
for each class over all 127 unique models. We found
that depending on the input features, our model’s
AUC performance was especially close for search
and rating trials. This performance difference might
provide for a better explanation about the relation
between the input features and model’s performance
between different classes. Therefore, in the second step,
we fitted a single decision tree onto our performance
metrics to determine a feature ranking. In this model,
we used seven binary features which denoted whether
a feature group was used in the model. The labels used
were also binary; denoting whether the rating AUC
for that model was higher than the AUC for search.
By fitting a standard decision tree over this data,
this model then holds information about the relative
magnitude of different feature groups for models
which strongly predict for Search trials. An overview
of the total feature ranking procedure is shown in
Figure 6.

Logistic Regression classifier: ranking
task-switching features

Because our logistic regression for task-switching
trials was a linear model, it was possible to analyze
the magnitude of different features in the classifier
more directly than compared with our random Forest
classifier. First, we standardized all features by rescaling
them into their z-score equivalents, also known as
normalization scaling. We then trained our optimal
logistic regression on the standardized training set.
Logistic regression models assign weights for each
feature in the data they are trained on. All the features
in the model were calculated from seven base feature
groups. By standardizing these features beforehand,
averaging the absolute regression weights over each
base feature group yields the relative ranking for that
feature group. By comparing these base feature groups,
we determined the magnitude of each base feature
when classifying block type.

Results

For clarity, both the cognitive state- and task-
switching classifier models will be discussed separately.
Although the technical details of the models differ,
evaluating decoding performance was identical for both
models (ROC/AUC metrics).

Decoding cognitive state: Random Forest
classifier

Our Random Forest classifier was able to decode
cognitive state well above chance. However, we found
some differences in decoding performance as a function
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Figure 7. ROC/AUC performance evaluation under
false-/true-positive rate for each cognitive state in our final
model. Confidence bands represent cross-validation
performance estimates. Although this was a single three-way
classification model, note that for each trial type, the AUC
represents the discriminative ability of the model when
distinguishing that trial type from the remaining ones. A
random classifier would score an AUCsc of 0.5.

of cognitive state. Because our data included trials
of search, memory and rating types, we were able to
compute AUC metrics for these three types separately.
As shown in Figure 7, all three AUCs were well above
chance. The bold lines represent the discriminative
ability for each cognitive state in the model, evaluated
on the test set. In these cases, the final model is trained
on the full training set and tested on the held-out
test set. Confidence bands represent the average
cross-validation performance of the cognitive states
on the training set. For these models, not that they are
trained on nine of 10 folds in contrast with the model
represented by the solid line, which was trained on all
data.

To determine the relative magnitude of each feature
when classifying cognitive state, we implemented a
two-step model. A decision tree classifier—which
was used to determine the feature ranking for our
cognitive state classifier—was fit over our data, which
held information about which feature groups were
important for causing differences in performance for
rating and memory trials. Using this decision tree
model, the features were ranked to determine the
relative magnitude of importance for each feature
group. The important features here are defined as
the normalized total reduction of the gini criterion
brought by that feature. In the context of this article,

this gini function represents the amount of information
gain when using a feature to split on. In other words:
what is the magnitude of importance in relation to
the total amount of data when using the current
feature to make decisions? The important features
are shown in Figure 8, where it is evident that for
decoding cognitive state, saccade amplitude was the
most important feature in our model. This feature
ranking shows that decoding cognitive state is largely
dependent on the amplitude of the saccade during the
different trial types. However, other features contribute
to the model as well. Both the number of saccades
and fixations were not among the top features of this
model. This suggests that differences in cognitive state
are not captured sufficiently by simply counting the
saccades and fixations. Additionally, we found pupil
size an adequate predictor for cognitive state.

Decoding task-switching: Logistic regression
classifier

Identical to our cognitive state model, our Logistic
regression was able to decode task-switching well above
chance (Figure 9). However, the AUC performance of
.584 was lower than any of the cognitive state types.
In respect to the size of the dataset used, this indicates
that task-switching are a more difficult to decode
using the current model. Identically to the first model,
the bold line represents the discriminative ability of
task-switching trials, evaluated on the held-out test
set. In these cases, the final model is trained on the
full training set and tested on the held-out test set.
The small plotted lines represent the performance of
the model for each split during cross-validation on the
training set.

By using the standardized average regression weights
over each feature group, we determined the feature
ranking for decoding task-switching. The feature
ranking is shown in Figure 10. In contrast with
our cognitive state feature ranking, simply counting
saccades and fixations seems a more fruitful approach
for the task-switching model. Here, especially the
number of saccades was predictive for task-switching.
Even more so than for the cognitive state model, we
found pupil size an adequate feature for predicting
task-switching.

Discussion

The aim of the current study was to decode the task
of an observer based on patterns of behavioral viewing
data. Additionally, we used the mixed blocks only for
decoding task-switching. For both models, we evaluated
classification performance and the relative magnitude
of different features in the models.
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Figure 8. Feature ranking for the decision tree model. These determine the relative importance of feature groups for models which
strongly predicted for Search trials.

Figure 9. /AUC under precision -recall performance evaluation
for task-switching in our final model. Smaller lines represent
performance during cross-validation. Here, the AUC represents
the discriminative ability of the model when distinguishing
task-repeat from task-switch trials. Chance level is represented
by the dotted black line.

Decoding cognitive state

By using machine learning-based classification and
Bayesian hyperparameter optimization techniques,
the observer’s task could be correctly classified. The
first notable observation is that the AUC-metrics for
rating (0.76) and search (0.76) trials are similar and

that our classifier was therefore able to predict these
tasks roughly equally well. Results further showed that
saccade and fixation measurements were sufficient
for distinguishing cognitive state. A second notable
observation is that our model’s AUC performance
related to memory (0.71) trials was the lowest for all trial
types. This finding could have multiple interpretations.
First, for memory trials, the patterns of viewing
behavior were simply more alike to those patterns
elicited by both Rating and Search trials. Largely
overlapping distribution could therefore have hindered
the discriminative ability of the model. This suggests
that participant’s viewing behavior during memory
trials was still distinctive, but to a lesser degree than the
other types of tasks. Regarding experimental design,
memory and rating trials both involve fixating on
central objects in their respective scenes (Mills et al.,
2015). This can provoke viewing behavior that is more
similar than comparisons between other cognitive trial
types. Another possibility is that the computed features,
based on features and saccades, did not fully capture the
different viewing patterns for memory trials. A critical
point here is that all used features in both models were
implemented independent of image statistics. In other
words, we did not include information about which
objects or scenes were viewed during experimental
trials. For memorization-like tasks, what participants
fixate might be more indicative of performance than
the manner by which they do. Earlier work has found
this as well; human classifiers were only able to decode
memory-type trials when both the original scenes and
eye movements were presented to the participants but
not when eye movement metrics were superimposed
over a black background (Bahle, Mills, & Dodd,
2017). Additionally, they found an inverse effect for
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Figure 10. Feature ranking for the Logistic regression model. The standardized average regression weights represent the relative
magnitude of each feature group in the classifier.

search-type trials; classification performance was
reduced when including scene information during
presentation. These findings emphasize that certain
types of viewing behavior are scene image independent,
whereas others require scene information when
interpreting them. Finally, memorization tasks might
involve more covert attentional processes compared
with rating- and search-type tasks, which require more
overt attention. Therefore purely gaze information
might be less informative for memory-type tasks.

By fitting a classification tree over all 127 models
resulting from our 2-step model for feature ranking, we
determined the relative magnitude of the base feature
groups in our classifier. As shown in Figure 8, saccade
amplitude conveys important information for decoding
cognitive state. Using classical methods, earlier work
has found fluctuations of both saccade amplitude and
fixation duration as a function of task induced cognitive
state. However, these fluctuations were stronger for
saccade amplitude than for fixation duration (Mills,
Hollingworth, Van der Stigchel, Hoffman, & Dodd,
2011). For the current study, our feature ranking model
determined saccade amplitude as the most important
feature for classifying cognitive state. Identically, we
found fixation duration to be important, but to a
lesser degree than saccade amplitude. This finding
indicates that the information in these features is
partially overlapping in terms of classifying cognitive
state. However, both features should be considered of
importance.

Decoding task-switching

By using machine learning-based classification and
Bayesian hyperparameter optimization techniques,
task switching could be correctly classified (Figure 9).

Although our model was able to produce a stable
classifier model, decoding task-switching seems a more
difficult data-driven problem (0.58 precision/recall AUC
vs 0.74 average ROC/AUC). Nonetheless, this result
shows the possibility of classifying task-switching with
a wide range of statistical behavioral eye-tracking
features. One explanation for the discrepancy in
performance comes from the change in dataset size.
For the task-switching model, we used mixed-block
data exclusively. This amounts to 33% of the total data,
which drives the point home that classifier algorithms
require vast amounts of data from them to optimally
utilize existing patterns in data.

By evaluating the standardized regression weights
of the task-switching classifier across base feature
groups, we were able to determine the feature ranking
for classifying task-switching (Figure 10). In earlier
work, saccade amplitude was indicated as relevant for
predicting task-switching (Mills et al., 2015). For the
current study, however, although important, the relative
magnitude of this feature in our task-switching model
was notably lower than others. In contrast, we found
the number of saccades and pupil size to be important
features for task-switching trials. Unexpectedly, we
also found pupil size to be an important feature. It
has been shown multiple times that pupil size may be
strongly linked to arousal (Bradley, Miccoli, Escrig, &
Lang, 2008). Therefore our feature ranking suggests
that task-switching provokes changes in cognitive strain
and subsequently modulates arousal. Additionally,
switching conditions in between tasks might introduce
considerable changes for the participants. Because all
tasks required attentional resources, task-switching
costs and related pupil size modulations might have
been caused by uncertainty in attentional selection
(Geng, Blumenfeld, Tyson, & Minzenberg, 2015).
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General discussion

In the field of advanced eye-tracking modeling,
there have been multiple studies into suitable modeling
approaches regarding experimental designs influenced
by Yarbus’ initial findings. For example, it was found
that a relatively simple classifier model was not able to
infer cognitive state based on oculomotor measures
and image statistics (Greene, Liu, & Wolfe, 2012).
Borji & Itti expanded on this by showing that, using
the same feature set, classifying cognitive state was
possible at a slightly above chance level by exploring
different classifier models and architectures (Borji
& Itti, 2014). Additionally, there have been fruitful
results in applying classification methods that which
explore more complex, time-based models in an
attempt to model the sequential nature of viewing
behavior (Haji-Abolhassani, & Clark, 2014). This
body of work has some important implications
compared with the current method. First, a common
similarity is that all these classification approaches
use some form of image statistics in their modeling.
However, it is not always practical to analyze such
data. Our approach shows that even independent
of statistical image information, classifying separate
cognitive states or task-switching costs is still perfectly
feasible by using a wide range of statistical features
in an attempt to fully capture maximal oculomotor
behavior. Therefore oculomotor behavior in itself holds
enough information for decoding cognitive constructs.
Additionally, our and Haji-Abolhassani and Clark’s
approaches show that more complex models are likely
needed for fully capturing differences in oculomotor
behavior as a function of cognitive construct. Although
the respectable size of our dataset, the first probed
classification models showed marginal performance
at first. However, the size of the dataset enabled a
more extensive model search (hyperparameter tuning
and feature selection) using proper cross-validation
methods. These methods resulted in an optimal model
that was able to classify cognitive state at a respectable
above-chance level. This indicates that in the case of
eye-tracking data with different cognitive conditions,
extensive model building is recommended. Although
our results indicate that more complex modeling
is needed for decoding cognitive constructs with
oculomotor data alone, this has drawbacks regarding
the interpretability of such models. Because we used a
high-throughput feature extraction method, we had to
design a separate model which was able to determine
the relative importance of each base feature, on a group
level.

The current study brought forward possible
confounds when analyzing pupil size measurements
in the data. Pupil sizes as measured by professional
eye-trackers are sensitive to possible confounds, such

as pupil foreshortening error (PFE) (Hayes & Petrov,
2016). Specifically, for the current study, biases in the
spatial locations of fixations were analyzed. We found
very minor deviations in spatial locations in both the
horizontal and vertical plane as a function of cognitive
task or task-switching conditions. Additionally, we
found very minor correlations between spatial location
and pupil size when analyzing the full data. These
results indicate that PFE confounds were not present
in experimental data. Furthermore, they validate our
discovery of pupil size as an important measurement
for distinguishing mental states provoked by cognitive
processes in a data-driven modeling approach.

The current study highlights the suitability for
analyzing experimental eye-tracking data using machine
learning algorithms. Compared to more classical
methods of analyzing such data, our approach has
certain advantages. First, earlier work has mostly
focused on isolated aspects of viewing data in relation
to cognitive state. Here, we were able to evaluate
classification performance using most event-related
eye-tracking measurements which produced a more
robust and inclusive classification models for both
cognitive-state and task-switching related behavior.
Consecutively, this method allowed for more detailed
comparisons between feature groups that are most
relevant for classifying eye-tracking data. Our approach
shows that when using such data, extracting a large
number of features, as well as extensive model search
may prove fruitful. We found that this approach is
perfectly feasible, even invariant of image statistics.

Keywords: eye movement, saccades, fixations, machine
learning, classification, random forest, logistic regression,
features
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Appendix A. Hyperparameter
overview

Hyperparameter Solver C Warm start Maximum iterations Regularization

Range newton-cg, lbfgs,
liblinear, sag, saga

0.0001–10000 True/false 1000–5000 L1, L2

Optimal lbfgs 4605 False 2604 L2
Hyperparameter Minimal sample leaf Maximal features Minimal sample split Criterion Number of

estimators
Range 1–100 1–67 2–100 Gini/entropy 10–800
Optimal 1 1 2 Entropy 800

Appendix B. Used statistical
features

Name Definition

Range Distance between minimal and maximal value
The 10th percentile Value at the tenth percentile of the distribution
The 90th percentile Value at the ninetieth percentile of the distribution
Interquartile range Distance between first and third quartile
Absolute mean deviation Standard deviation
Energy Functions of distances between observations based on Newtonian statistics
Root mean square Square root of the mean square
Entropy Measure of uncertainty within a sample
Uniformity The extent to which a sample conforms to a uniform distribution
Mean Arithmetic mean
Variance Squared standard deviation divided by the sum of squares
Skew Measure of asymmetry compared with gaussian distribution
Kurtosis Measure of asymmetry compared with gaussian distribution
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