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Random effects and extended generalized partial
credit models

David J. Hessen
Department of Methodology and Statistics, Utrecht University, Utrecht,
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In this paper it is shown that under the random effects generalized partial credit model for

themeasurement of a single latent variable by a set of polytomously scored items, the joint

marginal probability distribution of the item scores has a closed-form expression in terms

of item category location parameters, parameters that characterize the distribution of the

latent variable in the subpopulation of examinees with a zero score on all items, and item-

scaling parameters. Due to this closed-form expression, all parameters of the random

effects generalized partial credit model can be estimated using marginal maximum

likelihood estimation without assuming a particular distribution of the latent variable in

the population of examinees and without using numerical integration. Also due to this

closed-form expression, new special cases of the randomeffects generalized partial credit

model can be identified. In addition to these new special cases, a slightly more general

model than the random effects generalized partial credit model is presented. This slightly

more general model is called the extended generalized partial credit model. Attention is

paid to maximum likelihood estimation of the parameters of the extended generalized

partial credit model and to assessing the goodness of fit of the model using generalized

likelihood ratio tests. Attention is also paid to person parameter estimation under the

random effects generalized partial credit model. It is shown that expected a posteriori

estimates can be obtained for all possible score patterns. A simulation study is carried out

to show the usefulness of the proposed models compared to the standard models that

assume normality of the latent variable in the population of examinees. In an empirical

example, some of the procedures proposed are demonstrated.

1. Introduction

Awell-known item responsemodel for themeasurement of a single latent variable by a set

of polytomously scored items with ordered response categories is the generalized partial
credit model (Muraki, 1992; Muraki, 1993). In the generalized partial credit model, the

probability distribution of an item score depends on a number of item category location

parameters, an item-scaling parameter, and a single latent variable. The generalized partial

credit model is a special case of the nominal response model for polytomously scored

items with unordered response categories (Bock, 1972). Well-known special cases of the

generalized partial credit model are the partial credit model (Masters, 1982), the rating

scale model (Andrich, 1978), the two-parameter logistic model (Birnbaum, 1968) and the

one-parameter logistic model (Rasch, 1960; Rasch, 1966).
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A distinction can be made between the fixed effects generalized partial credit model

and the random effects generalized partial credit model. In the fixed effects model, both

item and person parameters are treated as fixed. Maximum likelihood estimation of the

item and person parameters of the fixed effects model is called joint maximum likelihood
estimation. A disadvantage of the fixed effects model and joint maximum likelihood

estimation of the parameters is that the item parameters are not consistently estimated if

the items are finite in number. In the random effects model, the item parameters are also

treated as fixed but the examinees in the sample are assumed to be randomly sampled

from a population of examinees. Maximum likelihood estimation of the item parameters

of the random effects model is called marginal maximum likelihood estimation. In

marginalmaximum likelihood estimation, the latent variable is integrated out and the item

parameters are estimated in the joint marginal probability distribution of the item scores.
An advantage of the random effects model and marginal maximum likelihood estimation

of the item parameters is that the item parameters are consistently estimated if the items

are finite in number (Bock&Aitkin, 1981; Bock& Lieberman, 1970). In practice, marginal

maximum likelihood estimation is usually applied under the assumption that the latent

variable is normally distributed in the population of examinees. Gauss–Hermite

quadrature can then be used to numerically integrate out the latent variable.

It is known that under a random effects generalized partial credit model in which the

item-scaling parameters are fixed to positive integers, the joint marginal probability
distribution of the item scores has a closed-form expression in terms of item category

location parameters and conditional non-central moments of the (positively scaled) latent

variable given a zero score on all items (Agresti, 1993; Cressie & Holland, 1983; Maris,

Bechger, & San Martin, 2015). In this paper, however, it is shown that under the random

effects generalized partial credit model in general, the joint marginal probability

distribution of the item scores has a closed-form expression in terms of item category

location parameters, parameters that characterize the distribution of the latent variable in

the subpopulation of examinees with a zero score on all items, and item-scaling
parameters. A favourable consequence of this closed-form expression for the joint

marginal probability distribution of the item scores is that all parameters of the random

effects generalized partial credit model can be estimated using marginal maximum

likelihood estimation without assuming a particular distribution of the latent variable in

the population of examinees and without using numerical integration.

Since the parameters that characterize the distribution of the latent variable in the

subpopulation of examinees with a zero score on all items are functions of non-central

moments of the latent variable, these parameters satisfy complex inequalities that follow
from the inequalities of a moment sequence. It is technically difficult to maximize the

marginal likelihood function with respect to the parameters subject to the inequalities

that follow from themoment inequalities. It is less complicated tomaximize the likelihood

function ignoring these inequalities, and this yields maximum likelihood estimates of the

parameters of a slightly more general model called the extended generalized partial credit

model.Well-known special cases of this extended generalized partial credit model are the

extended partial credit model (Agresti, 1993) and the extended one-parameter logistic

model (Follmann, 1988; Tjur, 1982).
In the following section the random effects and extended generalized partial credit

models are presented. Subsequently,maximum likelihood estimation of the parameters of

the extended generalized partial credit model is discussed. Next, generalizations of the

extended generalized partial credit model are presented, which can each be used as an

alternative hypothesis model in a generalized likelihood ratio test for the extended
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generalizedpartial creditmodel.Oneof these generalizations is an extended versionof the

nominal response model (Bock, 1972). Furthermore, attention is paid to person

parameter estimation under the random effects generalized partial credit model. It is

shown that expected a posteriori (EAP) estimates can be obtained for all possible score
patterns. To show the usefulness of the models proposed compared to the standard

models that assume normality of the latent variable in the population of examinees, a

simulation study is carried out. Finally, some of the procedures proposed are

demonstrated using an empirical example.

2. The models

Consider a situation inwhich a test of kpolytomously scored itemswith ordered response

categories is administered to a sample of examinees. It is assumed that the examinees are

randomly sampled from an infinite population. It is also assumed that the items are

measures of a single random latent variable Θ with realization θ. Furthermore, let

Y = [Y1. . .Yk]
0 be the random vector of item scores, and let y = [y1. . .yk]

0 be a realization,
where yi = 0,1,. . .,mi, for i = 1,2,. . ., k. Then the joint marginal probability distribution

of Y can be written as

PðY ¼ yÞ¼
Z

PðY ¼ yjθÞf ðθÞdθ, (1)

where P(Y = y|θ) is the joint conditional probability distribution ofY givenΘ¼ θ and f(θ)
is the probability density of Θ in the population of examinees. The elements of Y are

assumed to be conditionally independent given Θ¼ θ. Conditional independence of the
elements of Y given Θ¼ θ is defined as

PðY ¼ yjθÞ¼
Yk
i¼1

PðY i ¼ yijθÞ, (2)

where P(Yi = yi|θ) is the conditional probability distribution of Yi givenΘ¼ θ. Let xis = 1

if yi = s and xis = 0 otherwise, for s = 1,. . .,mi. Then the conditional probability

distribution of Yi given Θ¼ θ can be written as

PðY i ¼ yijθÞ¼PðY i ¼ 0jθÞ
Ymi

s¼1

Ys
a¼1

V iaðθÞ
( )

, (3)

where Via(θ) = P(Yi = a|θ)/P(Yi = a − 1|θ) is the odds of score a on item i relative to

score a − 1 on item i as a function of θ. Substitution from equations (2) and (3) into

equation (1) gives

PðY ¼ yÞ¼
Z

PðY ¼ 0jθÞ
Yk
i¼1

Ymi

s¼1

Ys
a¼1

V iaðθÞ
( )xis

" #
f ðθÞdθ, (4)

where PðY ¼ 0jθÞ¼Qk
i¼1PðY i ¼ 0jθÞ.

In the generalized partial credit model (Muraki, 1992, 1993), it is assumed that
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V iaðθÞ¼ exp αiðθ�δiaÞf g, (5)

where αi is a scaling parameter and δia is an item category location parameter. The special

case where αi = 1, for all i, is the partial credit model (Masters, 1982). In the case of
dichotomously scored items (mi = 1, for all i), the generalized partial credit model equals

the two-parameter logisticmodel (Birnbaum, 1968) and thepartial creditmodel equals the

one-parameter logistic model (Rasch, 1960, 1966). Substitution from equation (5) into

equation (4) and using the fact that yi ¼∑mi

s¼1xiss gives, after some algebra,

PðY ¼ yÞ¼ exp ∑
k

i¼1

∑
mi

s¼1

βisxis

� �Z
PðY ¼ 0jθÞexpðα0yθÞ f ðθÞdθ, (6)

where βis ¼�αi∑s

a¼1δia is a transformed item category location parameter and

α¼ α1α2 . . . αk½ �0. Following Cressie and Holland (1983), we can write

PðY ¼ yÞ¼PðY ¼ 0Þexp ∑
k

i¼1

∑
k

i¼1

βisxis

� �R
expðα0yθÞgðθj0Þdθ

¼PðY ¼ 0Þexp ∑
k

i¼1

∑
mi

s¼1

βisxis

� �
MΘj0ðα0yÞ,

(7)

where gðθj0Þ¼PðY¼ 0jθÞf ðθÞ=PðY ¼ 0Þ is the conditional density of Θ given Y = 0 and

MΘj0ðα0yÞ¼E expðα0yΘÞj0f g is the conditional moment generating function of Θ given

Y = 0. Note thatMΘj0ðα0yÞdependsony as a functionofα0yonly. In the following theorem,

a closed-form expression for MΘj0ðα0yÞ is presented. The closed-form expression for

MΘj0ðα0yÞ is inferred from a closed-form expression for the conditionalmoment generating

function ofΘ givenY = 0 obtained under the randomeffects one-parameter logisticmodel.

Theorem1. Under the random effects generalized partial creditmodel, the conditional

moment generating function of Θ given Y = 0 is given by

MΘj0ðα0yÞ¼ exp ∑
k

r¼1

γrðr!Þ�1
Yr�1

u¼0

ðα0y�uÞ
( )

, (8)

where γr is a common rth-order interaction parameter that characterizes the

distribution of Θ given Y = 0.

Proof 1. In the case of dichotomously scored items, yi = xi1, for all i. The saturatedmodel

for dichotomously scored items is given by

PðY ¼ yÞ¼PðY ¼ 0Þexp ∑
k

i¼1

λiyiþ∑
i<j

λijyiyjþ ∑
i<j<l

λijlyiyjyl þ . . .þ λ1...k
Yk
i¼1

yi

 !
, (9)

where λi is a main effect parameter, for all i, λij is a two-way interaction parameter, for all

i < j, λijl is a three-way interaction parameter, for all i < j < l, and so on. Under the one-
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parameter logistic model, interaction parameters of the same order are equal (Hessen,

2011), that is,

λij ¼ γ2, for all i< j,

λijl ¼ γ3, for all i< j< l,

..

.

λ1⋯k ¼ γk:

Substitution into equation (9) gives

PðY ¼ yÞ¼PðY ¼ 0Þexp ∑
k

i¼1

λiyiþ γ2∑
i<j

yiyjþ γ3 ∑
i<j<l

yiyjylþ . . .þ γk
Yk
i¼1

yi

 !
: (10)

Next, it can be readily verified that

∑
i<j

yiyj ¼ 10yð10y�1Þ=2!,

∑
i<j<l

yiyjyl ¼ 10yð10y�1Þð10y�2Þ=3!,

..

. ..
.

Qk
i¼1

yi ¼ 10yð10y�1Þð10y�2Þ . . .ð10y�kþ1Þ=k!

by multiplying out
Qr�1

u¼0ð10y�uÞ, for r = 2,. . .,k. Substitution from these equations

and λi ¼ βiþ γ1 into equation (10) gives.

PðY ¼ yÞ¼PðY ¼ 0Þexp ∑
k

i¼1

βiyiþ ∑
k

r¼1

γrðr!Þ�1
Yr�1

u¼0

ð10y�uÞ
( )

: (11)

From equations (7) and (11), it then follows that

MΘj0ð10yÞ¼ exp ∑
k

r¼1

γrðr!Þ�1
Yr�1

u¼0

ð10y�uÞ
( )

: (12)

Now, since the right-hand side of equation (8) depends on y as a function of α0y only

and specializes to the moment generating function in equation (12) ifmi = 1 and αi = 1,

for all i, the right-hand side of equation (8) must be the conditional moment generating

function ofΘ given Y = 0 under the random effects generalized partial credit model. This

completes the proof.
MΘj0ðα0yÞ can be used to determine the first k + 1 non-central moments of Θ given

Y = 0, that is, M
ðtÞ
Θj0ð0Þ¼ μtj0 ¼EðΘt j0Þ, for t = 0,1,. . .,k, where M

ðtÞ
Θj0ð0Þ is the tth

derivative ofMΘj0ðα0yÞwith respect to α0y evaluated at α0y = 0. First, however,MΘj0ðα0yÞ
is rewritten as
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MΘj0ðα0yÞ¼ exp ∑
k

r¼1

γrprðα0yÞ
� �

, (13)

where

prðα0yÞ¼ ∑
r�1

u¼0

ð�1ÞuCrðr�uÞðα0yÞr�u
(14)

is an rth-order polynomial function of α0y. The first five polynomials are given in the

Appendix. The constants in the coefficients of the rth-order polynomial are given by

Crr ¼ðr!Þ�1
, for all r,

Crðr�1Þ¼ ðr!Þ�1 ∑
r�1

u¼1

u¼ 1

2ðr�2Þ!, forr>1,

Crðr�2Þ¼ ðr!Þ�1 ∑
r�2

u¼1

∑
r�1

υ¼uþ1

uυ¼ 3r�1

24ðr�3Þ!, forr>2,

Crðr�3Þ¼ ðr!Þ�1 ∑
r�3

u¼1

∑
r�2

υ¼uþ1

∑
r�1

w¼υþ1

uwυ¼ ðr�1Þr
48ðr�4Þ! forr>3,

..

. ..
. ..

.

Note that Cr1 = r
−1, for all r. The mean of Θ given Y = 0 can now be obtained by

evaluating the first derivative of MΘj0ðα0yÞ at α0y = 0. The first derivative equals

M
ð1Þ
Θj0ðα0yÞ ¼MΘj0ðα0yÞ ∑

k

r¼1

γrp
ð1Þ
r ðα0yÞ,

where

pð1Þr ðα0yÞ¼
1, forr ¼ 1,

∑
r�2

u¼0

ð�1Þuðr�uÞCrðr�uÞðα0yÞr�u�1þð�1Þr�1
Cr1, forr> 1,

8<
:

is the first derivative of pr(α0y) with respect to α0y. The first derivatives of the first five

polynomials are given in the Appendix. Consequently, themean ofΘ given Y = 0 is given

by

M
ð1Þ
Θj0ð0Þ¼ μ1j0 ¼ ∑

k

r¼1

γrr
�1ð�1Þr�1:

The second derivative equals

M
ð2Þ
Θj0ðα0yÞ ¼MΘj0ðα0yÞ ∑

k

r¼1

γrp
ð1Þ
r ðα0yÞ

� �2

þ ∑
k

r¼1

γrp
ð2Þ
r ðα0yÞ

" #
,

where
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pð2Þr ðα0yÞ¼

0, forr ¼ 1,

1,

∑
r�3

u¼0

ð�1Þuðr�uÞðr�u�1ÞCrðr�uÞðα0yÞr�u�2þð�1Þr�22Cr2,

forr ¼ 2,

forr > 2,

8>>><
>>>:

(15)

is the second derivative of pr(α0y) with respect to α0y. The second derivatives of the

first five polynomials are given in the Appendix. The second non-central moment of Θ
given Y = 0 is then given by

M
ð2Þ
Θj0ð0Þ¼ μ2j0 ¼ ∑

k

r¼1

γrr
�1ð�1Þr�1

� �2

þ ∑
k

r¼1

γrð�1Þr�2
2Cr2: (16)

As a consequence the variance of Θ given Y = 0 is given by

varðΘj0Þ¼ μ2j0�μ21j0 ¼ ∑
k

r¼1

γrð�1Þr�22Cr2: (17)

Since µ0|0, µ1|0, µ2|0, . . ., µk|0 satisfy inequalities that follow from the general solution to

the Hamburger moment problem (Karlin & Studden, 1966) and are functions of the

parameters γ1, γ2, :::, γk the parameters γ1, γ2, :::, γk also satisfy certain inequalities.

Special cases of the random effects generalized partial credit model can be obtained by
setting some of γ1, γ2, :::, γk equal to zero. A reasonable special case is onewhere γrþ1, :::, γk
are all equal to zero and therefore only contain interactions up to rth order. The following

theoremprovides an interesting result for the special case that only contains second-order

interactions.

Theorem 2. If, under the random effects generalized partial credit model, γ3, :::, γk are
all equal to zero, then the distribution of Θ given Y = y is normal with mean

γ2α
0yþ γ1� 1

2
γ2 and variance γ2.

Proof 2. If γ3, :::, γk are all equal to zero, then

MΘj0ðα0yÞ¼ exp γ1α
0yþγ2

1

2
α0yðα0y�1Þ

� �
¼ exp γ1�

1

2
γ2

� �
α0yþ1

2
γ2ðα0yÞ2

� �
,

which is themoment generating function of a normal random variable withmean γ1� 1
2
γ2

and variance γ2. Furthermore,

gðθjyÞ¼PðY ¼ yjθÞf ðθÞ
PðY ¼ yÞ ¼ expðα0yθÞPðY ¼ 0jθÞf ðθÞ

MΘj0ðα0yÞPðY ¼ 0Þ ¼ expðα0yθÞ
MΘj0ðα0yÞ gðθj0Þ,

where gðθj0Þ¼ ð2vÞ�1=2γ�1=2
2 exp �1

2
θ� γ1� 1

2
γ2

� �� 	2
=γ2

h i
, so that after some algebra it

follows that
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gðθjyÞ¼ ð2vÞ�1=2γ�1=2
2 exp �1

2
θ� γ2α

0yþγ1�
1

2
γ2

� �� �2

=γ2

" #
,

which can be recognized as a normal density with mean γ2α
0yþ γ1� 1

2
γ2 and variance γ2 .

The special case in Theorem 2 is called the conditional normal generalized partial credit

model. For this conditional normal generalized partial creditmodel, themoment inequalities

simply imply that the variance γ2 is positive. A consequence of conditional normality of Θ
given Y = y is that Θ has a mixture distribution of normals in the total population.

In the case of dichotomously scored items, the conditional normal generalized partial
credit model is called the conditional normal two-parameter logistic model. The

conditional normal two-parameter logistic model is a special case of the Ising model

(Ising, 1925) given by

PðY ¼ yÞ¼PðY ¼ 0Þexp ∑
k

i¼1

λiyiþ∑
i<j

λijyiyj

 !
, (18)

where yi = xi1, for all i. The Ising model is the special case of the model in equation (9)

where all interaction parameters of third order and higher are set to zero. The Ising model

specializes to the conditional normal two-parameter logistic model if

λi ¼ βiþ γ1αiþ γ2αiðαi�1Þ=2, for all i, and λij ¼ γ2αiα j, for all i < j.

A slightlymore general model than the random effects generalized partial credit model

in which moment inequalities are ignored is given by

PðY ¼ yÞ¼PðY ¼ 0Þexp ∑
k

i¼1

∑
mi

s¼1

βisxisþ ∑
k

r¼1

νrprðα0yÞ
� �

, (19)

where νris an unconstrained rth-order common interaction parameter, βis is an item

category main effect parameter, and αi is a parameter that expresses the extent to which

item i contributes to all common interactions. The model in equation (19) is called the

extended generalized partial credit model. In the case of dichotomously scored items, the

model is called the extended two-parameter logisticmodel. Fixing the parametersα1,. . .,αk
to specific real numbers, the extended generalized partial credit model specializes to an

exponential family model in which pr(α0y) is a sufficient statistic for νr, for all r. Special
cases of this exponential family model are the extended partial credit model (Agresti,

1993), the extended Rasch model (Follmann, 1988; Tjur, 1982), and the models in which

α1,. . .,αk are prespecified positive integers (Maris et al., 2015; Verhelst & Glas, 1995).

Both the random effects and the extended generalized partial credit model have

∑k

i¼1miþ2k parameters. However, both models have two indeterminacies. To show the

first indeterminacy, the exponent on the right-hand side of equation (19) is rewritten

using p1ðα0yÞ¼∑k

i¼1αiyi ¼∑k

i¼1∑
mi

s¼1αisxis. The exponent on the right-hand side of

equation (19) then becomes ∑k

i¼1∑
mi

s¼1ðβisþν1αisÞxisþ∑k

r¼2νrprðα0yÞ, from which it

follows that βis and ν1 cannot be identified, because if βis ¼ β�isþαisb and ν1 ¼ ν�1�b, for

some constant b, then βisþν1αis¼ β�isþν�1αis. A convenient way to solve this first

indeterminacy is to fix ν1 to 0. To show the second indeterminacy it is assumed without

loss of generality that ν3 ¼ 0 , for r = 3,. . ., k. Now, using νr ¼ 0 and

p2ðα0yÞ¼α0yðα0y�1Þ=2¼∑i∑
mi

s¼1
1
2
αisðαis�1Þxisþ∑i<jαiα jyiyj, the exponent on the
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right-hand side of equation (19) can be written as ∑k

i¼1∑
mi

s¼1 βisþν2αisðαis�1Þ=2f gxisþ
ν2∑i<jαiα jyiyj, from which it follows that ν2 and αi cannot be identified, because if

ν2 ¼ ν�2a
2, αi ¼ α�i a

�1 and βis ¼ β�isþ 1
2
ν�2α

�
i as� 1

2
ν�2α

�
i s, for some constant a and all i and s,

then this exponent equals ∑k

i¼1∑
mi

s¼1 β�isþν�2α
�
i sðα�i s�1Þ=2� 	

xisþν�2∑i<jα
�
i α

�
j yiyj. A

convenient way to solve this second indeterminacy is to fix either one of α1,. . .,αk or ν2
to 1. Consequently, the number of independent parameters under both models is

∑k

i¼1miþ2k�2.

Note that in the conditional normal generalized partial credit model, moment
inequalities are immediately satisfied if γ1 is set to 0 and γ2 is set to 1 for identification. The
number of free parameters in this special case is ∑k

i¼1miþk.

3. Maximum likelihood estimation

It follows from equation (19) that the joint probability distribution of Y under the
extended generalized partial credit model is given by

PðY ¼ yÞ¼
exp ∑k

i¼1β
0
ixiþ∑k

r¼1νrprðα0yÞ
n o

∑yexp ∑k

i¼1β
0
ixiþ∑k

r¼1νrprðα0yÞ
n o , (20)

where βi ¼ ½βi1 . . . βimi
�0 and xi ¼ ½xi1 . . . ximi

�0. Taking all possible score patterns into

account and assuming independence of observations, it follows that the likelihood

function is given by

Lðβ1, . . . ,βk,α,νÞ¼
exp ∑k

i¼1β
0
iniþ∑k

r¼1νr∑ynyprðα0yÞ
n o

∑yexp ∑k

i¼1β
0
ixiþ∑k

r¼1νrprðα0yÞ
n oh in , (21)

where ν¼ ½ν1:::νk�0 ni ¼ ni1 . . . nimi
½ �0 is the vector that contains the numbers of

individuals in the sample with scores 1,. . .,mi on item i, ny is the number of individuals

in the sample with response pattern y, and n is the total sample size.

To find the estimates of the parameters that maximize the likelihood function in

equation (21), the log-likelihood function given by lðβ1, :::,βk,α,νÞ¼ lnLðβ1, :::,βk,α,νÞ
can be maximized with respect to the parameters subject to the constraints thatν1 ¼ 0

and ν2 ¼ 1. To solve this unconstrained nonlinear optimization problem, the Broyden—
Fletcher–Goldfarb–Shanno (BFGS) algorithm can be used (Fletcher, 1987). The BFGS
algorithm is a quasi-Newtonmethod, in which the Hessian matrix of second derivatives is

not computed. Instead, the Hessian matrix is approximated using updates specified by

(approximate) evaluations of the first derivatives. The first derivatives of the log-likelihood

are given in theAppendix.Unfortunately, the likelihood function in equation (21) is not in

general concave and may have multiple extreme points. This means that the BFGS

algorithmcan only find a local extremepoint in the vicinity of the starting point. However,

to find the globalmaximumtheBFGS algorithmcanbe combinedwith amultistartmethod

(Nash, 2014) or evolutionary algorithm methods (Mebane & Sekhon, 2011).
Note that the extended generalized partial credit model can be rewritten as the non-

standard log-linear model
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lney ¼ ρþ ∑
k

i¼1

β0ixiþ ∑
k

r¼1

νrprðα0yÞ (22)

where ey = nP(Y = y) and ρ = ln{nP(Y = 0)}. If α1,. . .,αk are prespecified real numbers,

then the non-standard log-linear model in equation (22) turns into a standard log-linear
model that can be fitted to data using an iterative proportional fitting algorithm

(Kelderman, 1992) or iterative weighted least squares (Charnes, Frome, & Yu, 1976).

Let ν̂1, . . . , ν̂k be the maximum likelihood estimates of ν1, :::,νk and let

hðα0yÞ¼ exp ∑
k

r¼1

ν̂rprðα0yÞ
� �

Also let h(1)(0), h(2)(0),. . ., h(k) be the first, second,. . ., kth derivative of h(α0y) with

respect to α0y evaluated at α0y = 0. Now if h(0), h(1)(0), h(2)(0),. . ., h(k)(0) satisfy the

constraints of a moment sequence, then the maximum likelihood estimates of the

parameters of the extended generalized partial credit model are also the maximum

likelihood estimates of the parameters of the random effects generalized partial credit

model. It follows from the solution to the Hamburger moment problem that if the matrix.

hð0Þ hð1Þð0Þ hð2Þð0Þ ⋯ hðcÞð0Þ
hð1Þð0Þ hð2Þð0Þ hð3Þð0Þ ⋯ hðcþ1Þð0Þ
hð2Þð0Þ hð3Þð0Þ hð4Þð0Þ ⋯ hðcþ2Þð0Þ

..

. ..
. ..

. ..
. ..

.

hðcÞð0Þ hðcþ1Þð0Þ hðcþ2Þð0Þ ⋯ hð2cÞð0Þ

2
66666664

3
77777775

where c = k/2 when k is even and c = k/2 − 1/2 when k is odd, is not positive definite,

then h(0), h(1)(0), h(2)(0),. . ., h(k)(0) do not satisfy the constraints of a moment sequence

(Karlin & Studden, 1966).

4. Goodness-of-fit test

When, in practice, all possible response patterns are observed frequently enough, then

the goodness of fit of the model in equation (19) can be assessed by testing the model

against the saturated multinomial model using Pearson’s asymptotic chi-square test or a

generalized likelihood ratio test. Most of the time in practice, however, many possible

response patterns are not observed and then these asymptotic tests are not appropriate. In
such cases, the goodness of fit of the model in equation (19) can instead be assessed by

testing the model against a less general alternative than the saturated multinomial model,

using a generalized likelihood ratio test. One such less general alternative hypothesis

model is given by

PðY ¼ yÞ¼PðY ¼ 0Þexp ∑
k

i¼1

∑
m

s¼1

ηisxisþ∑
i<j

λijyiyjþ ∑
k

r¼3

νrprðα0yÞ
( )

(23)

which specializes to the extended generalized partial credit model in equation (19) if

ηis ¼ βisþν1αisþν2αisðαis�1Þ=2 and λij ¼ ν2αiα j. The number of independent
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parameters under this model is∑k

i¼1miþkðk�1Þ=2þ2k�2. So the number of degrees

of freedom for the generalized likelihood ratio test of the extended generalized partial

credit model against this alternative hypothesis model equals k(k − 1)/2. Note that the

model in equation (23) specializes to the Ising model if mi = 1, for all i, and νr ¼ 0 , for
r = 3,. . .,k.

Another generalization of the extended generalized partial credit model that can be

used as the alternative hypothesis model in a generalized likelihood ratio test is given by

PðY¼ yÞ¼PðY¼ 0Þexp ∑
k

i¼1

β0ixiþ ∑
k

r¼1

νrpr ∑
k

i¼1

α0
ixi

� �� �
, (24)

where αi ¼ αi1 . . .αimi
½ �0. The model in equation (24) is called the extended nominal

response model (Bock, 1972). This extended nominal responsemodel equals the random

effects nominal responsemodel if the parameters ν1, :::,νk satisfy the complex inequalities
that follow from the inequalities of a moment sequence. The random effects nominal

response model is a more general item response model than the random effects

generalized partial credit model. In practice, however, the random effects nominal

response model is often of less interest than the random effects generalized partial credit

model because the response categories of the items are usually ordered. Note that the

extended nominal response model specializes to the extended generalized partial credit

model if αis = sαi, for all i and s. The number of independent parameters under this model

is equal to 2∑k

i¼1miþk�2. Also note that if α1,. . ., α k are vectors of prespecified real
numbers, then the extended nominal responsemodel specializes to an exponential family

model in which pr ∑k

i¼1α
0
ixi


 �
is a sufficient statistic for νr , for all r. Special cases of this

exponential family model are the partial credit model (Masters, 1982) and the model in

which α1,. . ., αk are vectors of prespecified positive integers (Maris et al., 2015).

Along the same lines as for the extended generalized partial credit model, log-

likelihood functions for the twomodels in equations (23) and (24) canbe constructed and

maximized. Both models can be rewritten as non-standard log-linear models and if α and

α1,. . ., αk are vectors of prespecified real numbers, then the non-standard log-linear
models turn into standard log-linear models that can be fitted to data using an iterative

proportional fitting algorithm (Kelderman, 1992) or iterative weighted least squares

(Charnes et al., 1976).

The extended generalized partial credit model can in turn be used as the alternative

hypothesis model in a generalized likelihood ratio test for one of its special cases, such as

the conditional normal generalized partial credit model or the standard random effects

generalized partial credit model in which the latent variable is assumed to be normally

distributed in the population of examinees. As such, these tests provide possible checks
for posterior normality and prior normality of the latent variable assuming the generalized

partial credit model to be true. In both cases, the number of degrees of freedom equals

k − 2.

Another alternative hypothesis model in a generalized likelihood ratio test for the

conditional normal generalized partial credit model is the conditional normal nominal

responsemodel,which can be obtained from themodel in equation (24) by setting ν1 ¼ 0,

ν2 ¼ 1 and ν3 ¼ 0 , for r = 3, . . ., k. A generalization of Theorem 2 is that under this

conditional normal nominal response model, the latent variable Θ has a conditional
normal distribution given Y = y with mean ∑k

i¼1α
0
ixi� 1

2
and variance 1. The proof is

similar to the proof of Theorem 2.
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5. Person parameters

A natural way to obtain person parameter estimates under the random effects generalized
partial credit model is to estimate the conditional expected value of the latent variable

given response pattern Y = y, for all y. These person parameter estimates are called

expected a posteriori estimates. The calculation of these estimates requires a theoretical

expression for the conditional expected value of the latent variable given Y = y. This
theoretical expression can be obtained via the moment generating function of Θ given

Y = y, which is presented in the following theorem.

Theorem3. Under the random effects generalized partial creditmodel, the conditional

moment generating function of Θ given Y = y is given by

MΘjyðzÞ¼ exp ∑
k

r¼1

γr prðzþα0yÞ�prðα0yÞf g
� 


(25)

Proof 3. The moment generating function of Θ given Y = y is given by

MΘjyðzÞ¼
Z

expðzθÞgðθjyÞdθ

Substitution of

gðθjyÞ¼ expðα0yθÞ
MΘj0ðα0yÞgðθj0Þ:

yields

MΘjyðzÞ ¼ R
expðzθÞexpðα0yθÞgðθj0Þdθ MΘj0ðα0yÞ� 	�1

¼ R
exp ðzþα0yÞθf ggðθj0Þdθ MΘj0ðα0yÞ� 	�1

¼ MΘj0ðzþα0yÞ MΘj0ðα0yÞ� 	�1

¼ exp ∑
k

r¼1

γrprðzþα0yÞ� ∑
k

r¼1

γrprðα0yÞ
� �

and factoring ∑k

r¼1γr yields the result in equation (25).

The theoretical expression for the expected value of Θ given Y = y can now be

obtained by taking the first derivative of MΘjyðzÞ with respect to z and evaluating it at

z = 0. The first derivative of MΘjyðzÞ with respect to z is given by

M
ð1Þ
ΘjyðzÞ¼MΘjyðzÞ ∑

k

r¼1

γrp
ð1Þ
r zþα0yð Þ

Consequently, the expected value of Θ given Y = y is given by
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M
ð1Þ
Θjyð0Þ¼ μ1jy ¼ ∑

k

r¼1

γrp
ð1Þ
r ðα0yÞ¼ ∑

k

r¼1

γr ∑
r�1

u¼0

ð�1Þuðr�uÞCrðr�uÞðα0yÞr�u�1

An estimate of the expected value of Θ given Y = y is then given by

μ̂1jy ¼ ∑
k

r¼1

γ̂rp
ð1Þ
r ðα̂0yÞ,

where γ̂r is an estimate of γr, for all r, and α̂ is an estimate of α.

6. A simulation study

The purpose of this simulation study is to investigate the usefulness of the extended and

the standard two-parameter logistic models under normality and non-normality of the

latent variable in the population of examinees. The standard two-parameter logisticmodel

is the model in which the latent variable is assumed to be normal in the population of

examinees. The usefulness of each model is assessed using rejection rates of generalized

likelihood ratio tests and approximate parameter estimation bias and efficiency. Three
generalized likelihood ratio tests are used. The first generalized likelihood ratio test

concerns the comparison of the extended two-parameter logistic model to the saturated

multinomial model (test 1). The second generalized likelihood ratio test concerns the

comparison of the standard two-parameter logistic model to the saturated multinomial

model (test 2). The third generalized likelihood ratio test concerns the comparison of the

standard two-parameter logisticmodel to the extended two-parameter logisticmodel (test

3).

The R program (R Core Team, 2020) was used to generate binary data under the
random effects two-parameter logistic model, for all combinations of three sample sizes

and two latent variable distributions. Test length was not varied and was fixed to five

items. The chosen sample sizes are 300, 500 and 700. The chosen latent variable

distributions are a normal distribution and a mixture of two normal distributions. In the

case of the normal distribution, themean is zero and the standard deviation is 2. In the case

of themixture distribution, themixing proportions are .55 and .45, themean and standard

deviation of the first normal distribution constituting the mixture are − 2 and 1, and the

mean and standard deviation of the second normal distribution constituting the mixture
are 2 and 3.5. The mean and standard deviation of the mixture distribution are − 0.2 and

3.17. The densities of both distributions are shown in Figure 1.

In each of the six conditions (3 sample sizes × 2 distributions), 1,000 data sets were

randomly generated. For the generation of each data set, n latent values θ1, . . ., θn were

randomly drawn from the latent variable distribution. The histogram of the randomly

drawn latent values for one of the mixture conditions is given in Figure 2.

Each binary data set was generated by randomly drawing a single sample from the

Bernoulli distribution given by

P Yvi ¼ yvijθvð Þ¼ πiðθvÞf gyvi 1�πiðθvÞf g1�yvi , foryvi ¼ 0,1,

for all v = 1, . . .,n and i = 1, . . .,5, where
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πiðθvÞ¼ exp αiðθv�δiÞf g
1þexp αiðθv�δiÞf g

is the so-called item response function of item i, that is, the probability of score 1 as a

function of θv. The itemparameter values selected are given in Table 1. The item response
functions, for i = 1, . . .,5, are shown in Figure 3.

The extended and standard two-parameter logistic models were fitted to each data set

generated. To fit the extended model self-written R code and the R package rgenoud

Figure 1. Densities of the normal distribution and the mixture of two normals used in the

simulation study.

Figure 2. Histogram of sample latent values generated under the mixture of two normals.
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(Mebane & Sekhon, 2011) were used, and to fit the standard model the R package ltm

(Rizopoulos, 2006) was used. The optimization algorithms did not show convergence for

all data sets. For each condition, data sets continued to be generated until 1,000 proper

data sets (for which the optimization algorithms showed convergence) were obtained.

Information concerning the number of times the optimization algorithms did not

converge is given in Table 2.

For each proper data set, the three generalized likelihood ratio tests (tests 1, 2 and 3)

were carried out using the nominal level of significance of .05. In each condition, for each

test a rejection rate was calculated. The rejection rate of a test is the number of times the

Figure 3. The five item response functions used to generate the data.

Table 1. Item parameter values used to generate the data

Item

1 2 3 4 5

δi −1.50 −0.75 0.00 0.80 2.25

αi 0.50 0.75 0.50 0.60 0.80

Table 2. Counts and proportions of non-convergence of the optimization algorithms

Distribution n Count Proportion

Mixture 300 276 .216

500 161 .139

700 108 .097

Normal 300 307 .235

500 144 .126

700 87 .080
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null hypothesis model was rejected in favour of the alternative hypothesis model divided

by 1,000. All calculated rejection rates are given in Table 3.

The results in Table 3 show that the proportion of times the extended two-parameter

logistic model is rejected (test 1) is close to the nominal level of significance for all
conditions, so irrespective of the sample size and the latent variable distribution. The

results in Table 3 also show that the proportion of times the standard two-parameter

logistic model is rejected (tests 2 and 3) is close to the nominal level of significance for the

normal distribution but not for the mixture distribution. For the mixture distribution, the

rejection rates of tests 2 and 3 aremuch higher than the nominal level of significance. This

means that if the goodness of fit of the random effects two-parameter logistic model is

assessed by fitting and testing the standard two-parameter logistic model, the random

effects two-parameter logistic model will be rejected too often. For the mixture
distribution, the rejection rates of tests 2 and 3 are approximate power values and the

results in Table 3 show that likelihood ratio testing the standard two-parameter logistic

model against the extended two-parameter logistic model (test 3) is more powerful in

detecting non-normality than likelihood ratio testing the standard two-parameter logistic

model against the saturated multinomial model (test 2). As expected, the approximate

power of tests 2 and 3 increases with sample size. In conclusion, to assess the goodness of

fit of the random effects two-parameter logistic model, test 1 should be used rather than

test 2 or test 3, which means that the extended two-parameter logistic model should be
tested instead of the standard two-parameter logistic model.

The scales of the itemparameters used to generate the data differ from the scales of the

estimates under the extended two-parameter logistic model. The estimates of the

parameters of the extendedmodel are obtained using the identification constraints ν1 ¼ 0

and ν2 ¼ 1 . To study the bias and efficiency of the estimates, these scales must be equal.

This can be achieved by generating data under the sameparameterization as the one that is

used in fitting themodel to the data. For this reason a second simulationwas carried out in

which, for each of the six conditions, 1,000 proper data sets are randomly sampled from
the multinomial distribution where the multinomial probabilities are given by equa-

tion (20) and the parameter values are chosen to be the mean estimates from the first

simulation. These mean estimates are the true values of the parameters given in Table 4.

After fitting the extended two-parameter logistic model to all newly generated data sets,

for eachparameter themean over the newestimates, the approximate bias (the difference

between themean estimate and the trueparameter value), and the standard deviation over

the new estimates are calculated for each of the six conditions. The results are given in

Table 4.

Table 3. Rejection rates of the three likelihood ratio tests (test 1, extended versus saturated; test 2,

standard versus saturated; test 3, standard versus extended)

Distribution n Test 1 Test 2 Test 3

Mixture 300 .061 .480 .824

500 .064 .729 .964

700 .067 .884 .988

Normal 300 .073 .076 .075

500 .051 .065 .054

700 .069 .068 .070
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The results in Table 4 show that the estimates of the parameters of the extended two-

parameter logistic model are asymptotically unbiased irrespective of the latent variable

distribution. Under both distributions, the calculated bias decreases and tends to zero as

the sample size increases. The results also show that the efficiency of the estimates
increases with sample size irrespective of the latent variable distribution. Under both

distributions, the standard deviations of the estimates decrease with sample size.

The scales of the item parameters used to generate the data in the first simulation and

the scales of the estimates under the standard two-parameter logisticmodelwere set equal

to each other by linear transformations. After fitting the standard two-parameter logistic

model to all data sets generated, for each parameter the mean estimate, the approximate

bias, and the standard deviation over the estimates were again calculated for each of the

six conditions. The results are given in Table 5.
The results in Table 5 show that the estimates of the parameters of the standard two-

parameter logistic model are asymptotically unbiased for the normal distribution but not

for themixture distribution. This can be seenmost clearly by comparing the results under

the normal distributionwith the results under themixture distribution. Under the normal

distribution, the calculated bias decreases and tends to zero as the sample size increases.

Under the mixture distribution, the calculated bias is substantial compared to the

calculated bias under the normal distribution. The efficiency results are similar to the

results obtained by fitting the extended two-parameter logistic model.

7. A simple illustrative example

The data in this example are the scores of 1,310 toddlers on five dichotomously scored

items that are supposed to measure the mastery of concepts of comparison such as most,

least, higher and lower. All possible score patterns and their observed frequencies are
given in Table 6.

Both the model in equation (19) (the extended two-parameter logistic model) and the

standard two-parameter logistic model are fitted to the data in Table 6 using the same

software as in the simulation study. In the first model the parameters ν1 and ν2 are

respectively set to 0 and 1 for identification. In the secondmodel themean and variance of

the normal latent variable are respectively set to 0 and 1 for identification. Maximum

likelihood estimates of the parameters of bothmodels, togetherwith their standard errors,

are given in Table 7. The standard errors in Table 7 were obtained by taking the square
root of the reciprocals of the diagonal elements of the Hessian matrix produced by the

BFGS algorithm (used in both R packages).

The value of the log-likelihood under the extendedmodel is − 2,540.066. The value of

the log-likelihood under the standard model is − 2,544.415. Testing the extended model

against the saturated multinomial model using a generalized likelihood ratio test

yields − 2lnLR = 18.876 on 18 degrees of freedom, and a p-value of .340. Testing the

standard model against the saturated multinomial model using a generalized likelihood

ratio test yields − 2lnLR = 27.574on21degrees of freedom, and ap-value of .153. Testing
the standard model against the extended model using a generalized likelihood ratio test

yields − 2lnLR = 8.698 on 3 degrees of freedom, and a p-value of .034. So the standard

two-parameter logistic model can be rejected in favour of the extended model at the .05

significance level. Since under the extended model, the matrix.
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hð0Þ hð1Þð0Þ hð2Þð0Þ
hð1Þð0Þ hð2Þð0Þ hð3Þð0Þ
hð2Þð0Þ hð3Þð0Þ hð4Þð0Þ

2
64

3
75¼

1:000 �0:765 2:435

�0:765 2:435 �5:743

2:435 �5:743 20:689

2
64

3
75

is positive definite (its eigenvalues are 22.647, 0.810 and 0.667), the maximum

likelihood estimates of the parameters of the extended two-parameter model are also the

maximum likelihood estimates of the parameters of the random effects two-parameter
logistic model. Consequently, the EAP person parameter estimate for response pattern y
under the random effects two-parameter logistic model is given by.

Table 6. All possible score patterns and their observed frequencies for five items measuring the

mastery of concepts of comparison in a sample of 1,310 toddlers, and EAP person parameter

estimates under the extended two-parameter logistic model

y1 y2 y3 y4 y5 ny μ̂1jy

0 0 0 0 0 15 −0.765
1 0 0 0 0 15 0.898

0 1 0 0 0 3 1.504

1 1 0 0 0 15 1.553

0 0 1 0 0 2 1.289

1 0 1 0 0 14 1.548

0 1 1 0 0 5 1.545

1 1 1 0 0 27 1.624

0 0 0 1 0 6 0.882

1 0 0 1 0 9 1.470

0 1 0 1 0 7 1.553

1 1 0 1 0 23 1.560

0 0 1 1 0 7 1.547

1 0 1 1 0 40 1.546

0 1 1 1 0 9 1.621

1 1 1 1 0 71 1.898

y1 y2 y3 y4 y5 ny μ̂1jy

0 0 0 0 1 4 1.547

1 0 0 0 1 6 1.546

0 1 0 0 1 3 1.621

1 1 0 0 1 17 1.899

0 0 1 0 1 1 1.553

1 0 1 0 1 11 1.701

0 1 1 0 1 9 2.107

1 1 1 0 1 100 2.509

0 0 0 1 1 3 1.546

1 0 0 1 1 7 1.597

0 1 0 1 1 5 1.893

1 1 0 1 1 51 2.308

0 0 1 1 1 4 1.697

1 0 1 1 1 38 2.041

0 1 1 1 1 37 2.504

1 1 1 1 1 746 2.614
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μ̂1jy ¼ p
ð1Þ
2 ðα̂0yÞþ γ̂3 p

ð1Þ
3 ðα̂0yÞþ γ̂4 p

ð1Þ
4 ðα̂0yÞþ γ̂5 p

ð1Þ
5 ðα̂0yÞ:

In Table 6, this EAP estimate is given for all y.

8. Discussion

It does not seem tobe feasible in practice to performdirect estimation of theparameters of

the randomeffects generalized partial creditmodel bymaximizing themarginal likelihood
function with respect to the parameters subject to the complex inequalities that follow

from the inequalities of a moment sequence. Estimation of the parameters of the slightly

more general extended generalized partial credit model is more feasible and provides

consistent estimates of the parameters of the random effects generalized partial credit

model. If these estimates also satisfy the inequalities that follow from the inequalities of a

moment sequence, then the estimates are also the maximum likelihood estimates of the

parameters of the random effects generalized partial credit model. For a discussion of

these estimation properties under the extended Raschmodel, see De Leeuw and Verhelst
(1986).

Theway inwhich indeterminacies in the extended generalized partial creditmodel are

solved seems to determinewhether its estimates are proper estimates of the parameters of

the random effects generalized partial credit model. If, under the conditional normal

generalized partial credit model, γ1 is set to 0 and γ2 is set to 1 for identification, then

marginal maximum likelihood estimation always yields a proper solution, whereas if γ1 is
set to 0 and one of α1, . . .,αk is set to 1, then the estimate of the variance γ2might be

negative. This example raises the interesting question whether there is in general a
method of identification that yields proper estimates. Further study is needed to find a

conclusive answer to this question.

The likelihood function of the extendedmodel is not concave in general, whichmeans

that it can have multiple extreme points. The methods to find the global maximum of the

Table 7. Parameter estimates and their estimated standard errors obtained from fitting the

extended (E-2PLM) and standard two-parameter logistic models (N-2PLM) to the scores of 1,310

toddlers on five items measuring the mastery of concepts of comparison

Parameter

E-2PLM N-2PLM

Estimate SE Estimate SE

β1 −0.476 0.409 2.818 0.166

β2 −3.849 0.608 2.945 0.244

β3 −2.406 0.485 2.501 0.172

β4 −1.397 0.389 1.763 0.105

β5 −5.440 0.793 2.431 0.244

v3 −0.568 0.030

v4 0.254 0.010

v5 −0.059 0.000

α1 1.323 0.212 1.199 0.164

α2 2.831 0.338 2.074 0.258

α3 2.004 0.253 1.598 0.190

α4 1.302 0.198 1.059 0.131

α5 3.307 0.402 2.370 0.321
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likelihood function proposed in this paper are a combination of the BFGS algorithm and a

multistart method or evolutionary algorithms. These methods have a limited guarantee of

finding the globally optimal solution. However, the probability of finding the globally

optimal solution increases with the number of runs of the BFGS algorithm in a multistart
method, but also with the population size and/or the number of generations used by

evolutionary algorithms (Nix & Vose, 1992).

The proposedmaximum likelihood estimation procedures are useful in practicewhen

the number of items is small. Unfortunately, the efficiency of the procedure in terms of

computation time rapidly decreases with the number of items and the numbers of

response categories. This decrease in efficiency is due to the fact that the denominator of

the normalizing constant P(Y = 0) is computed by direct summation of its
Qk

i¼1mi terms.

To increase the practical applicability of the proposed maximum likelihood estimation
procedures,more efficient algorithms should be devised for computingP(Y = 0). Pseudo-
likelihood methods (Besag, 1975) are alternatives for obtaining parameter estimates that

do not suffer from this computational problem.

A limitation of the proposed maximum likelihood estimation procedures is that they

can only by applied to complete data. The likelihood function in equation (21) can,

however, be modified such that all available data are used in estimating the parameters of

the extended generalized partial credit model. Such a full information maximum

likelihood estimation procedure would be one possible way to deal with missing data.
Maris et al. (2015) developed a Markov chain Monte Carlo method for Bayesian

inference for the random effects one-parameter logistic model that does not rely on data

augmentation. By applying the Dutch identity (Holland, 1990) to the random effects one-

parameter logistic model, they derived the posterior expectation of ability for different

scores. Using their approach, however, the posterior expectation of ability for a person

with the highest possible score on all items cannot be estimated under the random effects

one-parameter logistic model (Maris et al., 2015, p. 863). An additional advantage of the

approach proposed in this paper over the approach proposed byMaris et al. (2015) is that
it provides the possibility of estimating this posterior expectation of ability under any

random effects generalized partial credit model, and thus also under the random effects

one-parameter logistic model.
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Appendix 1:

The first five polynomials are

p1ðα0yÞ ¼ α0y

p2ðα0yÞ ¼ 1

2
ðα0yÞ2�1

2
α0y

p3ðα0yÞ ¼ 1

6
ðα0yÞ3�1

2
ðα0yÞ2þ1

3
α0y

p4ðα0yÞ ¼ 1

24
ðα0yÞ4�1

4
ðα0yÞ3þ11

24
ðα0yÞ2�1

4
α0y

p5ðα0yÞ ¼ 1

120
ðα0yÞ5� 1

12
ðα0yÞ4þ 7

24
ðα0yÞ3� 5

12
ðα0yÞ2þ1

5
α0y

The first derivatives of the first five polynomials are

p
ð1Þ
1 ðα0yÞ ¼ 1,

p
ð1Þ
2 ðα0yÞ ¼ α0y�1

2
,

p
ð1Þ
3 ðα0yÞ ¼ 1

2
ðα0yÞ2�α0yþ1

3
,

p
ð1Þ
4 ðα0yÞ ¼ 1

6
ðα0yÞ3�3

4
ðα0yÞ2þ11

12
α0y�1

4
,

p
ð1Þ
5 ðα0yÞ ¼ 1

24
ðα0yÞ4�1

3
ðα0yÞ3þ7

8
ðα0yÞ2�5

6
α0yþ1

5
:

The second derivatives of the first five polynomials are

p
ð2Þ
1 ðα0yÞ ¼ 0,

p
ð2Þ
2 ðα0yÞ ¼ 1,

p
ð2Þ
3 ðα0yÞ ¼ α0y�1,

p
ð2Þ
4 ðα0yÞ ¼ 1

2
ðα0yÞ2�3

2
α0yþ11

12
,

p
ð2Þ
5 ðα0yÞ ¼ 1

6
ðα0yÞ3�ðα0yÞ2þ7

4
α0y�5

6
:

The log-likelihood function for the model in equation (19) is given by
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lðβ1, . . . ,βk,α,νÞ¼ ∑
k

i¼1

β0iniþ ∑
k

r¼1

νr∑
y
nyprðα0yÞ�nln ∑

y
qðyÞ

( )
,

where qðyÞ¼ exp ∑
k

i¼1

β0ixiþ ∑
k

r¼1

νrprðα0yÞ
� �

. The derivatives of lðβ1, . . . ,βk,α,νÞ with

respect to βis, νr and αi are given by

∂lðβ1, . . . ,βk,α,νÞ
∂βis

¼ nis�n

∑
y
qðyÞxis

∑
y
qðyÞ

,

∂lðβ1, . . . ,βk,α,νÞ
∂νr

¼ ∑
y
nyprðα0yÞ�n

∑
y
qðyÞprðα0yÞ

∑
y
qðyÞ

,

∂lðβ1, . . . ,βk,α,νÞ
∂αi

¼ ∑
k

r¼1

νr∑
y
nyp

ð1Þ
r ðα0yÞyi�n

∑
y
qðyÞ ∑

k

r¼1

νrp
ð1Þ
r ðα0yÞyi

∑
y
qðyÞ

:
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