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In this paper it is shown that under the random effects generalized partial credit model for
the measurement of a single latent variable by a set of polytomously scored items, the joint
marginal probability distribution of the item scores has a closed-form expression in terms
of item category location parameters, parameters that characterize the distribution of the
latent variable in the subpopulation of examinees with a zero score on all items, and item-
scaling parameters. Due to this closed-form expression, all parameters of the random
effects generalized partial credit model can be estimated using marginal maximum
likelihood estimation without assuming a particular distribution of the latent variable in
the population of examinees and without using numerical integration. Also due to this
closed-form expression, new special cases of the random effects generalized partial credit
model can be identified. In addition to these new special cases, a slightly more general
model than the random effects generalized partial credit model is presented. This slightly
more general model is called the extended generalized partial credit model. Attention is
paid to maximum likelihood estimation of the parameters of the extended generalized
partial credit model and to assessing the goodness of fit of the model using generalized
likelihood ratio tests. Attention is also paid to person parameter estimation under the
random effects generalized partial credit model. It is shown that expected a posteriori
estimates can be obtained for all possible score patterns. A simulation study is carried out
to show the usefulness of the proposed models compared to the standard models that
assume normality of the latent variable in the population of examinees. In an empirical
example, some of the procedures proposed are demonstrated.

I. Introduction

A well-known item response model for the measurement of a single latent variable by a set
of polytomously scored items with ordered response categories is the generalized partial
credit model (Muraki, 1992; Muraki, 1993). In the generalized partial credit model, the
probability distribution of an item score depends on a number of item category location
parameters, an item-scaling parameter, and a single latent variable. The generalized partial
credit model is a special case of the nominal response model for polytomously scored
items with unordered response categories (Bock, 1972). Well-known special cases of the
generalized partial credit model are the partial credit model (Masters, 1982), the rating
scale model (Andrich, 1978), the two-parameter logistic model (Birnbaum, 1968) and the
one-parameter logistic model (Rasch, 1960; Rasch, 1966).
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A distinction can be made between the fixed effects generalized partial credit model
and the random effects generalized partial credit model. In the fixed effects model, both
item and person parameters are treated as fixed. Maximum likelihood estimation of the
item and person parameters of the fixed effects model is called joint maximum likelihood
estimation. A disadvantage of the fixed effects model and joint maximum likelihood
estimation of the parameters is that the item parameters are not consistently estimated if
the items are finite in number. In the random effects model, the item parameters are also
treated as fixed but the examinees in the sample are assumed to be randomly sampled
from a population of examinees. Maximum likelihood estimation of the item parameters
of the random effects model is called marginal maximum likelihood estimation. In
marginal maximum likelihood estimation, the latent variable is integrated out and the item
parameters are estimated in the joint marginal probability distribution of the item scores.
An advantage of the random effects model and marginal maximum likelihood estimation
of the item parameters is that the item parameters are consistently estimated if the items
are finite in number (Bock & Aitkin, 1981; Bock & Lieberman, 1970). In practice, marginal
maximum likelihood estimation is usually applied under the assumption that the latent
variable is normally distributed in the population of examinees. Gauss-Hermite
quadrature can then be used to numerically integrate out the latent variable.

It is known that under a random effects generalized partial credit model in which the
item-scaling parameters are fixed to positive integers, the joint marginal probability
distribution of the item scores has a closed-form expression in terms of item category
location parameters and conditional non-central moments of the (positively scaled) latent
variable given a zero score on all items (Agresti, 1993; Cressie & Holland, 1983; Maris,
Bechger, & San Martin, 2015). In this paper, however, it is shown that under the random
effects generalized partial credit model in general, the joint marginal probability
distribution of the item scores has a closed-form expression in terms of item category
location parameters, parameters that characterize the distribution of the latent variable in
the subpopulation of examinees with a zero score on all items, and item-scaling
parameters. A favourable consequence of this closed-form expression for the joint
marginal probability distribution of the item scores is that all parameters of the random
effects generalized partial credit model can be estimated using marginal maximum
likelihood estimation without assuming a particular distribution of the latent variable in
the population of examinees and without using numerical integration.

Since the parameters that characterize the distribution of the latent variable in the
subpopulation of examinees with a zero score on all items are functions of non-central
moments of the latent variable, these parameters satisfy complex inequalities that follow
from the inequalities of a moment sequence. It is technically difficult to maximize the
marginal likelihood function with respect to the parameters subject to the inequalities
that follow from the moment inequalities. It is less complicated to maximize the likelihood
function ignoring these inequalities, and this yields maximum likelihood estimates of the
parameters of a slightly more general model called the extended generalized partial credit
model. Well-known special cases of this extended generalized partial credit model are the
extended partial credit model (Agresti, 1993) and the extended one-parameter logistic
model (Follmann, 1988; Tjur, 1982).

In the following section the random effects and extended generalized partial credit
models are presented. Subsequently, maximum likelihood estimation of the parameters of
the extended generalized partial credit model is discussed. Next, generalizations of the
extended generalized partial credit model are presented, which can each be used as an
alternative hypothesis model in a generalized likelihood ratio test for the extended
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generalized partial credit model. One of these generalizations is an extended version of the
nominal response model (Bock, 1972). Furthermore, attention is paid to person
parameter estimation under the random effects generalized partial credit model. It is
shown that expected a posteriori (EAP) estimates can be obtained for all possible score
patterns. To show the usefulness of the models proposed compared to the standard
models that assume normality of the latent variable in the population of examinees, a
simulation study is carried out. Finally, some of the procedures proposed are
demonstrated using an empirical example.

2. The models

Consider a situation in which a test of 2 polytomously scored items with ordered response
categories is administered to a sample of examinees. It is assumed that the examinees are
randomly sampled from an infinite population. It is also assumed that the items are
measures of a single random latent variable ® with realization 6. Furthermore, let
Y = [Y;...Y,]' be the random vector of item scores, and let y = [y;. . )]’ be a realization,
where y;, = 0,1,. .., m;, for i = 1,2,. . ., k. Then the joint marginal probability distribution
of Y can be written as

P(Y=y)= / P(Y =)0)/ (6)ab, D

where P(Y = y10) is the joint conditional probability distribution of Ygiven ® = 6 and f(0)
is the probability density of ® in the population of examinees. The elements of Y are
assumed to be conditionally independent given ® = . Conditional independence of the
elements of Y given ® =0 is defined as

k

P(Y =y(0)=][P(¥:=y,6), @

i=1

where P(Y; = y,0) is the conditional probability distribution of Y; given ® = 6. Letx;; = 1
if y; =s and x; = 0 otherwise, for s = 1,...,m;. Then the conditional probability
distribution of Y; given ® = 0 can be written as

P(Yl-:yi9)=P(Y,-:0|9)ﬁ{ﬁVia(€)}, ®

where Vi, (0) = P(Y; = al®)/P(Y; = a — 110) is the odds of score a on item 7 relative to
score a — 1 on item 7 as a function of 0. Substitution from equations (2) and (3) into
equation (1) gives

P(Y:y)z/ Y =0}0) lﬁm{nv }] (0)a0, @

where P(Y =0(0) =[[+_,P(Y;=0|9).
In the generalized partial credlt model (Muraki, 1992, 1993), it is assumed that
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Via(0) = exp{a;(0 —6ia) }, (6))

where ¢; is a scaling parameter and J,, is an item category location parameter. The special
case where a; = 1, for all 7, is the partial credit model (Masters, 1982). In the case of
dichotomously scored items (m2; = 1, for all 7), the generalized partial credit model equals
the two-parameter logistic model (Birnbaum, 1968) and the partial credit model equals the
one-parameter logistic model (Rasch, 1960, 1966). Substitution from equation (5) into
equation (4) and using the fact that y; = Z:”:"lx,-ss gives, after some algebra,

k. m;
P(v =y =exp( £ § ponc) [ pv=0l0jexpiayols@)ao ®
i=1s=1
where f,,= alz +—10ia is a transformed item category location parameter and
a=a;a; ... a] . Following Cressie and Holland (1983), we can write

k

P(Y =3) = P(Y=0)exp( 3 T fon ) [expla0)g(0]0)a0

=1

@)

k. m;

_p(¥= 0)exp(2 Zﬂisxis)M@(,(a'y),

i=1s=1

where g(0|0) =P(Y=0|0)f(0)/P(Y = 0) is the conditional density of ® given ¥ = 0 and
Mg (a'y) = E{exp(a’y®)|0} is the conditional moment generating function of @ given
Y = 0. Note that M| (a’y) depends on y as a function of a’y only. In the following theorem,
a closed-form expression for Mgjo(a'y) is presented. The closed-form expression for
Mejo (a'y) isinferred from a closed-form expression for the conditional moment generating
function of ® given Y = 0 obtained under the random effects one-parameter logistic model.

Theorem 1. Under the random effects generalized partial credit model, the conditional
moment generating function of ® given Y = 0 is given by

r—1
Moo (a'y) —exp{ >, 11_[(05’31—u)}, ®

u=0

where y, is a common rth-order interaction parameter that characterizes the
distribution of ® given Y = 0.

Proof 1. Inthe case of dichotomously scored items, y; = Xy, for alli. The saturated model
for dichotomously scored items is given by

P(Y=y)=P(Y= O)exp<Zﬂzy,+Zﬂymj+ )3 iyzymyﬁ A kHy,> )

i<j i=1

where /, is a main effect parameter, for all 7, 1, is a two-way interaction parameter, for all
i <j, Ay is a three-way interaction parameter, for all i < j < /, and so on. Under the one-
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parameter logistic model, interaction parameters of the same order are equal (Hessen,
2011), that is,

Aij = 7o, forall i <j,
Mg = 73, forall i <j<l,
)v]...k = Ve

Substitution into equation (9) gives

k
P(Y=y)=P(Y = 06XP<Zizy,+?zZm]+y3 Zm]yl+~-~+7k]_[yi>~ 10y

i<j i<j<l
Next, it can be readily verified that

2y, =1y(1ly—1)/2,

i<j

vy =1y'y—1)(1y-2)/3,

i<j<l

k
[[y;=1y(1y-1)1y-2)...(1y—k+1)/R!
i=1

by multiplying out [[/_} (1'y — u), for r = 2,.. k. Substitution from these equations
and 4; = B, +y, into equation (10) gives.

P(Y=y)=P(Y = O)exp{ZﬁLyﬂr 2 () 1H 1y — u)} an
u=0
From equations (7) and (11), it then follows that
r—1
Mejo(1'y) —CXP{ZW (rl)” H(lly—“)} a1z
u=0

Now, since the right-hand side of equation (8) depends on y as a function of a’y only
and specializes to the moment generating function in equation (12)ifm; = land o; = 1,
for all 7, the right-hand side of equation (8) must be the conditional moment generating
function of ® given Y = 0 under the random effects generalized partial credit model. This
completes the proof.

Megjo(a'y) can be used to determine the first & + 1 non-central moments of © given

Y = 0, that is, M((9|)0( ) =Hso =E(0|0), for t=0,1,... .k, where Mé)\)o( ) is the fth

derivative of Mg|o(a'y) with respect to &’y evaluated at &’y = 0. First, however, Mg|o(a'y)
is rewritten as
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R
Mejo(@y) = exp{ L rb (@) } (13)
where
r—1
pay)= X (-1 Creny (@) 14

is an rth-order polynomial function of a’y. The first five polynomials are given in the
Appendix. The constants in the coefficients of the rth-order polynomial are given by

r—1 1
_ -1 _
C(r—1)=(r)) uzlu——z(riz)!,forvvl,
r—2 r—1 57._1
C(r—2)=@u"" uo=———— forr>2,
( ) ( ) uglv:qul 24(7’_3)!
L r=3 r=2 -1 (’,._1)’,.
Cr(r—3)=@N" uwo=——"——forr>3,
r( ) ( ) u§10:§+1w:§+1 48(7*4)'

Note that C,; = !, for all . The mean of ® given Y = 0 can now be obtained by
evaluating the first derivative of Mg|o(a’y) at &’y = 0. The first derivative equals

k
Mgoly) =Moo (@) X v.0/" (@),

where

forr = 1,

’

M) () ) — 2
b (@) (*1)u(7’7u)Cr(r—u)(a,y)riuilJr(*l)rilcrl’ forr>1,

u=0

~
|

is the first derivative of p,(a’y) with respect to a’y. The first derivatives of the first five
polynomials are given in the Appendix. Consequently, the mean of ©® given Y = 0 is given
by

k
1 _ r—
Mejp(0) =po= X 7! (=1)"

The second derivative equals

B

2 g
Mo (ay) =Moo (o) [{ lnpﬁ”(a’y)} + Zlnpi”(a’y)],

where
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0, forr =1,
PP (dy)= 71,3 forr = 2,
Z T u) (1" —U—- I)Cr(rfu) (a/y)riuiz + (*1)77226‘;«27 forr > 2,
u=0
as)

is the second derivative of p,(a'y) with respect to «'y. The second derivatives of the
first five polynomials are given in the Appendix. The second non-central moment of ®
given Y = 0 is then given by

2 g
Meip(0) =z = { 2 (=1) ”} + Y 7,.(-1)7%2C,. 16)

r=1

As a consequence the variance of ® given Y = 0 is given by

var(0]0) = u0 — //‘1|0 ZYr )" 22C,. an

Since oo, U110, H2105 - - -» Mrio Satisfy inequalities that follow from the general solution to
the Hamburger moment problem (Karlin & Studden, 1966) and are functions of the
parameters y,,7,, ..., ¥, the parameters y,,7,, ..., 7, also satisfy certain inequalities.

Special cases of the random effects generalized partial credit model can be obtained by
setting some ofy,,7,, ..., 7, €qual to zero. A reasonable special case is one wherey,., 1, ..., ¥
are all equal to zero and therefore only contain interactions up to rth order. The following
theorem provides an interesting result for the special case that only contains second-order
interactions.

Theorem 2. If, under the random effects generalized partial credit model, y, ...y, are
all equal to zero, then the distribution of © given Y =1y is normal with mean
17,0y +y, — 3y, and variance y,.

Proof 2. If ys, ...y, are all equal to zero, then

1 1 1 2
Mep(dy) = exp{vla’y +7, Ea’y(a’y — 1)} = CXp{ (v1 = EYz) oy %2 (dy) }

which is the moment generating function of a normal random variable with mean y; — %yz
and variance y,. Furthermore,

c(oly) P =YV (0) _exp(@yP(Y =00 (0) _expleyo) o0

P(Y=y) Mg (a'y)P(Y =0) Mgjo(a'y)

where g(0]0) = (20) "2y exp [—%{9 ) }Z/VZ} , so that after some algebra it
follows that
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_ 1 1 2
40y = (20) /24, xp[ 3{o- (raven -0 | /YZ],

which can be recognized as a normal density with mean y,a’y +y, — 3y, and variance y, .

The special case in Theorem 2 is called the conditional normal generalized partial credit
model. For this conditional normal generalized partial credit model, the moment inequalities
simply imply that the variance y, is positive. A consequence of conditional normality of ®
given Y = y is that ©® has a mixture distribution of normals in the total population.

In the case of dichotomously scored items, the conditional normal generalized partial
credit model is called the conditional normal two-parameter logistic model. The
conditional normal two-parameter logistic model is a special case of the Ising model
(Ising, 1925) given by

P(Y =y)=P(Y =0)exp (Z Ay + Z%n%) 18)

i<j

where y; = x;;, for all 7. The Ising model is the special case of the model in equation (9)
where all interaction parameters of third order and higher are set to zero. The Ising model
specializes to the conditional normal two-parameter logistic model if
Ai=pi+riai+y0:(a; —1)/2, for all i, and A =y, a0, forall i < j.

A slightly more general model than the random effects generalized partial credit model
in which moment inequalities are ignored is given by

P(¥Y=y)=P(Y = o>exp{§ %ﬁmxlﬁzvrpr(ay)} 19

i=1s

where v,is an unconstrained rth-order common interaction parameter, f; is an item
category main effect parameter, and @, is a parameter that expresses the extent to which
item 7 contributes to all common interactions. The model in equation (19) is called the
extended generalized partial credit model. In the case of dichotomously scored items, the
model is called the extended two-parameter logistic model. Fixing the parameters ay,. . .o
to specific real numbers, the extended generalized partial credit model specializes to an
exponential family model in which p,(a'y) is a sufficient statistic for v,, for all ». Special
cases of this exponential family model are the extended partial credit model (Agresti,
1993), the extended Rasch model (Follmann, 1988; Tjur, 1982), and the models in which
aq,. . .,ar are prespecified positive integers (Maris et al., 2015; Verhelst & Glas, 1995).
Both the random effects and the extended generalized partial credit model have
Zle m; + 2k parameters. However, both models have two indeterminacies. To show the
first indeterminacy, the exponent on the right-hand side of equation (19) is rewritten
using p,(@y) =5 ap, =Y 3" asx;. The exponent on the right-hand side of
equation (19) then becomes Y5 37 (B +v1ai8)xis + 2v_v,p,(@y), from which it
follows that f,; and vy cannot be 1dent1ﬁed, because if f;; = ﬂls “+a;sb and vy =v] — b, for
some constant b, then S +v 0,8 =p;,+vja;s. A convenient way to solve this first
indeterminacy is to fix v; to 0. To show the second indeterminacy it is assumed without
loss of generality that v3=0 , for r=3,..., kB Now, using v,=0 and
Dr@dy)=ay(@y—1)/2=3, 3" Jais(as —1)xis + X, 09,9, the exponent on the
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right-hand side of equation (19) can be written as Y5, 37 {fis + vaas(ais — 1) /2}xis+

VZZ; <OV > from which it follows that v, and a; cannot be identified, because if

v, =via*, q;=aja " and fi; = [i:; +1vsaias —1v;a;s, for some constant @ and all  and s,

then this exponent equals Y~ 37 {Br+vsa;s(ays —1)/2 s U2 Ay, A
convenient way to solve this second indeterminacy is to fix either one of ay,. . .,a; or v,
to 1. Consequently, the number of independent parameters under both models is
¢ mi+2k—2.

Note that in the conditional normal generalized partial credit model, moment
inequalities are immediately satisfied if y, is set to 0 and y, is set to 1 for identification. The
number of free parameters in this special case is Zf:lmi + k.

3. Maximum likelihood estimation

It follows from equation (19) that the joint probability distribution of Y under the
extended generalized partial credit model is given by

exp{ Th B+ Zi_ v, (@)}
Zyexp{ T Bxi+ T v, @)}

P(Y=y)= 0

where B, =B,y ... Bim,] and x;=x; ... x,,]'. Taking all possible score patterns into
account and assuming independence of observations, it follows that the likelihood
function is given by

CXP{Z; B "z+2 1er nyp, (o
(Zyexp{ T s+ T, ay)}}"’

LBy, ....Bp V)= @D

where v=[v,...p] n,=[n; ... nimi]' is the vector that contains the numbers of
individuals in the sample with scores 1,...,m; on item 7, n,, is the number of individuals
in the sample with response pattern y, and # is the total sample size.

To find the estimates of the parameters that maximize the likelihood function in
equation (21), the log-likelihood function given by (B, ..., Bp, &, v) = nL(Py, ..., B, . V)
can be maximized with respect to the parameters subject to the constraints thaty; =0
and v, = 1. To solve this unconstrained nonlinear optimization problem, the Broyden—
Fletcher—Goldfarb—Shanno (BFGS) algorithm can be used (Fletcher, 1987). The BFGS
algorithm is a quasi-Newton method, in which the Hessian matrix of second derivatives is
not computed. Instead, the Hessian matrix is approximated using updates specified by
(approximate) evaluations of the first derivatives. The first derivatives of the log-likelihood
are given in the Appendix. Unfortunately, the likelihood function in equation (21)is notin
general concave and may have multiple extreme points. This means that the BFGS
algorithm can only find a local extreme point in the vicinity of the starting point. However,
to find the global maximum the BFGS algorithm can be combined with a multistart method
(Nash, 2014) or evolutionary algorithm methods (Mebane & Sekhon, 2011).

Note that the extended generalized partial credit model can be rewritten as the non-
standard log-linear model
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ko k .
Iney =p+ ¥ Bxi+ X vy, (aly) @2)
i=1 r=1

where e, = nP(Y = y) and p = In{nP(Y = 0)}. If a,,. . .,q,, are prespecified real numbers,

then the non-standard log-linear model in equation (22) turns into a standard log-linear

model that can be fitted to data using an iterative proportional fitting algorithm

(Kelderman, 1992) or iterative weighted least squares (Charnes, Frome, & Yu, 1976).
Let oy, ..., be the maximum likelihood estimates of vy, ..., v, and let

h(ay) = eXp{ﬁl Up(a'y) }

Also let b)), b®0),. . ., »® be the first, second,. . ., kth derivative of h(a'y) with
respect to 'y evaluated at &'y = 0. Now if h(0), h(0), b®(0),. .., P*(0) satisfy the
constraints of a moment sequence, then the maximum likelihood estimates of the
parameters of the extended generalized partial credit model are also the maximum
likelihood estimates of the parameters of the random effects generalized partial credit
model. It follows from the solution to the Hamburger moment problem that if the matrix.

[ h(0) h(l)(()) h<2)(0) h(C)(O) T
]g(l)(o) b(Z)(o) ]9(3)(0) e pletD) (0)
pD(0) B0)  HH(0) - H(0)

Lh9(0) b (0) bR (0) - h<26) (0) |
where ¢ = k/2 when k& is even and ¢ = k/2 — 1/2 when & is odd, is not positive definite,
then »(0), h(l)(O), lo(Z)(O),. . b(k)(O) do not satisfy the constraints of a moment sequence
(Karlin & Studden, 1966).

4. Goodness-of-fit test

When, in practice, all possible response patterns are observed frequently enough, then
the goodness of fit of the model in equation (19) can be assessed by testing the model
against the saturated multinomial model using Pearson’s asymptotic chi-square test or a
generalized likelihood ratio test. Most of the time in practice, however, many possible
response patterns are not observed and then these asymptotic tests are not appropriate. In
such cases, the goodness of fit of the model in equation (19) can instead be assessed by
testing the model against a less general alternative than the saturated multinomial model,
using a generalized likelihood ratio test. One such less general alternative hypothesis
model is given by

k m
P(Y:y): (Y OCXP{Z ansxl\?+z/lllyl.y]+2y1pr ay)} (25)
i=1s= i<j

which specializes to the extended generalized partial credit model in equation (19) if
Nis = Pis Friais +raa;s(as —1) /2 and A =v;a;. The number of independent
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parameters under this model is Y~ m;, +k(k —1)/2+ 2k — 2. So the number of degrees
of freedom for the generalized likelihood ratio test of the extended generalized partial
credit model against this alternative hypothesis model equals 22 — 1)/2. Note that the
model in equation (23) specializes to the Ising model if m; = 1, for all 7, and v,, =0, for
r=3,...k

Another generalization of the extended generalized partial credit model that can be
used as the alternative hypothesis model in a generalized likelihood ratio test is given by

k k k
P(Y=y)=P(Y= O)exp{ YBxi+ XY up, (Z aﬁx,-) }, 49
i=1 r=1 i=1

where a; = [a,-l...a,-mi]'. The model in equation (24) is called the extended nominal
response model (Bock, 1972). This extended nominal response model equals the random
effects nominal response model if the parameters vy, ..., 1, satisfy the complex inequalities
that follow from the inequalities of a moment sequence. The random effects nominal
response model is a more general item response model than the random effects
generalized partial credit model. In practice, however, the random effects nominal
response model is often of less interest than the random effects generalized partial credit
model because the response categories of the items are usually ordered. Note that the
extended nominal response model specializes to the extended generalized partial credit
modelif a;; = sa;, forall i and s. The number of independent parameters under this model
is equal to ZZlem,' + & — 2. Also note that if a,. . ., @ ;, are vectors of prespecified real
numbers, then the extended nominal response model specializes to an exponential family
model in which p, Zlea;xi is a sufficient statistic for v, , for all . Special cases of this
exponential family model aré the partial credit model (Masters, 1982) and the model in
which ay,. . ., @, are vectors of prespecified positive integers (Maris et al., 2015).

Along the same lines as for the extended generalized partial credit model, log-
likelihood functions for the two models in equations (23) and (24) can be constructed and
maximized. Both models can be rewritten as non-standard log-linear models and if @ and
ay,. .., ap are vectors of prespecified real numbers, then the non-standard log-linear
models turn into standard log-linear models that can be fitted to data using an iterative
proportional fitting algorithm (Kelderman, 1992) or iterative weighted least squares
(Charnes et al., 1976).

The extended generalized partial credit model can in turn be used as the alternative
hypothesis model in a generalized likelihood ratio test for one of its special cases, such as
the conditional normal generalized partial credit model or the standard random effects
generalized partial credit model in which the latent variable is assumed to be normally
distributed in the population of examinees. As such, these tests provide possible checks
for posterior normality and prior normality of the latent variable assuming the generalized
partial credit model to be true. In both cases, the number of degrees of freedom equals
k—2.

Another alternative hypothesis model in a generalized likelihood ratio test for the
conditional normal generalized partial credit model is the conditional normal nominal
response model, which can be obtained from the model in equation (24) by settingv; =0,
v,=1and v3=0, for r = 3, ..., k. A generalization of Theorem 2 is that under this
conditional normal nominal response model, the latent variable ® has a conditional
normal distribution given Y = y with mean Zlea;.xi —% and variance 1. The proof is
similar to the proof of Theorem 2.
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5. Person parameters

A natural way to obtain person parameter estimates under the random effects generalized
partial credit model is to estimate the conditional expected value of the latent variable
given response pattern Y = y, for all y. These person parameter estimates are called
expected a posteriori estimates. The calculation of these estimates requires a theoretical
expression for the conditional expected value of the latent variable given Y = y. This
theoretical expression can be obtained via the moment generating function of ® given
Y = y, which is presented in the following theorem.

Theorem 3. Under the random effects generalized partial credit model, the conditional
moment generating function of ® given Y =y is given by

R
Mepy(2) =exp| 3, 1A (z +ay) —p (@)} (25)

Proof 3. The moment generating function of ® given Y = y is given by

My (2) = / exp(z0)g(6ly)d6

Substitution of

_exp(a’y0)

_M(a\o(“'y)g(g'()).

gly)

yields

Moy (2) = [exp(z0)exp(a'y0)g(6]0)do{Meyo(a'y)} "
Jexp{(z+a'y)8} g(0]0)d0{ Mepo (')}
M®\0(2+a/y){M®|o(a/y)}71

% &
= exp{ Yr.p(z+ady)— rgl - (@y) }

r=1

and factoring Z’leyr yields the result in equation (25).

The theoretical expression for the expected value of ® given Y = y can now be
obtained by taking the first derivative of Mgy (z) with respect to z and evaluating it at
z = 0. The first derivative of Mg}y (2z) with respect to z is given by

k
MGy (2) = Moy (=) X 1.0 (= + ')

Consequently, the expected value of ® given Y = y is given by
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k R r—1
' —u-1
MS\)},(()) — Ay = Zerpf‘l)(aly) = Zlyr Z (—l)u(r—u)Cr(rfu)(a’Y)r !

u=0

An estimate of the expected value of ® given Y = y is then given by
~ k s (D) ra!
Fapy = Zlnpr (a'y),

where 7, is an estimate of y,., for all r, and & is an estimate of a.

6. A simulation study

The purpose of this simulation study is to investigate the usefulness of the extended and
the standard two-parameter logistic models under normality and non-normality of the
latent variable in the population of examinees. The standard two-parameter logistic model
is the model in which the latent variable is assumed to be normal in the population of
examinees. The usefulness of each model is assessed using rejection rates of generalized
likelihood ratio tests and approximate parameter estimation bias and efficiency. Three
generalized likelihood ratio tests are used. The first generalized likelihood ratio test
concerns the comparison of the extended two-parameter logistic model to the saturated
multinomial model (test 1). The second generalized likelihood ratio test concerns the
comparison of the standard two-parameter logistic model to the saturated multinomial
model (test 2). The third generalized likelihood ratio test concerns the comparison of the
standard two-parameter logistic model to the extended two-parameter logistic model (test
3.

The R program (R Core Team, 2020) was used to generate binary data under the
random effects two-parameter logistic model, for all combinations of three sample sizes
and two latent variable distributions. Test length was not varied and was fixed to five
items. The chosen sample sizes are 300, 500 and 700. The chosen latent variable
distributions are a normal distribution and a mixture of two normal distributions. In the
case of the normal distribution, the mean is zero and the standard deviation is 2. In the case
of the mixture distribution, the mixing proportions are .55 and .45, the mean and standard
deviation of the first normal distribution constituting the mixture are — 2 and 1, and the
mean and standard deviation of the second normal distribution constituting the mixture
are 2 and 3.5. The mean and standard deviation of the mixture distribution are — 0.2 and
3.17. The densities of both distributions are shown in Figure 1.

In each of the six conditions (3 sample sizes X 2 distributions), 1,000 data sets were
randomly generated. For the generation of each data set, » latent values 6, .. ., 6,, were
randomly drawn from the latent variable distribution. The histogram of the randomly
drawn latent values for one of the mixture conditions is given in Figure 2.

Each binary data set was generated by randomly drawing a single sample from the
Bernoulli distribution given by

P(Y i =9,100) = {m:(6,) } {1 - ”i(ev)}l_y”7 fory,,=0,1,

forallv=1,...,nandi =1, ...,5 where
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B exp{ai(ey - 51)}
”i(ev) R +exp{aj(gv - 51)}

is the so-called item response function of item 7, that is, the probability of score 1 as a
function of 8,. The item parameter values selected are given in Table 1. The item response
functions, for 7 = 1, .. .,5, are shown in Figure 3.

The extended and standard two-parameter logistic models were fitted to each data set
generated. To fit the extended model self-written R code and the R package rgenoud

0.25 —

0.20

0.15

0.10 —

0.05 —

Figure 1. Densities of the normal distribution and the mixture of two normals used in the
simulation study.

20

15

10

Figure 2. Histogram of sample latent values generated under the mixture of two normals.



246 David Hessen

Table 1. Item parameter values used to generate the data

Item
1 2 3 4 5
o; -1.50 -0.75 0.00 0.80 2.25
a; 0.50 0.75 0.50 0.60 0.80
1.0«4 -
0.8
0.6
0.4
A el / — item 1
7 S ---- item 2
/,/ ~~~~~~~~ item 3
P item 4
------ item 5
T T T T T T
—6 —4 -2 0 2 4

Figure 3. The five item response functions used to generate the data.

(Mebane & Sekhon, 2011) were used, and to fit the standard model the R package ltm
(Rizopoulos, 2006) was used. The optimization algorithms did not show convergence for
all data sets. For each condition, data sets continued to be generated until 1,000 proper
data sets (for which the optimization algorithms showed convergence) were obtained.
Information concerning the number of times the optimization algorithms did not
converge is given in Table 2.

For each proper data set, the three generalized likelihood ratio tests (tests 1, 2 and 3)
were carried out using the nominal level of significance of .05. In each condition, for each
test a rejection rate was calculated. The rejection rate of a test is the number of times the

Table 2. Counts and proportions of non-convergence of the optimization algorithms

Distribution n Count Proportion

Mixture 300 276 216
500 161 .139
700 108 .097

Normal 300 307 235
500 144 126
700 87 .080
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Table 3. Rejection rates of the three likelihood ratio tests (test 1, extended versus saturated; test 2,
standard versus saturated; test 3, standard versus extended)

Distribution n Test 1 Test 2 Test 3
Mixture 300 .061 480 824
500 .064 .729 .964
700 .067 .884 .988
Normal 300 .073 .076 .075
500 .051 .065 .054
700 .069 .068 .070

null hypothesis model was rejected in favour of the alternative hypothesis model divided
by 1,000. All calculated rejection rates are given in Table 3.

The results in Table 3 show that the proportion of times the extended two-parameter
logistic model is rejected (test 1) is close to the nominal level of significance for all
conditions, so irrespective of the sample size and the latent variable distribution. The
results in Table 3 also show that the proportion of times the standard two-parameter
logistic model is rejected (tests 2 and 3) is close to the nominal level of significance for the
normal distribution but not for the mixture distribution. For the mixture distribution, the
rejection rates of tests 2 and 3 are much higher than the nominal level of significance. This
means that if the goodness of fit of the random effects two-parameter logistic model is
assessed by fitting and testing the standard two-parameter logistic model, the random
effects two-parameter logistic model will be rejected too often. For the mixture
distribution, the rejection rates of tests 2 and 3 are approximate power values and the
results in Table 3 show that likelihood ratio testing the standard two-parameter logistic
model against the extended two-parameter logistic model (test 3) is more powerful in
detecting non-normality than likelihood ratio testing the standard two-parameter logistic
model against the saturated multinomial model (test 2). As expected, the approximate
power of tests 2 and 3 increases with sample size. In conclusion, to assess the goodness of
fit of the random effects two-parameter logistic model, test 1 should be used rather than
test 2 or test 3, which means that the extended two-parameter logistic model should be
tested instead of the standard two-parameter logistic model.

The scales of the item parameters used to generate the data differ from the scales of the
estimates under the extended two-parameter logistic model. The estimates of the
parameters of the extended model are obtained using the identification constraints v; =0
and v, =1 . To study the bias and efficiency of the estimates, these scales must be equal.
This can be achieved by generating data under the same parameterization as the one that is
used in fitting the model to the data. For this reason a second simulation was carried out in
which, for each of the six conditions, 1,000 proper data sets are randomly sampled from
the multinomial distribution where the multinomial probabilities are given by equa-
tion (20) and the parameter values are chosen to be the mean estimates from the first
simulation. These mean estimates are the true values of the parameters given in Table 4.
After fitting the extended two-parameter logistic model to all newly generated data sets,
for each parameter the mean over the new estimates, the approximate bias (the difference
between the mean estimate and the true parameter value), and the standard deviation over
the new estimates are calculated for each of the six conditions. The results are given in
Table 4.
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The results in Table 4 show that the estimates of the parameters of the extended two-
parameter logistic model are asymptotically unbiased irrespective of the latent variable
distribution. Under both distributions, the calculated bias decreases and tends to zero as
the sample size increases. The results also show that the efficiency of the estimates
increases with sample size irrespective of the latent variable distribution. Under both
distributions, the standard deviations of the estimates decrease with sample size.

The scales of the item parameters used to generate the data in the first simulation and
the scales of the estimates under the standard two-parameter logistic model were set equal
to each other by linear transformations. After fitting the standard two-parameter logistic
model to all data sets generated, for each parameter the mean estimate, the approximate
bias, and the standard deviation over the estimates were again calculated for each of the
six conditions. The results are given in Table 5.

The results in Table 5 show that the estimates of the parameters of the standard two-
parameter logistic model are asymptotically unbiased for the normal distribution but not
for the mixture distribution. This can be seen most clearly by comparing the results under
the normal distribution with the results under the mixture distribution. Under the normal
distribution, the calculated bias decreases and tends to zero as the sample size increases.
Under the mixture distribution, the calculated bias is substantial compared to the
calculated bias under the normal distribution. The efficiency results are similar to the
results obtained by fitting the extended two-parameter logistic model.

7. A simple illustrative example

The data in this example are the scores of 1,310 toddlers on five dichotomously scored
items that are supposed to measure the mastery of concepts of comparison such as most,
least, higher and lower. All possible score patterns and their observed frequencies are
given in Table 6.

Both the model in equation (19) (the extended two-parameter logistic model) and the
standard two-parameter logistic model are fitted to the data in Table 6 using the same
software as in the simulation study. In the first model the parameters vy and v, are
respectively set to 0 and 1 for identification. In the second model the mean and variance of
the normal latent variable are respectively set to 0 and 1 for identification. Maximum
likelihood estimates of the parameters of both models, together with their standard errors,
are given in Table 7. The standard errors in Table 7 were obtained by taking the square
root of the reciprocals of the diagonal elements of the Hessian matrix produced by the
BFGS algorithm (used in both R packages).

The value of the log-likelihood under the extended model is — 2,540.066. The value of
the log-likelihood under the standard model is — 2,544.415. Testing the extended model
against the saturated multinomial model using a generalized likelihood ratio test
yields — 2InLR = 18.876 on 18 degrees of freedom, and a p-value of .340. Testing the
standard model against the saturated multinomial model using a generalized likelihood
ratio testyields — 2InLR = 27.574 on 21 degrees of freedom, and a p-value of .153. Testing
the standard model against the extended model using a generalized likelihood ratio test
yields — 2InLR = 8.698 on 3 degrees of freedom, and a p-value of .034. So the standard
two-parameter logistic model can be rejected in favour of the extended model at the .05
significance level. Since under the extended model, the matrix.
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Table 6. All possible score patterns and their observed frequencies for five items measuring the
mastery of concepts of comparison in a sample of 1,310 toddlers, and EAP person parameter
estimates under the extended two-parameter logistic model

1 Y2 V3 Y4 Js ny Haly
0 0 0 0 0 15 -0.765
1 0 0 0 0 15 0.898
0 1 0 0 0 3 1.504
1 1 0 0 0 15 1.553
0 0 1 0 0 2 1.289
1 0 1 0 0 14 1.548
0 1 1 0 0 5 1.545
1 1 1 0 0 27 1.624
0 0 0 1 0 6 0.882
1 0 0 1 0 9 1.470
0 1 0 1 0 7 1.553
1 1 0 1 0 23 1.560
0 0 1 1 0 7 1.547
1 0 1 1 0 40 1.546
0 1 1 1 0 9 1.621
1 1 1 1 0 71 1.898
M Y2 3 Vi Vs n, My
0 0 0 0 1 4 1.547
1 0 0 0 1 6 1.546
0 1 0 0 1 3 1.621
1 1 0 0 1 17 1.899
0 0 1 0 1 1 1.553
1 0 1 0 1 11 1.701
0 1 1 0 1 9 2.107
1 1 1 0 1 100 2.509
0 0 0 1 1 3 1.546
1 0 0 1 1 7 1.597
0 1 0 1 1 5 1.893
1 1 0 1 1 51 2.308
0 0 1 1 1 4 1.697
1 0 1 1 1 38 2.041
0 1 1 1 1 37 2.504
1 1 1 1 1 746 2.614

h(0) »M(0) b (0) 1.000 —0.765  2.435

p(0) b (0) P (0)| =|-0.765 2.435 —5.743

»2(0) BB (0) HD(0) 2.435 —5.743 20.689

is positive definite (its eigenvalues are 22.647, 0.810 and 0.667), the maximum
likelihood estimates of the parameters of the extended two-parameter model are also the
maximum likelihood estimates of the parameters of the random effects two-parameter
logistic model. Consequently, the EAP person parameter estimate for response pattern y
under the random effects two-parameter logistic model is given by.
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Table 7. Parameter estimates and their estimated standard errors obtained from fitting the
extended (E-2PLM) and standard two-parameter logistic models (N-2PLM) to the scores of 1,310
toddlers on five items measuring the mastery of concepts of comparison

E-2PLM N-2PLM
Parameter Estimate SE Estimate SE

P —0.476 0.409 2.818 0.166
B2 —3.849 0.608 2.945 0.244
P —2.406 0.485 2.501 0.172
Pi -1.397 0.389 1.763 0.105
Ps —5.440 0.793 2.431 0.244
U3 -0.568 0.030

v4 0.254 0.010

vs —-0.059 0.000

a 1.323 0.212 1.199 0.164
a 2.831 0.338 2.074 0.258
as 2.004 0.253 1.598 0.190
ay 1.302 0.198 1.059 0.131
Qs 3.307 0.402 2.370 0.321

iy =05 (@) +75 05 (@) +7:0)) (@) +75 b5 (&y).

In Table 6, this EAP estimate is given for all y.

8. Discussion

It does not seem to be feasible in practice to perform direct estimation of the parameters of
the random effects generalized partial credit model by maximizing the marginal likelihood
function with respect to the parameters subject to the complex inequalities that follow
from the inequalities of a moment sequence. Estimation of the parameters of the slightly
more general extended generalized partial credit model is more feasible and provides
consistent estimates of the parameters of the random effects generalized partial credit
model. If these estimates also satisfy the inequalities that follow from the inequalities of a
moment sequence, then the estimates are also the maximum likelihood estimates of the
parameters of the random effects generalized partial credit model. For a discussion of
these estimation properties under the extended Rasch model, see De Leeuw and Verhelst
(19806).

The way in which indeterminacies in the extended generalized partial credit model are
solved seems to determine whether its estimates are proper estimates of the parameters of
the random effects generalized partial credit model. If, under the conditional normal
generalized partial credit model, y, is set to 0 and y, is set to 1 for identification, then
marginal maximum likelihood estimation always yields a proper solution, whereas if y, is
set to 0 and one of aj, ...,a is set to 1, then the estimate of the variance y,might be
negative. This example raises the interesting question whether there is in general a
method of identification that yields proper estimates. Further study is needed to find a
conclusive answer to this question.

The likelihood function of the extended model is not concave in general, which means
that it can have multiple extreme points. The methods to find the global maximum of the
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likelihood function proposed in this paper are a combination of the BFGS algorithm and a
multistart method or evolutionary algorithms. These methods have a limited guarantee of
finding the globally optimal solution. However, the probability of finding the globally
optimal solution increases with the number of runs of the BFGS algorithm in a multistart
method, but also with the population size and/or the number of generations used by
evolutionary algorithms (Nix & Vose, 1992).

The proposed maximum likelihood estimation procedures are useful in practice when
the number of items is small. Unfortunately, the efficiency of the procedure in terms of
computation time rapidly decreases with the number of items and the numbers of
response categories. This decrease in efficiency is due to the fact that the denominator of
the normalizing constant P(Y = 0) is computed by direct summation of its Hf;l m; terms.
To increase the practical applicability of the proposed maximum likelihood estimation
procedures, more efficient algorithms should be devised for computing P(Y = 0). Pseudo-
likelihood methods (Besag, 1975) are alternatives for obtaining parameter estimates that
do not suffer from this computational problem.

A limitation of the proposed maximum likelihood estimation procedures is that they
can only by applied to complete data. The likelihood function in equation (21) can,
however, be modified such that all available data are used in estimating the parameters of
the extended generalized partial credit model. Such a full information maximum
likelihood estimation procedure would be one possible way to deal with missing data.

Maris et al. (2015) developed a Markov chain Monte Carlo method for Bayesian
inference for the random effects one-parameter logistic model that does not rely on data
augmentation. By applying the Dutch identity (Holland, 1990) to the random effects one-
parameter logistic model, they derived the posterior expectation of ability for different
scores. Using their approach, however, the posterior expectation of ability for a person
with the highest possible score on all items cannot be estimated under the random effects
one-parameter logistic model (Maris et al., 2015, p. 863). An additional advantage of the
approach proposed in this paper over the approach proposed by Maris et al. (2015) is that
it provides the possibility of estimating this posterior expectation of ability under any
random effects generalized partial credit model, and thus also under the random effects
one-parameter logistic model.
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Appendix I:

The first five polynomials are

p(ay) = oy

1 1
py(ey) = S(@y) -y
py(y) = ~(@y) —2(@y) +2dy
3 6 2 3
1 1 11 1
piley) = S (@y)' = (@y) + o (oy)’ —Zdly
1 1 7 5 1
N P S e N A S S S B P SRR
ps(@y) = 120(avy) 5 (@Y) +24(ay) 12( ») 5oy
The first derivatives of the first five polynomials are
ey =1,
1) / 1
p2 (aY) = ay_i?
1 1
py) = S@y) —ay+s,
Wy — Leroys 3, v 11, 1
Dy (ay) = c@y) @y +oay——,
Wy . Yoy Lo, 3 7., 2 5, 1
ps (dy) = 24( y) 5(aﬂy) +8(aY) XY ts

The second derivatives of the first five polynomials are

S

pPy) = o,

P ay) = 1,

P y) = ay—1,

(2) (1 _ l / 2_%/ 1_1

pi(ay) = 2(wv) SOVt 5
1 7

/

P y) = 3(06’3’)3 —(ay)’+-ady——.

The log-likelihood function for the model in equation (19) is given by
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k I3
1By, Beo,v) = ;ﬁﬁnﬁ Zlernypr(a’y) —nlﬂ{ZQ(Y)}’
= r=1 'y y

4

& &
where ¢g(y) :exp{ SPx+ Y yrpr(a’y)}. The derivatives of I(f, ..., V) with
i=1 r=1

respect to f, v, and a; are given by

9P - X2aly)
Yy
Wi Do) _ 5 (afy)—nM,
» v Za(y)
Yy
k
Tay) X v @y,
al(ﬁl,“"ﬁk,a’y) = 5 1)/, o Yy r=1
oo Elurynypr (oy)y, —n o
y



