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Abstract

We conjecture a Verlinde type formula for the moduli space of Higgs sheaves on a surface with a holomorphic

2-form. The conjecture specializes to a Verlinde formula for the moduli space of sheaves. Our formula interpolates

between K-theoretic Donaldson invariants studied by Göttsche and Nakajima-Yoshioka and K-theoretic Vafa-

Witten invariants introduced by Thomas and also studied by Göttsche and Kool. We verify our conjectures in many

examples (for example, on K3 surfaces).
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1. Introduction

Let � be a smooth projective curve of genus 6 ≥ 2 over C. The classical \-functions at level : ≥ 1 for

� are defined as follows. The map � → Pic1(�), ? ↦→ [O� (?)] gives rise to the Abel-Jacobi map on

the symmetric product

Sym6−1(�) → Pic6−1(�),

and the imageΘ, which has codimension one, is known as the theta divisor. Denote byL the correspond-

ing line bundle. The \-functions of level : are defined as the elements of �0 (Pic6−1(�),L⊗: ). Since

�>0 (Pic6−1(�),L⊗: ) = 0, the Riemann-Roch theorem gives the dimension of the space of \-functions

of level : as the degree of exp(:Θ). Since Θ6/6! = 1, one obtains

dim�0(Pic6−1(�),L⊗: ) = :6 .

The Verlinde formula extends this equation to moduli spaces of rank 2 (and higher) stable vector bundles

on �, as follows. See [6] for a survey.

Denote by " := "� (2, 0) the moduli space of rank 2 semistable vector bundles � on � with

det � � O� . Then Pic(") is generated by the determinant line bundle L [2, 9]. The Verlinde formula

(for rank 2 and trivial determinant), originating from conformal field theory [44], is the following

expression:

dim�0(",L⊗: ) =
(
: + 2

2

)6−1 :+1∑

9=1

sin
( c 9

: + 2

)2−26

.

This formula has been proved by several people [39, 5, 41, 32, 8, 38, 7, 46] (for rank 2) and [11, 3] (for

general rank). Numerical aspects of this formula were studied by D. Zagier [45].

Let # := #� (2, 0) be the moduli space of rank 2 semistable Higgs bundles (�, q) on � with

det � � O� . Here, � is a rank 2 vector bundle, and q : � → � ⊗  � is called the Higgs field. The

moduli space # is non-compact. It has a C∗-action defined by scaling the Higgs field. The determinant

line bundle L on # is C∗-equivariant; therefore �0(#,L⊗: ) is a C∗-representation. Recently, Halpern-

Leistner [29] and Andersen-Gukov-Du Pei [1] found a formula for dim�0(#,L⊗: ), which can be seen

as a Verlinde formula for Higgs bundles. In physics, this formula is related to complex Chern-Simons

theory of the (three-dimensional) Seifert manifold � × (1 embedded into string theory [28].

In this paper, we study Verlinde type formulae on the moduli space of rank 2 Gieseker stable (Higgs)

sheaves on (, where ( is a smooth projective surface satisfying ?6 (() > 0 and 11(() = 0.

1.1. Verlinde Formula for Moduli of Sheaves

Denote by " := "�
(
(2, 21, 22) the moduli space of rank 2 Gieseker �-stable torsion free sheaves on (

with Chern classes 21 ∈ �2((,Z) and 22 ∈ �4 ((,Z). We assume there are no rank 2 strictly Gieseker

�-semistable sheaves on ( with Chern classes 21, 22. Then " is a projective scheme with perfect

obstruction theory of virtual dimension

vd = 422 − 22
1 − 3j(O(). (1)

When a universal sheaf E exists on " × (, the virtual tangent bundle is given by )vir
"

=

'Homc" (E,E)0 [1], where c" : " × ( → " denotes projection and (·)0 denotes a trace-free part.
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In general, E exists only étale locally. Nevertheless, 'Homc" (E,E)0 [1] exists globally on " × (,

essentially because this expression is invariant under replacing E by E ⊗ L for any L ∈ Pic(" × ()
[30, Section 10.2]. Algebraic Donaldson invariants are defined by integrating polynomial expressions

in slant products over ["]vir. These were studied in detail, for any rank, in T. Mochizuki’s remarkable

monograph [35].

Let U ∈ �∗((,Q). When a universal sheaf E exists on " × (, we consider the `-insertion defined by

the slant product

/: � ? (( × ",Q) × �@ ((,Q) → � ?−@ (",Q),

`(U) :=
(
22 (E) −

1

4
21 (E)2

)
/PD(U) ∈ �∗(",Q),

(2)

where PD(·) denotes a Poincaré dual. Note that

22 (E) −
1

4
21 (E)2

= −1

4
ch2 (E ⊗ E ⊗ det(E)∗),

where the sheaf E ⊗ E ⊗ det(E)∗ always exists globally on " × (, again, essentially because this

expression is invariant under replacing E by E ⊗ L. Therefore, (2) is always defined. When ! ∈ Pic(()
satisfies 21 (!)21 ∈ 2Z, there exists a line bundle `(!) ∈ Pic(") whose class in cohomology is (2) for

U = 21 (!) [30, Chapter 8]. One refers to `(!) as a Donaldson line bundle. The first conjecture concerns

jvir (", `(!)) := j(",Ovir
" ⊗ `(!)),

known as a  -theoretic Donaldson invariant [23].1 Here, Ovir
"

denotes the virtual structure sheaf of "

[12, Section 3.2]. Göttsche, H. Nakajima, and K. Yoshioka determined their wall-crossing behaviour,

when ( is a toric surface, using the  -theoretic Nekrasov partition function [23]. For rational surfaces

Göttsche and Y. Yuan established structure formulae for these invariants and relations to strange duality

[26, 17].

We denote intersection numbers such as
∫
(
21 (!)21(O( ()) by 21 (!)21 (O( ()) or simply ! ( .

Denote by SW(0) the Seiberg-Witten invariant of 0 ∈ �2 ((,Z).2

Conjecture 1.1. Let ( be a smooth projective surface with ?6 (() > 0, 11 (() = 0, and ! ∈ Pic(().
Let �, 21, 22 be chosen such that there are no rank 2 strictly Gieseker �-semistable sheaves on ( with

Chern classes 21, 22. Then jvir ("�
(
(2, 21, 22), `(!)) equals the coefficient of Gvd of

22−j (O( )+ 2
(

(1 − G2)
(!− ( )2

2
+j (O( )

∑

0∈� 2 ((,Z)
SW(0) (−1)021

(
1 + G
1 − G

) (
 (

2
−0

)
(!− ( )

.

In Section 2, we verify this conjecture in many cases for (: a K3 surface, an elliptic surface, a Kanev

surface, a double cover of P2 branched along a smooth octic curve, a quintic surface, and blow-ups

thereof. Our strategy is similar to [24, 19, 20, 21]. We first express jvir (", `(!)) in terms of algebraic

Donaldson invariants. Using Mochizuki’s formula [35, Theorem 1.4.6], the latter can be written in

terms of integrals on Hilbert schemes of points. We show that these integrals can be combined into a

generating series that is a cobordism invariant and hence determined on P2 and P1 × P1. On P2 and

P1 × P1, we determine this generating series (to some order) by localization.

Finally, in Section 4, we discuss interesting special cases of Conjecture 1.1.

1When the Donaldson line bundle does not exist, we define jvir (", ` (!)) by the virtual Hirzebruch-Riemann-Roch formula

[12, Corollary 3.4]: that is,
∫
[" ]vir 4

` (21 (!) ) td() vir
"

) .
2We use Mochizuki’s convention: SW(0) = S̃W(20 −  () , with S̃W(1) the usual Seiberg-Witten invariant in class 1 ∈

� 2 ((, Z) . Moreover, there are finitely many 0 ∈ � 2 ((, Z) such that SW(0) ≠ 0. Such classes are called Seiberg-Witten basic

classes.
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1.2. Verlinde Formula for Moduli of Higgs Sheaves

Let � be a polarization on (. Recently, Y. Tanaka and R. P. Thomas [40] proposed a mathematical

definition of SU(A) Vafa-Witten invariants of (. We consider the case A = 2. Their definition involves

the moduli space of Higgs sheaves (�, q)

# := #�( (2, 21, 22) =
{
(�, q) : tr q = 0, 21(�) = 21, 22 (�) = 22

}
,

where � is a rank 2 torsion free sheaf, q : � → � ⊗  ( is a morphism, and the pair (�, q) satisfies a

(Gieseker) stability condition with respect to �. Tanaka and Thomas show that # admits a symmetric

perfect obstruction theory in the sense of [4]. As in the curve case, one can scale a Higgs sheaf by sending

(�, q) to (�, Cq) for any C ∈ C∗. This defines an action of C∗ on # . As in the previous section, we

assume stability and semistability coincide. Then the fixed locus #C
∗

is projective, and the Vafa-Witten

invariants are defined as ∫

[# C∗ ]vir

1

4(#vir) ∈ Q,

where #vir denotes the virtual normal bundle and 4(·) is the equivariant Euler class [27]. The fixed

locus #C
∗

has two types of connected components:

◦ Components containing (�, q) with q = 0, which we refer to as the instanton branch. This branch is

isomorphic to the Gieseker moduli space " := "�
(
(2, 21, 22). The C∗-localized perfect obstruction

theory on " coincides with the one from the previous section.

◦ Components containing (�, q), where � = �0 ⊕ �1 ⊗ t−1 is the decomposition of � into rank 1

eigensheaves, and q : �0 → �1 ⊗  ( . Here, t denotes the weight one character of C∗. These

components constitute the monopole branch, which we collectively denote by "mon. Denote by ( [=]

the Hilbert scheme of = points on ( and by |V | the linear system of an algebraic class V ∈ �2 ((,Z).
A. Gholampour and Thomas [15, 16] prove that the monopole components are isomorphic to

incidence loci3

(
[=0 ,=1 ]
V

:= {(/0, /1, �) : �/0
(−�) ⊂ �/1

} ⊂ ( [=0 ] × ( [=1 ] × |V |,

for certain =0, =1, V, where �/ ⊂ O( is the ideal sheaf corresponding to / ⊂ (. Moreover, they show

that the C∗-localized perfect obstruction theory on (
[=0 ,=1 ]
V

is naturally obtained by realizing this

space as a degeneracy locus inside the smooth space ( [=0 ] × ( [=1 ] × |V | and reducing the perfect

obstruction theory coming from this description (Section 3).

Let " ′ ⊂ "mon be a connected component of the monopole branch and let U ∈ �∗((,Q). Similar

to the previous section, we define

`(U) :=
(
2C

∗

2 (E) − 1

4
2C

∗

1 (E)2
)
/PD(U) ∈ �∗

C∗ ("
′,Q), (3)

where the Chern classes areC∗-equivariant, " ′ and ( carry the trivial torus action, and E is the universal

sheaf on " ′ × (.

Vafa-Witten invariants can also be seen as reduced Donaldson-Thomas invariants counting two-

dimensional sheaves on - = Tot( ()—the total space of the canonical bundle on ( [14]. From this

perspective, it is more natural to work with the Nekrasov-Okounkov twist ofOvir
#

[37], which is defined as

Ôvir
# :=

√
 vir
#

⊗ Ovir
# ,

3For fixed A = 2, 21, 22, the virtual dimension of "mon ⊂ #C
∗

is in general not given by (1). In fact, "mon can have
components of different virtual dimension (see Remark 3.3).
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where

√
 vir
#

is a choice of square root of vir
#

= det(Ωvir
#
). Over the fixed locus #C

∗
, this choice of square

root is canonical [42, Proposition 2.6]. For any (possibly infinite-dimensional) graded vector spaces, set

j
(⊕

8

t
08 −

⊕

9

t
1 9

)
:=

∑

8

H08 −
∑

9

H1 9 .

The  -theoretic Vafa-Witten invariants are [42, (2.12), Proposition 2.13]

j(#, Ôvir
# ) := j('Γ(#, Ôvir

# )) = j
(
#C

∗
,
Ovir

# C
∗

Λ−1(#vir)∨ ⊗
√
 vir
#

���
# C

∗

)
.

Here,Λ−1 (·) is introduced in Section 2 and H is related to C := 2C
∗

1
(t) by H = 4C . The Nekrasov-Okounkov

twist ensures that these invariants are unchanged under H ↔ H−1 [42, Proposition 2.27]. Our next two

conjectures concern

j(#, Ôvir
# ⊗ `(!)) := j('Γ(#, Ôvir

# ⊗ `(!))),

where ! ∈ Pic(().4 This expression has instanton and monopole contributions corresponding to the

decomposition #C
∗
= "⊔"mon. By the argument in [42, Section 2.5], the instanton contribution equals

(−1)vdH−
vd
2 jvir

−H (", `(!)) := (−1)vdH−
vd
2

∑

?

(−H) ?jvir (",Λ?Ωvir
" ⊗ `(!)),

where vd is given by (1) and jvir
H (", ·) is the twisted virtual jH-genus [12].

Consider the following two theta functions and the normalized Dedekind eta function

\3 (G, H) =
∑

=∈Z
G=

2

H=, \2 (G) =
∑

=∈Z+ 1
2

G=
2

H=, [(G) =
∞∏

==1

(1 − G=). (4)

We also use the following notation. For any 0, 1 ∈ �2((,Z), define

X0,1 = #
{
W ∈ �2 ((,Z) : 0 − 1 = 2W

}
. (5)

Conjecture 1.2. Let ( be a smooth projective surface with ?6 (() > 0, 11 (() = 0, and ! ∈ Pic((). Let

�, 21, 22 be chosen such that there are no rank 2 strictly Gieseker �-semistable sheaves on ( with Chern

classes 21, 22. Let vd be defined by (1). Then H−
vd
2 jvir

−H ("�
(
(2, 21, 22), `(!)) equals the coefficient of

Gvd of

4

(
1

2

∞∏

==1

1

(1 − G2=)10(1 − G2=H) (1 − G2=H−1)

)j (O( ) (
2[(G4)2

\3 (G, H
1
2 )

) 2
(

·
( ∞∏

==1

(
(1 − G2=)2

(1 − G2=H) (1 − G2=H−1)

)=2 ) !2

2
( ∞∏

==1

(
1 − G2=H−1

1 − G2=H

)=)! (

·
∑

0∈� 2 ((,Z)
(−1)210 SW(0)

(
\3(G, H

1
2 )

\3(−G, H
1
2 )

)0 (

·
( ∞∏

==1

(
(1 − G2=−1H

1
2 ) (1 + G2=−1H−

1
2 )

(1 − G2=−1H−
1
2 ) (1 + G2=−1H

1
2 )

)2=−1 ) ! ( (−20)
2

.

4If the line bundle ` (!) does not exist on # (or #C
∗
), then we define these invariants by virtual C∗-localization combined

with the virtual HRR formula as before.
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Conjecture 1.3. Let ( be a smooth projective surface with ?6 (() > 0, 11 (() = 0, and ! ∈ Pic(().
Let �, 21, 22 be chosen such that there are no rank 2 strictly Gieseker �-semistable Higgs sheaves on

( with Chern classes 21, 22. Let # := #�
(
(2, 21, 22), and let vd be defined by (1). Then the monopole

contribution to j(#, Ôvir
#

⊗ `(!)) equals the coefficient of (−G)vd of

( ∞∏

==1

1

(1 − G8=)10(1 − G8=H2) (1 − G8=H−2)

)j (O( ) (
[(G4)2

\2 (G4, H)

) 2
(

·
( ∞∏

==1

(
(1 − G8=)2

(1 − G8=H2) (1 − G8=H−2)

)=2 )2!2 ( ∞∏

==1

(
1 − G4=H−1

1 − G4=H

)=)2! (

·
∑

0∈� 2 ((,Z)
X21 , (−0 SW(0) :0

(
\2 (G4, H)
\3 (G4, H)

)0 ( ( ∞∏

==1

(
1 + G8=−4H−1

1 + G8=−4H

)2=−1
)20!

·
( ∞∏

==1

(
1 + G8=H−1

1 + G8=H

)=)4! ( (−0)

·
( ∞∏

==1

(
1 + G4=H−1

1 + G4=H

)=)! (
,

where :0 := G−3j (O( ) (H 1
2 + H− 1

2 )−j (O( ) H 1
2
! (0− ( ) .

Together, these two conjectures give a Verlinde-type formula for the moduli space of Higgs sheaves

on a surface ( satisfying 11 (() = 0 and ?6 (() > 0. Moreover, our formulae interpolate between the

following two invariants:

◦ K-theoretic Donaldson invariants. After replacing G with GH
1
2 in the formula of Conjecture 1.2, we

can set H = 0. This replacement provides a formula for jvir
−H (", `(!)), and setting H = 0 implies the

formula for  -theoretic Donaldson invariants of Conjecture 1.1.

◦ K-theoretic Vafa-Witten invariants. Putting ! = O( in Conjectures 1.2 and 1.3, we obtain the

conjectural formulae for  -theoretic Vafa-Witten invariants of [21, Remark 1.3, 1.7].

In [19, Appendix], Göttsche and Nakajima conjectured a formula interpolating between Donaldson

invariants and virtual Euler numbers of " := "�
(
(2, 21, 22). Conjecture 1.2 also implies this formula

(Section 4).

Using the same strategy as for Conjecture 1.1, we verify Conjecture 1.2 in many examples. On the

other hand, for Conjecture 1.3, we prove the universal dependence by presenting a variation on an

argument of T. Laarakker [34], which in turn is an application of Gholampour-Thomas’s description of

the monopole virtual class in terms of nested Hilbert schemes [15, 16].

Theorem 1.4. There exist universal series

�1 (H, @), . . . , �6 (H, @) ∈ 1 + @Q[H 1
2 ] [[@]]

with the following property. Let ( be a smooth projective surface with ?6 (() > 0, 11(() = 0, and

! ∈ Pic((). Let �, 21, 22 be chosen such that there are no rank 2 strictly Gieseker �-semistable Higgs

sheaves on ( with Chern classes 21, 22. Let # := #�
(
(2, 21, 22), and let vd be defined by (1). Then the

monopole contribution to j(#, Ôvir
#

⊗ `(!)) equals the coefficient of (−G)vd of

�1 (H, G4)j (O() �2 (H, G4) 2
( �3 (H, G4)!2

�4 (H, G4)! (

·
∑

0∈� 2 ((,Z)
X21 , (−0 SW(0) ℓ0 �5 (H, G4)0 ( �6 (H, G4)0! ,

where ℓ0 := G0 (− 
2
(
−3j (O( ) (H 1

2 + H− 1
2 )0 (− 2

(
−j (O( ) H

1
2
! (0− ( ) .
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For ! = O( , this was proved in [34] (actually, for ! = O( , the analog of this theorem is proved in any

rank [34]). Universality on the instanton branch is still open. The universal series �8 can be expressed

in terms of intersection numbers on products of Hilbert schemes of points on surfaces. Again, these

intersection numbers are determined on P2 and P1 × P1, where we calculate using localization. This

way, we determine �8 mod @15, and we find a match with Conjecture 1.2 (Section 3).

For ! = O( , physicists [43] predict that the instanton and monopole generating functions of Conjec-

tures 1.2 and 1.3 get swapped under the S-duality transformation g → −1/g, where @ = exp(2c8g). See

[31] for a recent proof of S-duality for K3 surfaces (for any prime rank). For general !, the connection

between instanton and monopole contribution is less clear. However, the series depending on !2 are

related by G ↦→ G4, H ↦→ H2, ! ↦→ !⊗2 (and similarly for any rank in Section 3.6).

1.3. K3 Surfaces

By adapting an argument from [23] combined with a new formula for twisted elliptic genera of Hilbert

schemes of points on surfaces, Göttsche proves Conjecture 1.2 for K3 surfaces in [18]. By adapting

an argument of [34] combined with the above-mentioned formula for twisted elliptic genera of Hilbert

schemes of points on surfaces, we prove the following (where the formula for �1 was previously

determined in [42, 34]):

Theorem 1.5. The universal functions �1 (H, @), �3 (H, @) are given by

�1 (H, @) =
∞∏

==1

1

(1 − @2=)10(1 − @2=H2) (1 − @2=H−2)
,

�3 (H, @) =
∞∏

==1

(
(1 − @2=)2

(1 − @2=H2) (1 − @2=H−2)

)2=2

.

In particular, Conjectures 1.2 and 1.3 hold for K3 surfaces.5

2. Instanton Contribution and Donaldson Invariants

In this section, we gather evidence for Conjectures 1.1 and 1.2 as follows:

◦ Reduction to Donaldson invariants. Express the invariants of Conjectures 1.1 and 1.2 in terms of

Donaldson invariants of (.

◦ Reduction to Hilbert schemes. Use Mochizuki’s formula [35, Theorem 1.4.6] to express these

invariants as intersection numbers on Hilbert schemes of points on (.

◦ Reduction to toric surfaces. Show that the intersection numbers of the previous step are

determined on ( = P2 and P1 × P1, where they can be calculated using localization.

The final step allows us to calculate the invariants of Conjectures 1.1 and 1.2 and compare to our

conjectured formulae. This strategy has been used by Göttsche and Kool in the determination of the

instanton contribution to rank 2 and 3 Vafa-Witten invariants and various refinements thereof [19, 20, 21].

Mochizuki’s formula was also used by Göttsche and Nakajima-Yoshioka in their proof of the Witten

conjecture for algebraic surfaces, which expresses (primary, rank 2) Donaldson invariants in terms of

Seiberg-Witten invariants [24].

5The statement that Conjecture 1.3 holds for K3 surfaces has less content than initially meets the eye. On a K3 surface, X21 ,0

is only non-zero only when 21 is even. Assuming gcd(2, 21�,
1
2 2

2
1
− 22) = 1, which guarantees ‘stable=semistable’, implies 22

is odd. Hence the coefficient of (−1)Gvd of the conjectured expression is always zero. Indeed, ‘stable=semistable’ implies that
the monopole branch is empty [40, Proposition 7.4].
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2.1. Donaldson Invariants

Let ( be a smooth projective complex surface such that 11(() = 0. Let � be a polarization on (,

and let " := "�
(
(A, 21, 22).6 We assume there exist no rank A strictly Gieseker �-semistable sheaves

on ( with Chern classes 21, 22. For the moment, we also assume there exists a universal family E on

" × (, although we get rid of this assumption in Remark 2.3. For any U ∈ �∗((,Q) and : ≥ 0, define

`(U) ∈ �∗(",Q) as in (2), and

g: (U) := ch:+2(E)/PD(U) ∈ �∗(",Q).

We refer to g: (U) as a descendent insertion and call it primary when : = 0. As mentioned in the

introduction, if ! ∈ Pic(() satisfies 21 (!)21 ∈ 2Z, then there exists a line bundle on " , denoted by

`(!) and called a Donaldson line bundle, whose class in cohomology is (2) for U = 21 (!).
Consider the  -group  0(") generated by locally free sheaves on " . For any rank A vector bundle

on " , define

ΛH+ :=

A∑

8=0

[Λ8+]H8 ∈  0(") [H], SymH + :=

∞∑

8=0

[Sym8 +]H8 ∈  0(") [[H]] .

These expressions can be extended to complexes in  0(") by setting ΛH (−+) = Sym−H + and

SymH (−+) = Λ−H+ . For any complex � ∈  0("), we define

XH (�) := ch(ΛH�∨) td(�). (1)

Since ΛH (� ⊕ �) = ΛH� ⊗ ΛH�, we obtain

XH (� ⊕ �) = XH (�) XH (�).

Furthermore, for any ! ∈ Pic(")

XH (!) =
!(1 + H4−!)

1 − 4−! .

Lemma 2.1. Let (, �, A, 21, 22, and " := "�
(
(A, 21, 22) be as above. Let ! ∈ Pic((). Then there exists

a polynomial expression %(E) in H and certain descendent insertions g: (U) and `(21 (!)) such that

jvir
H (", `(!)) =

∫

[" ]vir

XH ()vir
" ) 4` (21 (!)) =

∫

[" ]vir

%(E).

Proof. The first equality is the virtual Hirzebruch-Riemann-Roch theorem [12, Corollary 3.4] (or the

definition of our invariants when the Donaldson line bundle `(!) does not exist on "). The second

equality was proved for ! = O( in [19, Proposition 2.1] by applying Grothendieck-Riemann-Roch and

the Künneth formula to

ch()vir
" ) = ch('Homc" (E,E)0 [1]).

The argument for any ! is the same, with %(E) now involving `(21 (!)). �

2.2. Mochizuki’s Formula

We recall Mochizuki’s formula [35, Theorem 1.4.6].

6In this paragraph, A > 0 is arbitrary, and we do not require ?6 (() > 0.
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Let ( [=] be the Hilbert scheme of = points on (. On ( [=1 ] × ( [=2 ] × (, we have (pull-backs of) the

universal ideal sheaves I1 and I2 from both factors. For any " ∈ Pic((), on ( [=1 ] × ( [=2 ] , we have

(pull-backs of) the tautological bundles " [=1 ] and " [=2 ] from both factors. We endow ( [=1 ] × ( [=2 ]

with the trivial C∗-action and denote the positive generator of the character group of C∗ by s. Define

B := 2C
∗

1
(s); then

�∗(�C∗,Q) = �∗
C∗ (pt,Q) � Q[B] .

Fix ! ∈ Pic((), and let %(E) be any polynomial in `(21 (!)) and descendent insertions g: (U).
We assume %(E) arises from a polynomial expression in `(21 (!)) and the Chern classes of )vir

"
(for

example, such as in Proposition 2.1). Let �1 (() be the Chow group of codimension 1 cycles up to linear

equivalence; then for any 01, 02 ∈ �1 (() and =1, =2 > 0, we define (following Mochizuki)

Ψ(!, 01, 02, =1, =2) :=

CoeffB0

(
%(I1 (01) ⊗ s−1 ⊕ I2(02) ⊗ s)
&(I1(01) ⊗ s−1,I2(02) ⊗ s)

4(O(01) [=1 ]) 4(O(02) [=2 ] ⊗ s2)
(2B)=1+=2−j (O( )

)
.

(2)

We explain the notation. Here, I8 (08) stands for I8 ⊗ c∗(O(08), considered as a sheaf on ( [=1 ] ×( [=2 ] ×(
pulled back along projection to ( [=8 ]×(. Similarly,O(08) [=8 ] is viewed as a vector bundle on ( [=1 ]×( [=2 ]

pulled back along projection to ( [=8 ] . Since ( [=1 ] × ( [=2 ] has a trivial C∗-action, we can view O(08) [=8 ]
as endowed with the trivial C∗-equivariant structure. Moreover,

O(02) [=2 ] ⊗ s
2

denotes O(02) [=2 ] with C∗-equivariant structure given by tensoring with character s2. Similarly, we

endow ( [=1 ] × ( [=2 ] × ( with trivial C∗-action, give I8 (08) the trivial C∗-equivariant structure, and

denote by

I1(01) ⊗ s, I2(02) ⊗ s
−1

the C∗-equivariant sheaves obtained by tensoring with the characters s and s−1, respectively. We denote

the C∗-equivariant Euler class by 4(·). Moreover, %(·) stands for the expression obtained from %(E)
by formally replacing E with · and all Chern classes with C∗-equivariant Chern classes.7 For any C∗-
equivariant sheaves �1, �2 on ( [=1 ] × ( [=2 ] × ( flat over ( [=1 ] × ( [=2 ] ,

&(�1, �2) := 4(−'Homc (�1, �2) − 'Homc (�2, �1)),

where c : ( [=1 ] × ( [=2 ] × ( → ( [=1 ] × ( [=2 ] denotes projection. Finally, CoeffB0 (·) takes the coefficient

of B0. We define Ψ̃(!, 01, 02, =1, =2, B) by expression (2) without CoeffB0 (·). Let 21, 22 be a choice of

Chern classes. For any decomposition 21 = 01 + 02, we define (again following Mochizuki)

A(!, 01, 02, 22) :=
∑

=1+=2=22−0102

∫

( [=1 ]×( [=2 ]
Ψ(!, 01, 02, =1, =2). (3)

Let Ã(!, 01, 02, 22, B) be defined by the same expression, with Ψ replaced by Ψ̃.

Theorem 2.2 (Mochizuki). Let ( be a smooth projective surface satisfying 11 (() = 0, ?6 (() > 0, and

let ! ∈ Pic((). Let �, 21, 22 be chosen such that there are no rank 2 strictly Gieseker �-semistable

7The replacement of E with I1 (01) ⊗ s−1 ⊕ I2 (02) ⊗ s comes from Mochizuki’s wall-crossing on the master space [35].

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.50
Downloaded from https://www.cambridge.org/core. Universiteitsbibliotheek Utrecht, on 07 May 2021 at 13:45:47, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.50
https://www.cambridge.org/core


10 L. Göttsche et al.

sheaves on ( with Chern classes 21, 22 and such that a universal sheaf E on "�
(
(2, 21, 22) × ( exists.

Assume the following hold:

(i) j(ch) > 0, where j(ch) :=
∫
(

ch ·td(() and ch = (2, 21,
1
2
22

1
− 22).

(ii) ?ch > ? ( , where ?ch = j(4<� · ch)/2 and ? ( = j(4<� · 4 ( ) are the reduced Hilbert

polynomials of ch and  ( .

(iii) For all SW basic classes 01 satisfying 01� ≤ (21 − 01)�, the inequality is strict.

Let %(E) be any polynomial in `(21 (!)) and descendent insertions arising from a polynomial in

`(21 (!)) and Chern classes of )vir
"

(for example, as in Proposition 2.1). Then

∫

["�
(

(2,21 ,22) ]vir

%(E) = −21−j (ch)
∑

21 = 01 + 02

01� < 02�

SW(01)A(!, 01, 02, 22). (4)

Remark 2.3. Assuming the existence of a universal sheaf E on " × (, where " := "�
(
(2, 21, 22), is

unnecessary. As remarked in the introduction, )vir
"

and `(21 (!)) always exist, so the left-hand side

of Mochizuki’s formula is always defined. Mochizuki [35] works over the Deligne-Mumford stack of

oriented sheaves, which has a universal sheaf. This can be used to show that the global existence of E on

"×( can be dropped from the assumptions. In fact, when working on the stack, % can be any polynomial

in descendent insertions defined using the universal sheaf on the stack. Also, since Mochizuki works on

the stack, his formula and our version differ by a factor of 2.

Remark 2.4. Conjecturally, assumptions (ii) and (iii) can be dropped from Theorem 2.2 [24, 19, 20, 21].

Moreover, also conjecturally, in the sum in Mochizuki’s formula, the inequality 01� < 02� can be

dropped. Assumption (i) is necessary.

Suppose the assumptions of Theorem 2.2 are satisfied. Combining with Lemma 2.1, we find that

H−
vd
2 jvir

−H (", `(!)) is given by (4) with

%(E) = H− vd
2 X−H (−'Homc (E,E)0) 4` (21 (!)) , (5)

where E is replaced by

I1(01) ⊗ s
−1 ⊕ I2(02) ⊗ s.

We note that the rank of

−'Homc (I1(01) ⊗ s
−1 ⊕ I2(02) ⊗ s,I1(01) ⊗ s

−1 ⊕ I2(02) ⊗ s)0

equals the rank of )vir
"

= −'Homc (E,E)0.

2.3. Universal Series

In this paragraph, ( is any smooth projective surface, so we allow ?6 (() = 0. We want to study the

intersection numbers (3) with %(E) given by (5). Let X
C∗
H (·) denote the same expression as in (1), but

with Chern character and Todd class replaced by C∗-equivariant Chern character and Todd class (recall

that we endow ( [=1 ] × ( [=2 ] with trivial C∗-action). Define

5 (B, H) := H−
1
2 X
C∗
−H (s2) = H− 1

2
2B(1 − H4−2B)

1 − 4−2B
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where the second equality follows from the properties listed in Section 2.1. We write j(0) := j(O( (0))
for any 0 ∈ �1((). For any !, 0, 21 ∈ �1((), we define

Z
inst
( (!, 0, 21, B, H, @) := (2B)−j (O()

( 2B

5 (B, H)
)−j (21−20) ( −2B

5 (−B, H)
)−j (20−21)

4 (21−20)!B

·
∑

=1 ,=2

@=1+=2

∫

( [=1 ]×( [=2 ]
Ψ̃(!, 0, 21 − 0, =1, =2, B).

The first line of this expression is just a normalization factor, so

Z
inst
( (!, 0, 21, B, H, @) ∈ 1 + @Q[H± 1

2 ] ((B)) [[@]] .

We note that the definition of Z
inst
(

(!, 0, 21, B, H, @) makes sense for any possibly disconnected smooth

projective surface (, and !, 0, 21 ∈ �1(().

Lemma 2.5. Let ( = (′ ⊔ (′′, where (′, (′′ are (possibly disconnected) smooth projective surfaces. Let

!, 0, 21 ∈ �1((), and define ! ′ := ! |(′ , 0′ := 0 |(′ , 2′1 := 21 |(′ , ! ′′ := ! |(′′ , 0′′ := 0 |(′′ , and 2′′
1

:= 21 |(′′ .
Then

Z
inst
( (!, 0, 21, B, H, @) = Z

inst
(′ (!

′, 0′, 2′1, B, H, @) Z
inst
(′′ (!

′′, 0′′, 2′′1 , B, H, @).

Proof. The case ! = O( was established in [19, Proposition 3.3]. The only new feature of the present

case is the following.

Define (2 = ( ⊔ (. As shown in [19, Proposition 3.3], the integrals over ( [=1 ] × ( [=2 ] occurring in

the coefficients of Z
inst
(

(!, 0, 21, B, H, @) can be written as integrals on (
[=]
2

by using the decomposition

(
[=]
2

=

⊔

=1+=2==

( [=1 ] × ( [=2 ] .

Since ( = (′ ⊔ (′′, we have a further decomposition

( [=1 ] × ( [=2 ] =
⊔

;1+;2==1 ,<1+<2==2

(′[;1 ] × (′′[;2 ] × (′[<1 ] × (′′[<2 ] .

Then the insertion 4` (21 (!)) restricted to (′[;1 ] × (′′[;2 ] × (′[<1 ] × (′′[<2 ] equals

?′∗4` (21 (!′)) ?′′∗4` (21 (!′′)) ,

where ?′, ?′′ are the projections in the diagram

(′[;1 ] × (′′[;2 ] × (′[<1 ] × (′′[<2 ]

?′tt✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐

?′′ **❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

(′[;1 ] × (′[<1 ] (′′[;2 ] × (′′[<2 ]

and (′[;1 ] × (′[<1 ] is seen as a connected component of (
′[;1+<1 ]
2

and (′′[;2 ] × (′′[<2 ] as a connected

component of (
′′[;2+<2 ]
2

. The rest of the proof proceeds exactly as in [19, Proposition 3.3]. �

Lemma 2.6. There exist universal functions

�1 (H, @), . . . , �11(H, @) ∈ 1 + @Q[H± 1
2 ] [[@]]
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such that for any smooth projective surface ( and !, 0, 21 ∈ �1((), we have

Z
inst
( (!, 0, 21, B, H, @) = �!

2

1 �!02 �0
2

3 �
021

4
�
22

1

5
�
!21

6
�
! (
7

�
0 (
8

�
21 (
9

�
 2
(

10
�
j (O( )
11

.

Proof. By [10], tautological integrals on Hilbert schemes of points on surfaces are universal. We are

dealing with integrals over products of Hilbert schemes, which were handled in [22, Lemma 5.5]. By

[22, Lemma 5.5] (see also [19, Proposition 3.3]), there exists a universal power series

� ∈ Q[G1, · · · , G11] [[@]]

such that for any smooth projective surface ( and !, 0, 21 ∈ �1 ((), we have

Z
inst
( (!, 0, 21, B, H, @) = 4� (!2 ,!0,02 ,021 ,2

2
1
,!21 ,! ( ,0 ( ,21 ( , 

2
(
,j (O( )) . (6)

Here, we use the fact that Z
inst
(

(!, 0, 21, B, H, @) starts with 1.

We claim that equation (6) and Lemma 2.5 together imply the result. This can be seen as follows (see

also [22, Lemma 5.5]). Choose 11 quadruples (( (8) , ! (8) , 0 (8) , 2 (8)
1
) such that the corresponding vectors

of Chern numbers

F8 := ((! (8) )2, . . . , j(O( (8) )) ∈ Q11

form a Q-basis. Now consider any ((, !, 0, 21). Then we can decompose its vector of Chern numbers

F = (!2, . . . , j(O()) as F =
∑
8 =8F8 , for some =8 ∈ Q. If all =8 ∈ Z≥0; then Lemma 2.5 implies that

Z
inst
( (!, 0, 21, B, H, @) =

11∏

8=1

(
4� (F8)

)=8
. (7)

Let , be the matrix with column vectors F1, . . . , F11 and " = (<8 9 ) its inverse. Defining � 9 :=

exp(∑8 <8 9� (F8)), equation (7) implies

Z
inst
( (!, 0, 21, B, H, @) = �!

2

1 · · · �j (O( )
11

.

Since the set of vectors F with all =8 ∈ Z≥0 is Zariski dense in Q11, the proposition holds for any

((, !, 0, 21). �

Theorem 2.2 and Lemma 2.6 at once imply the following result.

Proposition 2.7. Let ( be a smooth projective surface with 11(() = 0, ?6 (() > 0, and ! ∈ Pic(().
Let �, 21, 22 be chosen such that there are no rank 2 strictly Gieseker �-semistable sheaves on ( with

Chern classes 21, 22. Assume the following hold:

(i) j(ch) > 0, where j(ch) :=
∫
(

ch ·td(() and ch = (2, 21,
1
2
22

1
− 22).

(ii) ?ch > ? ( , where ?ch = j(4<� · ch)/2 and ? ( = j(4<� · 4 ( ) are the reduced Hilbert

polynomials of ch and  ( .

(iii) For all SW basic classes 0 with 0� ≤ (21 − 0)�, the inequality is strict.
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Then H−
vd
2 jvir

−H ("�
(
(2, 21, 22), `(!)) is the coefficient of GvdB0 of

− 2
∑

0 ∈ � 2 ((, Z)
0� < (21 − 0)�

SW(0) �1(H, 2G4)!2

(
42B�2 (H, 2G4)

)!0

·
(
2−1

(
2B

5 (B, H)

)2 (
−2B

5 (−B, H)

)2

G−4�3 (H, 2G4)
)02

·
(
2

(
2B

5 (B, H)

)−2 (
−2B

5 (−B, H)

)−2

G4�4(H, 2G4)
)021

·
(
2−

1
2

(
2B

5 (B, H)

) 1
2
(

−2B

5 (−B, H)

) 1
2

G−1�5 (H, 2G4)
)22

1

·
(
4−B�6(H, 2G4)

)!21

�7(H, 2G4)! (

·
((

2B

5 (B, H)

) (
−2B

5 (−B, H)

)−1

�8(H, 2G4)
)0 (

·
(
2

1
2

(
2B

5 (B, H)

)− 1
2
(

−2B

5 (−B, H)

) 1
2

�9(H, 2G4)
)21 (

· �10(H, 2G4) 2
(

(
B

2

(
2B

5 (B, H)

) (
−2B

5 (−B, H)

)
G−3�11(H, 2G4)

)j (O( )
.

Remark 2.8. By Remark 2.4, conjecturally, assumptions (ii) and (iii) in the previous proposition, as

well as the inequality 0� < (21 − 0)� in the sum, can be dropped.

2.4. Reduction to Toric Surfaces

We now present 11 choices of ((, !, 0, 21) for which the vectors of Chern numbers (!2, . . . , j(O())
are Q-independent:

((, !, 0, 21) = (P2,O,O,O),
(P1 × P1,O,O,O),
(P2,O,O(1),O(2)),
(P2,O,O,O(1)),
(P2,O,O(1),O(3)),
(P1 × P1,O,O(0, 1),O(0, 2)),
(P1 × P1,O,O,O(0, 1)),
(P2,O(1),O,O),
(P1 × P1,O(0, 1),O,O),
(P2,O(1),O(1),O(2)),
(P2,O(1),O,O(1)).
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14 L. Göttsche et al.

Each of these surfaces ( is toric and hence has an action of) = C∗×C∗. Choose)-equivariant structures

on the line bundles corresponding to !, 0, 21. Then we can calculate Z
inst
(

(!, 0, 21, B, H, @) by Atiyah-Bott

localization. More precisely, consider one of the intersection numbers

∫

( [=1 ]×( [=2 ]
Ψ̃(!, 0, 21 − 0, =1, =2, B)

appearing in the definition of Z
inst
(

(!, 0, 21, B, H, @). The action of ) lifts to ( [=1 ] × ( [=2 ] , and its fixed

locus is indexed by pairs

(
{_ (f) }4 (()

f=1
, {` (f) }4 (()

f=1

)
,

where each _ (f) = (_ (f)
1

≥ _ (f)
2

≥ . . .) and ` (f) = (` (f)
1

≥ `
(f)
2

≥ . . .) are partitions such that

∑

f

|_ (f) | =
∑

f,8

_
(f)
8

= =1,
∑

f

|` (f) | =
∑

f,8

`
(f)
8

= =2.

The Euler number 4(() equals the number of torus fixed points ?f of (, and each partition _ (f) , ` (f)

corresponds (in the usual way) to a monomial ideal on the maximal )-invariant affine open subset

C2
� *f ⊂ ( containing ?f . For example, see [19, 20] for more details.

For any pair ({_ (f) }f , {` (f) }f) corresponding to zero-dimensional )-fixed subschemes (/,,) ∈
( [=1 ] × ( [=2 ] , we are interested in the restriction

Ψ̃(!, 0, 21 − 0, =1, =2, B)
���
(/,, )

. (8)

Let )̃ := ) × C∗, where C∗ is the torus acting trivially on ( [=1 ] × ( [=2 ] (as in Mochizuki’s formula).

Denote by t1, t2, s positive primitive generators of the character group of each factor of )̃ . Then the

)̃-equivariant  -group of a point is given by the following ring of Laurent polynomials:

 0

)̃
(pt) � Z[t±1 , t±2 , s±] .

To calculate (8) in terms of n1 := 2)̃
1
(t1), n2 := 2)̃

1
(t2), and B := 2)̃

1
(s), we must determine the classes

of the following complexes in  0

)̃
(pt):

�0(O/ (0)), �0 (O, (21 − 0)),
'Hom( (O/ ,O/ ), 'Hom( (O, ,O, ),
'Hom( (O/ ,O, (21 − 20) ⊗ s

2), 'Hom( (O, (21 − 20) ⊗ s
2,O/ ),

where �/ , �, ⊂ O( are the ideal sheaves of /,, . The expressions in the first line follow at once from

the )̃-representations of /,, in terms of the partitions _ (f) , ` (f) . The expressions in lines two and

three can be calculated by using a )-equivariant resolution of �/ , �, . For explicit formulae, see [19,

Proposition 4.1]. Finally, `(!) leads to the insertion

c∗
(
2)̃1 (!) · (ch)̃2 (O/ ) + ch)̃2 (O, )) ∩ [(]

)
=

4 (()∑

f=1

0f ·
(
|_ (f) | + |` (f) |

)
,

where c∗ :  0

)̃
(() →  0

)̃
(pt) denotes equivariant push-forward and 0f is the character corresponding

to ! |*f .
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The calculation of Z
inst
(

for each of the 11 cases above is now a purely combinatorial problem, which

we implemented in the computer program Pari/GP. We determined the universal series �1, . . . , �11 of

Proposition 2.6 to the following orders:

◦ For �1(1, @), . . . , �11(1, @), we computed the coefficients of B;−3=@= for all = ≤ 10, ; ≤ 49. (Recall:

�8 (1, @), �8 (H, @) are Laurent series in B.)

◦ For �1(H, @), . . . , �11(H, @), we computed the coefficients of B;−5=H<@= for all = ≤ 6, < ≤ 9,

; ≤ 30.

2.5. Verifications

We verified Conjecture 1.1 in the following cases.8 In each case, we fix (, 21, 22 as indicated, and we

choose � such that the assumptions of Proposition 2.7 are satisfied. We use the explicit expansions

of �1(1, @), . . . , �11(1, @) determined in the previous section by localization calculations on P2 and

P1 × P1 using Pari/GP.

1. ( is a K3 surface, 21 is such that 22
1
= 0, 2, . . . , 20, and vd < 14.

2. ( is the blow-up of a K3 surface in a point, 21 = c∗� + n� such that �2 = −4,−2, . . . , 10,

n = −2,−1, . . . , 2, and vd < 15.

3. ( is the blow-up of a K3 surface in two distinct points, 21 = c∗� + 41�1 + 42�2 such that �2 =

−2, 0, . . . , 6, 41, 42 = 0, 1, and vd < 13.

4. ( → P1 is an elliptic surface of type � (#),9 # = j(O() = 3, 4, . . . , 7, 21 = <� + =� where � is the

class of a section, � is the class of a fibre, < = −1, 0, 1, 2, = = −2,−1, . . . , 5, and vd < 12.

5. ( is the blow-up of an elliptic surface of type � (3) in a point, 21 = c∗� + n� such that � ( =

−1, 0, . . . , 4, �2 = −4,−3, . . . , 10, n = 0, 1, and vd < 12.

6. ( is a minimal general type surface with 11(() = 0, j(O() = 2,  2
(
= 1 [33], 21 is such that

21 ·  ( = 0, 1, 22
1
= −2,−1, . . . , 11, and vd < 12.

7. ( is a double cover of P2 branched along a smooth octic surface, 21 is such that 21 · ( = 0, 1, . . . , 10,

22
1
= 0, 1, . . . , 30, and vd < 12.

8. ( is the blow-up of a surface (′ as in (7) in a point, 21 = c∗� + n� such that � ( = −2,−1, . . . , 2,

�2 = −2,−1, . . . , 8, n = 0, 1, and vd < 11.

9. ( is a very general smooth quintic surface in P3 (then Pic(() = Z[�]), 21 = 2� and vd < 8, or

21 = 3� and vd < 7.

Assuming the strong form of Mochizuki’s formula holds (Remark 2.4), we also verified Conjecture

1.1 in the following cases:

(10) ( is a smooth quintic surface in P3, 21 such that 21 ·  ( = 0, 1, . . . , 25, 22
1
= −4,−3, . . . , 20, and

vd < 11.

(11) ( is the blow-up of a quintic surface in P3 in a point, 21 = c∗�+n� such that� ( = −5,−4, . . . , 5,

�2 = −4,−3, . . . , 8, n = 0, 1, and vd < 10.

Applying the same method and using our explicit expansions of �1(H, @), . . ., �11 (H, @) from the

previous section, we verified Conjecture 1.2 in the following cases:

1. ( is a K3 surface, 21 is such that 22
1
= 0, 2, . . . , 14, and vd < 11.

2. ( is the blow-up of a K3 surface in a point, 21 = c∗� + n� such that �2 = −4,−2, . . . , 14,

n = −2,−1, . . . , 2, and vd < 10.

3. ( is the blow-up of a K3 surface in two distinct points, 21 = c∗� + 41�1 + 42�2 such that �2 =

−2, 0, . . . , 6, 41, 42 = 0, 1, and vd < 10.

8In this list, c : ( → (′ always denotes the blow-up in a point, and the exceptional divisor is written as � (or �1, �2 in the
case of a blow-up in two distinct points).

9That is, an elliptic surface ( → P1 with section, 12# rational 1-nodal fibres, and no other singular fibres.
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4. ( is an elliptic surface of type � (#) with # = 3, 4, 5, 21 = <� + =� with < = −1, 0, 1, 2,

= = −2,−1, . . . , 10, and vd < 9.

5. ( is the blow-up of an elliptic surface of type � (3) in a point, 21 = c∗� + n� such that � ( =

−1, 0, . . . , 4, �2 = −16,−15, . . . , 0, n = 0, 1, and vd < 9.

6. ( is the double cover of P2 branched along a smooth octic surface, 21 is such that 21 ·  ( =

−2,−1, . . . , 2, 22
1
= −16,−15, . . . ,−6, and vd < 9.

7. ( is the blow-up of (′ as in (6) in a point, 21 = c∗� + n� such that � ( = −2,−1, . . . , 2,

�2 = −16,−15 . . . , 8, n = 0, 1, and vd < 7.

Assuming the strong form of Mochizuki’s formula holds (Remark 2.4), we also verified Conjecture

1.2 in the following cases:

(8) ( is a smooth quintic surface in P3, 21 is such that 21 · ( = 2, 3, . . . , 6, 22
1
= −16,−15, . . . ,−3, and

vd < 7.

(9) ( is the blow-up of a smooth quintic surface in P3 in a point, 21 = c∗� + n� such that � ( = 0,

�2 = −23,−22, . . . ,−14, n = 0, 1, and vd < 4.

3. Monopole Contribution and Nested Hilbert Schemes

In this section, we study the contribution of the monopole branch to the invariants j(#, Ôvir
#

⊗ `(!))
defined in the introduction. We prove that it is determined by universal series �1, . . . , �6 as stated in

Theorem 1.4. Moreover, we express these universal functions in terms of integrals over products over

Hilbert schemes of points on (. Much like in the previous section, these integrals are determined by

their value on P2 and P1 × P1, where we calculate them, modulo @15, by localization.

The methods of this section are a variation on Laarakker’s work [34], which in turn relies on

Gholampour-Thomas’s work [15, 16]. For ! = O( and A = 2, Theorem 1.4 was previously proved in

[34] (in fact, for ! = O( , he proved the analog of Theorem 1.4 in any rank). Then j(#, Ôvir
#
) are the rank

2  -theoretic Vafa-Witten invariants defined by Thomas [42] and determined by the universal series

�1, �2, �5. Closed formulae for these universal series were conjectured in [21] (refining Vafa-Witten’s

original formula [43, (5.38)]) and subsequently verified in [34] up to the following orders:

�1 (H, @) =
∞∏

==1

1

(1 − @2=)10(1 − @2=H2) (1 − @2=H−2)
mod @15

�2 (H, @) = (H 1
2 + H− 1

2 )@ 1
4
[(@)2

\2(@, H)
mod @15

�5 (H, @) =
1

(H 1
2 + H− 1

2 )@ 1
4

\2 (@, H)
\3 (@, H)

mod @15,

(1)

where [(@), \2 (@, H), \3 (@, H) were introduced in (4). The universal power series �3, �4, �6 are new. In

accordance with Conjecture 1.3, we show

�3 (H, @) =
∞∏

==1

(
(1 − @2=)2

(1 − @2=H2) (1 − @2=H−2)

)2=2

mod @15

�4 (H, @) =
∞∏

==1

(
1 − @=H−1

1 − @=H

)= (
1 − @2=H−2

1 − @2=H2

)= (
1 + @2=H−1

1 + @2=H

)4=

mod @15

�6 (H, @) =
∞∏

==1

(
1 − (−1)=@=H−1

1 − (−1)=@=H

)2= (
1 − @4=H2

1 − @4=H−2

)4=

mod @15.

(2)
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3.1. Gholampour-Thomas’s Formula

Let ( be a smooth projective surface satisfying 11(() = 0 and ?6 (() > 0. Let A = 2 and 21, 22 be chosen

such that there are no rank 2 strictly Gieseker�-semistable Higgs sheaves on (with Chern classes 21, 22.

Let # := #�
(
(2, 21, 22), and let "mon ⊂ #C

∗
be the monopole branch discussed in the introduction.

Gholampour-Thomas [15] (see also [13]) prove that the components of "mon are isomorphic to

(
[=0 ,=1 ]
V

:= {(/0, /1, �) : �/0
(−�) ⊂ �/1

} ⊂ ( [=0 ] × ( [=1 ] × |V |,

for certain (see Remark 3.2 below) =0, =1 ≥ 0 and algebraic V ∈ �2 ((,Z). In particular, such =0, =1, V

satisfy

21 − V +  ( ∈ 2�2((,Z),

22 = =0 + =1 +
( 21 − V +  (

2

) ( 21 + V −  (
2

)
.

(3)

Whenever we have =0, =1, V satisfying (3), it is convenient to define

!0 :=
21 − V +  (

2
, !1 :=

21 + V −  (
2

.

Consider the inclusion

] : (
[=0 ,=1 ]
V

⊂ ( [=0 ] × ( [=1 ] × |V |,

where |V | denotes the linear system determined by O( (V). The universal sheaf E on "mon × ( restricted

to the component (
[=0 ,=1 ]
V

× ( is

E � I0 ⊗ !0 ⊕ I1 ⊗ !1 (1) ⊗ t
−1, (4)

where t is a positive primitive character of the trivial C∗-action on "mon × ( ⊂ #C
∗ × (. Moreover,

I0,I1 are the universal ideal sheaves pulled back from the factors of ( [=0 ] × ( [=1 ] × ( × |V | (and then

along ] × id( to (
[=0 ,=1 ]
V

), !0, !1 are pulled back from (, and O(1) is pulled back from |V |. Consider

"mon ⊂ #C
∗

with its C∗-localized perfect obstruction theory [27].

Theorem 3.1 (Gholampour-Thomas). The class ]∗ [( [=0 ,=1 ]
V

]vir is given by

SW(V) 4
(
'Γ(V) ⊗ O − 'Homc (I0,I1(V)

)
∈ �2=0+2=1

(( [=0 ] × ( [=1 ] × |V |),

where c : ( [=0 ] ×( [=1 ] ×( → ( [=0 ] ×( [=1 ] denotes projection, 4(·) = 2=0+=1
(·),10 and the LHS should be

interpreted as the image under push-forward along the inclusion ( [=0 ]×( [=1 ]×{pt} ↩→ ( [=0 ]×( [=1 ]×|V |
for any point pt ∈ |V |.

Remark 3.2. Not all =0, =1, V satisfying (3) correspond to spaces (
[=0 ,=1 ]
V

containing Gieseker �-

stable Higgs sheaves on ( with Chern classes 21, 22. However, such components still have a virtual

class given by the formula of Theorem 3.1 (induced by realizing (
[=0 ,=1 ]
V

as an incidence locus inside

( [=0 ] × ( [=1 ] × |V | [15]). Laarakker proves that components (
[=0 ,=1 ]
V

, which are not part of "mon, satisfy

[( [=0 ,=1 ]
V

]vir = 0 [34]. This implies that we may as well consider all =0, =1, V satisfying (3) and their

corresponding spaces (
[=0 ,=1 ]
V

.

10By Carlsson-Okounkov vanishing, 2>=0+=1
('Γ(V) ⊗ O − 'Homc (I0, I1 (V)) = 0 [15].
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Remark 3.3. Unlike the instanton branch, it may happen that the monopole branch "mon of

#�
(
(2, 21, 22)C

∗
has components of different virtual dimension with respect to the C∗-localized per-

fect obstruction theory. A component (
[=0 ,=1 ]
V

⊂ "mon, where =0, =1, V satisfy (3), has virtual dimension

=0 + =1. As an example, take ( → P2, a double cover branched over a smooth curve of degree 10; then

 ( = 2!, where ! ⊂ ( is the pull-back of the line from P2. Let � = !, 21 =  ( , and 22 ≥ 3 odd; then

gcd(2, 21�,
1
2
21 (21 −  () − 22) = 1, in which case there are no rank 2 strictly Gieseker �-semistable

Higgs sheaves on ( with Chern classes 21, 22. For V = 0 and any 0 ≤ =1 ≤ =0 such that 22 = =0 + =1,

we obtain a non-empty component of virtual dimension 22. For V =  ( and any 0 ≤ =0 < =1 such that

22 = =0 + =1 + 2, we obtain a non-empty component of virtual dimension 22 − 2. In both cases, the ele-

ments of the component correspond to Gieseker �-stable Higgs sheaves. Also note that in this example,

V = 0,  ( are the Seiberg-Witten basic classes of (.

Although the virtual dimension of the monopole branch is in general not given by (1), we still define

vd(2, 21, 22) := vd = 422 − 22
1 − 3j(O()

and use Gvd as the formal variable of our generating series.

3.2. Virtual Normal Bundle and -(c1 (L))-Insertion

The (dual) Tanaka-Thomas perfect obstruction theory is given by [40]

� •∨
TT = 'Homc (E,E ⊗  ( ⊗ t)0 − 'Homc (E,E)0.

Using (4), the class of � •∨
TT
|
(
[=0 ,=1 ]
V

in  0
C∗ ((

[=0 ,=1 ]
V

) equals the restriction of the following element of

 0
C∗ ((

[=0 ] × ( [=1 ] × |V |):

+=0 ,=1 ,V := 'Homc (I0,I1(V) ⊗ O(1)) + 'Γ(O() ⊗ O
− 'Homc (I0,I0) − 'Homc (I1,I1)
+ 'Homc (I1 (V) ⊗ O(1),I0 ⊗  2

( ⊗ t
2) − 'Γ( ( ⊗ t) ⊗ O

+ 'Homc (I0,I0 ⊗  ( ⊗ t) + 'Homc (I1,I1 ⊗  ( ⊗ t)
− 'Homc (I0,I1(V) ⊗  ∗

( ⊗ t
−1) − 'Homc (I1(V) ⊗  ∗

( ⊗ t
−1,I0),

where lines 1–2 have C∗-weight zero and lines 3–5 have non-zero C∗-weight. We denote by (·)mov the

weight ≠ 0 part of a complex and by (·)C∗ the weight zero part. Therefore, on (
[=0 ,=1 ]
V

, the virtual normal

bundle #vir and C∗-localized perfect obstruction theory are given by

#vir := (� •∨
TT)mov

= +mov
=0 ,=1 ,V

|
(
[=0 ,=1 ]
V

,

(� •∨
TT)C

∗
= +C

∗
=0 ,=1 ,V

|
(
[=0 ,=1 ]
V

.

Finally, we write

+=0 ,=1
:= +=0 ,=1 ,V |( [=0 ]×( [=1 ]×{pt} ∈  0

C∗ ((
[=0 ] × ( [=1 ]).

This restriction essentially amounts to removing O(1) from the expression of +=0 ,=1 ,V . Using Theorem

3.1, we conclude that the contribution of (
[=0 ,=1 ]
V

to j(#, Ôvir
#

⊗ `(!)) equals
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SW(V) ·
∫

( [=0 ]×( [=1 ]
4
(
'Γ(V) ⊗ O − 'Homc (I0,I1(V)

)

·
ch(

√
det(+=0 ,=1

)∨)
ch(Λ−1 (+mov

=0 ,=1
)∨) 4

` (21 (!)) td(+C∗=0 ,=1
).

Here, we used that `(21 (!)) = c∗ (c∗(21 (!) ∩ (− ch2 (E) + 1
4
21 (E)2) restricted to (

[=0 ,=1 ]
V

also pulls back

from an expression on ( [=0 ] × ( [=1 ] × |V |. On

( [=0 ] × ( [=1 ] × {pt} ⊂ ( [=0 ] × ( [=1 ] × |V |,

this expression is given by

`(21 (!)) = c∗
(
c∗(21(!) · (− ch2 (I0) − ch2 (I1)) ∩ [( [=0 ] × ( [=1 ] × (]

)

− 1

4

∫

(

! ·
( 21 − V +  (

2

)2

− 1

4

∫

(

! ·
( 21 + V −  (

2
− C

)2

+ 1

2

∫

(

! ·
( 21 − V +  (

2

) ( 21 + V −  (
2

− C
)

= c∗
(
c∗(21(!) · (− ch2 (I0) − ch2 (I1)) ∩ [( [=0 ] × ( [=1 ] × (]

)

+ C

2

∫

(

! · (V −  (),

where the equivariant integrals
∫
(
(· · · ) ∈  0

C∗ (pt) = Z[C±1] are multiplied with the fundamental class

[( [=0 ] × ( [=1 ]], and we are suppressing some Poincaré duals. Exponentiating and using H := 4C gives

4` (21 (!)) = H
1
2
! (V− ( )4c∗(c∗(21 (!) ·(− ch2 (I0)−ch2 (I1))∩[( [=0 ]×( [=1 ]×( ]) .

3.3. Universal Series

Let ( be any smooth projective surface not necessarily satisfying 11(() = 0 and ?6 (() > 0. For any

!, V ∈ Pic(() and =0, =1, the expressions

+=0 ,=1
, `(21 (!)) ∈  0

C∗ ((
[=0 ] × ( [=1 ])

are defined as in the previous paragraph. We define

Z
mon
( (!, V, H, @) := H−

1
2
! (V− ( )

(
−1

H
1
2 + H− 1

2

)−j (V− ( )
(H 1

2 − H− 1
2 )−j (V)+j (O()

·
∑

=0 ,=1≥0

@=0+=1

∫

( [=0 ]×( [=1 ]
4
(
'Γ(V) ⊗ O − 'Homc (I0,I1(V)

)

·
ch(

√
det(+=0 ,=1

)∨)
ch(Λ−1(+mov

=0 ,=1
)∨) 4

` (21 (!)) td(+C∗=0 ,=1
).

Here, the first line is a normalization factor ensuring that

Z
mon
( (!, V, H, @) ∈ 1 + @Q[H± 1

2 ] [[@]] .
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The normalization factor can be computed as follows. Putting =0 = =1 = 0, the definition of +=0 ,=1
gives

+0,0 = 'Γ(O( (V)) − 'Γ(O() + 'Γ(O( (−V + 2 () ⊗ t
2)

+ 'Γ(O( ( () ⊗ t) − 'Γ(O( (V −  () ⊗ t
−1) − 'Γ(O( (−V +  () ⊗ t).

(5)

Using

ch(
√
!∗)

ch(Λ−1!∗)
=

1

4
1
2
21 (!) − 4− 1

2
21 (!)

combined with Serre duality and H = 4C , we obtain

4` (21 (!)) ch(
√

det(+0,0)∨)
ch(Λ−1 (+mov

0,0
)∨) td(+C∗0,0)

= H
1
2
! (V− ( )

(
H−

1
2 − H 1

2

H − H−1

)j (V− ( )
(H 1

2 − H− 1
2 )j (V)−j (O() .

The generating series Z
mon
(

(!, V, H, @) has the following universal property.

Lemma 3.4. There exist universal functions

�1 (H, @), . . . , �7(H, @) ∈ 1 + @Q[H± 1
2 ] [[@]]

such that for any smooth projective surface ( and !, V ∈ �1((), we have

Z
mon
( (!, V, H, @) = �!2

1 �
!V

2
�
V2

3
�
! (
4

�
V (
5

�
 2
(

6
�
j (O( )
7

.

Proof. The case ! = O( is proved (for any rank A) in [34, Section 8]. The strategy is similar to the proof

of Proposition 2.6:

Step 1: Multiplicativity. Let ( = (′ ⊔ (′′, where (′, (′′ are possibly disconnected smooth projective

surfaces. Let !, V ∈ �1((), and define ! ′ := ! |(′ , V′ := V |(′ , ! ′′ := ! |(′′ , and V′′ := V |(′′ . Then

Z
mon
( (!, V, H, @) = Z

mon
(′ (! ′, V′, H, @) Z

mon
(′′ (! ′′, V′′, H, @).

The only new feature compared to [34, Section 8] is the insertion

c∗
(
c∗(21 (!) · (− ch2(I0) − ch2 (I1)) ∩ [( [=0 ] × ( [=1 ]]

)
,

which we discussed in Lemma 2.5.

Step 2: Universality. This is proved as in Lemma 2.6. �

Lemma 3.5. Let ( be a smooth projective surface with 11(() = 0, ?6 (() > 0, and ! ∈ Pic((). Let

�, 21, 22 be chosen such that there exist no rank 2 strictly Gieseker �-semistable Higgs sheaves on (
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with Chern classes 21, 22. For vd given by (1), the monopole contribution to j(#, Ôvir
#
× `(!)) is given

by the coefficient of (−G)vd of

∑

V∈� 2 ((,Z)
X21 , (−V SW(V) �1(H, G4)!2

(
H

1
2 �2 (H, G4)

)!V

·
((

−1

H
1
2 + H− 1

2

) 1
2

(H 1
2 − H− 1

2 ) 1
2 (−G)−1�3(H, G4)

)V2

·
(
H−

1
2 �4 (H, G4)

)! ( (( −1

H
1
2 + H− 1

2

)− 3
2

(H 1
2 − H− 1

2 )− 1
2 (−G)2�5 (H, G4)

)V (

·
((

−1

H
1
2 + H− 1

2

)
(−G)−1�6 (H, G4)

) 2
(
((

−1

H
1
2 + H− 1

2

)
(−G)−3�7(H, G4)

)j (O( )
.

Proof. By Remark 3.2, we sum the contributions to the invariant of (
[=0 ,=1 ]
V

for all V ∈ �2 ((,Z),
=0, =1 ∈ Z≥0 such that 21 + V −  ( ∈ 2�2 ((,Z), and

22 = =0 + =1 +
( 21 − V +  (

2

) ( 21 + V −  (
2

)
,

or, equivalently, vd = 4(=0 + =1) − (V −  ()2 − 3j(O(). As shown in [34, Section 8], this gives∑
V∈� 2 ((,Z) X21 , (−V SW(V) · (· · · ), where X0,1 was defined in (5), and (· · · ) equals the coefficient of

(−1)vdGvd of

(−1)vdH
1
2
! (V− ( )

(
H−

1
2 − H 1

2

H − H−1

)j (V− ( )
(H 1

2 − H− 1
2 )j (V)−j (O( )Zmon

( (!, V, H, G4).

Lemma 3.4 then gives Z
mon
(

(!, V, H, G4) in terms of the universal series �8 . �

Proof of Theorem 1.4. There are finitely many V ∈ �2((,Z) for which SW(V) ≠ 0. These classes satisfy

V2 = V ( [35, Proposition 6.3.1]. The theorem follows by defining �1 := �7, �2 := �6, �3 := �1,

�4 := �4, �5 := �3�5, �6 := �2. �

3.4. Reduction to Toric Surfaces

Consider the following seven choices of ((, !, V) for which the corresponding vectors of Chern numbers

(!2, . . . , j(O()) are Q-independent:

((, !, V) = (P2,O,O),
(P2,O(−3),O),
(P2,O(−6),O),
(P2,O,O(6)),
(P2,O,O(−6)),
(P2,O(−3),O(−6)),
(P1 × P1,O,O).
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In each case, localization (as in Section 2.4) reduces the series Z
mon
(

(!, V, H, @) to a purely combinatorial

expression. In this way, we determined the universal series �1, . . . , �7 modulo @15. For our calculations,

we used (and slightly adapted) a SAGE program of Laarakker, which was used for the calculation of

 -theoretic Vafa-Witten invariants in [34]. Using the definitions of �1, . . . , �6 in terms of �1, . . . , �7,

we obtain (1) and (2).

3.5. K3 Surfaces

In this section, we consider Z
mon
(

(!, V, H, @) when ( is a K3 surface and V = 0. Note that 0 is the only

Seiberg-Witten basic class of a K3 surface, and SW(0) = 1. Let ] : (
[=0 ,=1 ]
0

↩→ ( [=0 ] × ( [=1 ] be the

natural inclusion. Laarakker [34, Section 10] observes that

]∗ [( [=0 ,=1 ]
0

]vir
=

{
Δ∗( [=] when =0 = =1 = =

0 otherwise,
(6)

where Δ : ( [=] ↩→ ( [=] × ( [=] is the diagonal embedding. In other words, only universally thickened

nestings /0 = /1 contribute to the invariants.11 This fact is explained geometrically using cosection

localization in [42, Section 5.3]. This gives a simplication of +=,=,0 (derived in [34, Section 10] for any

rank A)

Δ
∗+=,= = )( [=] + )( [=] ⊗ t

−1 − )( [=] ⊗ t − )( [=] ⊗ t
2 ++0,0, (7)

where+0,0 is the normalization term (5), which should be viewed as pulled back from ( [=] → pt. Using

(6) and (7), Laarakker expresses the universal function �1 of Theorem 1.4 in terms of

jH (( [=]) = j(( [=] ,ΛHΩ( [=] ), where ( = K3.

In turn, jH-genera of Hilbert schemes of points on K3 surfaces were calculated by Göttsche and W.

Soergel [25].

Recently, using Borisov-Libgober’s proof of the Dijkgraaf-Moore-Verlinde-Verlinde formula [3],

Göttsche found a formula for elliptic genera, with values in a line bundle, of Hilbert schemes of points

on surfaces [18]. We briefly discuss this result. Let ( be any smooth projective surface (not necessarily

K3), and ! ∈ Pic((). The determinant line bundle on ( [=] is `(!) := det((! − O() [=]). Its first Chern

class is described as follows. Consider projections from the universal subschemeZ ⊂ ( [=] × (

Z

?

}}⑤⑤
⑤⑤
⑤⑤
⑤

@

��
❄❄

❄❄
❄❄

❄

( [=] (.

Then

21 (`(!)) = `(21 (!)) := ?∗@
∗21 (!) ∈ �2(( [=] ,Z). (8)

Specialized to jH-genera, the results of [18] imply:

Theorem 3.6 (Göttsche). Let ( be a smooth projective surface and ! ∈ Pic((). Then

∞∑

==0

j(( [=] ,Λ−HΩ( [=] ⊗ `(!)) (@H−1)= =

11The case =0 = =1 = = appears in [13].
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( ∞∏

==1

1

(1 − @=)10(1 − @=H) (1 − @=H−1)

)j (O( ) ( ∞∏

==1

(1 − @=)
) 2

(

( ∞∏

==1

(
(1 − @=)2

(1 − @=H) (1 − @=H−1)

)=2 ) !2

2 ∞∏

==1

((
1 − @=H−1

1 − @=H

)=) ! (2

.

Just like Laarakker requires Göttsche-Soergel’s result to determine the monopole contribution to

j(#, Ôvir
#
) for a K3 surface, we will require Theorem 3.6 to determine the monopole contribution to

j(#, Ôvir
#

⊗ `(!)) for a K3 surface.

Adapting an argument from [23] and combining with Theorem 3.6, Conjecture 1.2 (and hence

Conjecture 1.1) are proved for K3 surfaces in [18]. We now use (6), (7), and Theorem 3.6 to prove

Theorem 1.5.

Proof Theorem 1.5. Let ( be a K3 surface. The case ! = O( was done in [34] and gives �1. Let

! ∈ Pic(() be arbitrary. It is useful to work with +◦
=,= := +=,= − +0,0, where +0,0 is the normalization

factor (5) pulled back along ( [=] × ( [=] → pt. For ( a K3 surface and V = 0, (6) and (7) imply

Z
mon
( (!, 0, H, @) =

∑

=

@2=

∫

( [=]
4` (221 (!)) Δ∗ ch(

√
det(+◦

=,=)∨)
ch(Λ−1(+◦

=,=)mov∨) td((+◦
=,=)C

∗),

where we used

Δ
∗c∗

(
c∗(21 (!) · (− ch2(I0) − ch2(I1)) ∩ [( [=] × ( [=] × (]

)
= c∗ (c∗(21 (!) ∩ (2[Z]))

= `(221 (!)),

whereZ ⊂ ( [=] × ( is the universal subscheme and `(21 (!)) is defined by (8).

We require two identities from [42]. By [42, Proposition 2.6], the canonical square root is given by

√
det(+◦

=,=)∨ =
(
det(+◦

=,=)∨
) ≥0 · t 1

2
A≥0 ,

where (·)≥0 denotes the part with non-negativeC∗-weight, and A≥0 is its rank. Moreover, for any complex

� , we have [42, (2.28)]

Λ−1�
∨
� (−1)rk�

Λ−1� ⊗ det �∨. (9)

Pulling back along Δ : ( [=] ↩→ ( [=] × ( [=] and using (7) yields

Δ
∗
√
(det+◦

=,=)∨ = det
(
Ω( [=] +Ω( [=] ⊗ t

)
· t2= = det(Ω( [=] ) · det(Ω( [=] ⊗ t) · t2=.

Furthermore,

Δ
∗ 1

Λ−1(+◦
=,=)mov∨ =

Λ−1(Ω( [=] ⊗ t−1)
Λ−1 (Ω( [=] ⊗ t) · Λ−1(Ω( [=] ⊗ t

−2).
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Hence,

Δ
∗

√
det(+◦

=,=)∨
Λ−1 (+◦

=,=)mov∨ = det(Ω( [=] ) ·
det(Ω( [=] ⊗ t)
Λ−1 (Ω( [=] ⊗ t) · t

2= · Λ−1(Ω( [=] ⊗ t
−1) · Λ−1 (Ω( [=] ⊗ t

−2)

= det(Ω( [=] ) · t2= ·
Λ−1 (Ω( [=] ⊗ t−1)
Λ−1 ()( [=] ⊗ t−1)

· Λ−1 (Ω( [=] ⊗ t
−2)

= t
2= · Λ−1(Ω( [=] ⊗ t

−2),

where the second equality uses (9), the third equality uses )( [=] � Ω( [=] (because ( [=] is holomorphic

symplectic), and the last equation uses  ( [=] � O. Using H := 4C and Serre duality (see also [12, Remark

4.13]), we find

Z
mon
( (!, 0, H, @) =

∞∑

==0

H2=j(( [=] ,Λ−1(Ω( [=] ⊗ t
−2) ⊗ `(! ⊗ !)) @2=

=

∞∑

==0

H2=j(( [=] ,Λ−H−2Ω( [=] ⊗ `(! ⊗ !)) @2=

=

∞∑

==0

H−2=j(( [=] ,Λ−H2Ω( [=] ⊗ `(!∗ ⊗ !∗)) @2=.

The result follows from Theorem 3.6 and Lemmas 3.4, 3.5. �

3.6. Higher Rank

The methods of Section 3.1–3.5 generalize to any rank A . Let ( be any smooth projective surface with

11 (() = 0 and ?6 (() > 0. Let # := #�
(
(A, 21, 22). Suppose there are no rank A strictly Gieseker �-

semistable Higgs sheaves on ( with Chern classes 21, 22. Consider the components of # containing

Higgs sheaves (�, q) such that

� = �0 ⊕ �1 ⊗ t
−1 ⊕ · · · ⊕ �A−1 ⊗ t

−(A−1)

and rk �0 = · · · = rk �A−1 = 1. We denote the union of such components by "1A . These components

are described by Gholampour-Thomas in terms of nested Hilbert schemes [15, 16] (see also [34])

(
[=0 ,...,=A ]
V1 ,...,VA−1

⊂ ( [=0 ] × · · · × ( [=A−1 ] × |V1 | × · · · × |VA−1 |.

Let ! ∈ Pic((), and replace 22 (E) − 1
4
21(E)2 with 22 (E) − A−1

2A
21 (E)2 in definitions (2), (3). Let

vd := 2A22 − (A − 1)22
1 − (A2 − 1)j(O().

Then the contribution of "1A to j(#, Ôvir
#

⊗ `(!)) is given by the coefficient of (−G)vd of

�̃
(A )
1

(H, G2A )j (O() �̃ (A )
2

(H, G2A ) 2
( �̃

(A )
3

(H, G2A )!2

�̃
(A )
4

(H, G2A )! (

·
∑

(01 ,...,0A−1) ∈� 2 ((,Z)A−1

X21 , (−01 ,..., (−0A−1

A−1∏

8=1

SW(08) �̃ (A )
58

(H, G2A )08 ( �̃ (A )
68

(H, G2A )08!

·
∏

8< 9

�̃
(A )
78 9

(H, G2A )080 9 ,
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where �̃
(A )
8
, �̃

(A )
8 9
, �̃

(A )
8 9:

are universal series in Q(H 1
2 ) ((G)) and

X0,11 ,...,1A−1
:= #

{
W ∈ �2((,Z) : 0 −

A−1∑

8=1

818 = AW

}
.

We did not normalize the universal series to start with 1. Since [34] works in any rank, Sections 3.1–3.3

readily generalize to the above statement.

Equations (6) and (7) have analogs in any rank [34, Section 10]. Define

�̃
(A )
1

(H, @) = G−(A2−1) (H− A−1
2 + H− A−2

2 + · · · + H A−1
2 )−1�

(A )
1

(H, @),
�̃

(A )
3

(H, @) = � (A )
3

(H, @).

Then �
(A )
3
, �

(A )
5

∈ 1 + @Q(H 1
2 ) [[@]]. Generalizing Section 3.5 accordingly yields

�
(A )
1

(H, @) =
∞∏

==1

1

(1 − @A=)10(1 − @A=HA ) (1 − @A=H−A )
,

�
(A )
3

(H, @) =
∞∏

==1

(
(1 − @A=)2

(1 − @A=HA ) (1 − @A=H−A )

) A2=2

2

,

where �
(A )
1

was previously derived in [34, 42] and �
(A )
3

is new.

Let " := "�
(
(A, 21, 22), and assume there are no rank A strictly Gieseker �-semistable sheaves

on ( with Chern classes 21, 22. The instanton contribution to (−1)vdj(#, Ôvir
#

⊗ `(!)), which equals

H−
vd
2 jvir

−H (", `(!)), is determined in [18] for (, a K3 surface. It is derived by combining Theorem 3.6

with an adaptation of an argument of [23]. The result is the coefficient of @vd/2 of

( ∞∏

==1

1

(1 − @=)20(1 − @=H)2(1 − @=H−1)2

) ( ∞∏

==1

(
(1 − @=)2

(1 − @=H) (1 − @=H−1)

)=2 ) !2

2

.

Unlike the monopole contribution, these universal series are independent of A .

4. Applications

In this section, we discuss special cases of Conjectures 1.1 and 1.2: (1) minimal surfaces of general type,

(2) surfaces with disconnected canonical divisor, (3) a blow-up formula, and (4) Vafa-Witten invariants

with `-classes. We denote the formula of Conjecture 1.1, after some slight rewriting, by

k(,!,21
(G) :=

22−j (O( )+ 2
(

(1 − G2)j (!)
∑

0∈� 2 ((,Z)
SW(0) (−1)021 (1 + G) ( (−0) (!− ( ) (1 − G)0 (!− ( ) . (1)

4.1. Minimal Surfaces of General Type

Proposition 4.1. Let ( be a smooth projective surface satisfying ?6 (() > 0, 11 (() = 0, and  ( ≠ 0 and

such that its only Seiberg-Witten basic classes are 0 and  ( . Let ! ∈ Pic((), and let �, 21, 22 be chosen

such that there are no rank 2 strictly Gieseker �-semistable sheaves on ( with Chern classes 21, 22.
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Suppose Conjecture 1.1 holds in this setting. Then jvir ("�
(
(2, 21, 22), `(!)) is given by the coefficient

of Gvd of

23−j (O( )+ 2
(
(1 + G) ( (!− ( )
(1 − G2)j (!)

.

Proof. Since SW(0) = 1, we have SW( () = (−1)j (O( ) [35, Proposition 6.3.4]. By Conjecture 1.1,

jvir ("�
(
(2, 21, 22), `(!)) is given by the coefficient of Gvd of (1), which simplifies to

22−j (O( )+ 2
(

(1 − G2)j (!)
[
(1 + G) ( (!− ( ) + (−1)21 (+j (O( ) (1 − G) ( (!− ( )

]
.

Varying over 22, we put the coefficients of all terms Gvd of k(,!,21
(G) into a generating series as follows.

Suppose k(,!,21
(G) = ∑∞

==0 k=G
= and 8 =

√
−1. Then for vd given by (1), we have

∑

22

CoeffGvd (k(,!,21
(G)) Gvd

=

∑

=≡−22
1
−3j (O( ) mod 4

k= G
=

=

3∑

:=0

1

4
8: (2

2
1
+3j (O( ))k(8:G)

= 21−j (O( )+ 2
(

[
(1 + G) ( (!− ( )
(1 − G2)j (!)

+ (−1)22
1
+3j (O( ) (1 − G) ( (!− ( )

(1 − G2)j (!)

+ 822
1
+3j (O( ) (1 + 8G) ( (!− ( )

(1 + G2)j (!)
+ (−8)22

1
+3j (O( ) (1 − 8G) ( (!− ( )

(1 + G2)j (!)

]
,

where the third equality uses 21 ( ≡ 22
1

mod 2. Now define

q(,!,21
(G) := 23−j (O( )+ 2

(
(1 + G) ( (!− ( )
(1 − G2)j (!)

.

Then

∑

22

CoeffGvd (q(,!,21
(G)) Gvd

=

∑

=≡−22
1
−3j (O( ) mod 4

q= G
=

=

3∑

:=0

1

4
8: (2

2
1
+3j (O( ))q(8:G)

is given by the same expression as above, which proves the proposition. �

Remark 4.2. Examples of surfaces satisfying the conditions of Proposition 4.1 are (1) minimal surfaces

of general type satisfying ?6 (() > 0 and 11(() = 0 [36, Theorem 7.4.1], and (2) smooth projective

surfaces with 11(() = 0 and containing an irreducible reduced curve � ∈ | ( | (for example, discussed

in [19, Section 6.3]).

Remark 4.3. In general, the formula of Proposition 4.1 has integer coefficients only when j(O() − 3 ≤
 2
(
. For minimal surfaces of general type, this inequality is implied by Noether’s inequality, j(O() −3 ≤

1
2
 2
(
.

Corollary 4.4. Let ( be a smooth projective surface with 11 (() = 0 and containing a smooth connected

curve � ∈ | ( | of genus 6. Let ! ∈ Pic((), and let �, 21, 22 be chosen such that there are no rank 2
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strictly Gieseker �-semistable sheaves on ( with Chern classes 21, 22. Suppose Conjecture 1.1 holds in

this setting. Then jvir ("�
(
(2, 21, 22), `(!)) is given by the coefficient of Gvd of

23−j (O� )−j (O( ) (1 + G)j (! |� )
(1 − G2)j (!)

.

Proof. We have 6 =  2
(
+ 1 and j(! |� ) = 1 − 6 + deg ! |� by Riemann-Roch. �

4.2. Disconnected Canonical Divisor

Proposition 4.5. Let ( be a smooth projective surface with 11 (() = 0, and suppose there exists 0 ≠

�1+· · ·+�< ∈ | ( |, where�1, . . . , �< are mutually disjoint irreducible reduced curves. Let ! ∈ Pic((),
and let �, 21, 22 be chosen such that there are no rank 2 strictly Gieseker �-semistable sheaves on (

with Chern classes 21, 22. Suppose Conjecture 1.1 holds in this setting. Then jvir ("�
(
(2, 21, 22), `(!))

is given by the coefficient of Gvd of

22−j (O( )+ 2
(

(1 − G2)j (!)
<∏

9=1

[
(1 + G)j (! |�8 ) + (−1)�821+ℎ0 (#�8/( ) (1 − G)j (! |�8 )

]
,

where #�8/( denotes the normal bundle of �8 ⊂ (.

Proof. We describe the Seiberg-Witten basic classes and invariants for ( in this setting [19, Lemma

6.14]. For any � ⊂ " := {1, . . . , <}, define �� :=
∑
8∈� �8; and we write � ∼ � when �� and �� are

linearly equivalent. Also, �∅ := 0. The Seiberg-Witten basic classes of ( are precisely {�� }� ⊂" , and

SW(�� ) = #[�]
∏

8∈�
(−1)ℎ0 (#�8/( ) ,

where #[�] denotes the number of elements of equivalence class [�]. Therefore, (1) becomes

22−j (O( )+ 2
(

(1 − G2)j (!)

(∑

[� ]
#[�]

∏

8∈�
(−1)ℎ0 (#�8/( )

)
(−1)�� 21 (1 + G)�"\� (!− ( ) (1 − G)�� (!− ( )

=
22−j (O( )+ 2

(

(1 − G2)j (!)
∑

� ⊂"

(∏

8∈�
(−1)�821+ℎ0 (#�8/( ) (1 − G)�8 (!−�8)

) ( ∏

8∈"\�
(1 + G)�8 (!−�8)

)
,

where we used  ( = �" and the assumption that the curves �8 are mutually disjoint. The result follows

from j(! |�8 ) = 1 − 6(�8) + deg ! |�8 = �8 (! − �8) and expanding the product in the statement of the

proposition. �

4.3. Blow-Up Formula

Proposition 4.6. Let ( be a smooth projective surface, c : (̃ → ( the blow-up of ( in a point, and �

the exceptional divisor. Let !, 21 ∈ Pic((), 2̃1 = c∗21 − :� , and !̃ = c∗! − ℓ� . Then

k
(̃, !̃,2̃1

(G) = 1

2
(1 − G2) (

ℓ+1
2 ) [

(1 + G)ℓ+1 + (−1): (1 − G)ℓ+1
]
k(,!,21

(G).

Proof. The Seiberg-Witten basic classes of (̃ are c∗0 and c∗0 + � with corresponding Seiberg-Witten

invariant SW(0), where 0 runs over all Seiberg-Witten basic classes of ( [36, Theorem 7.4.6]. Using

j(O
(̃
) = j(O(),  (̃ = c∗ ( + � , �2 = −1, and j( !̃) = j(!) −

(ℓ+1
2

)
, the proposition follows at once

from (1). �
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4.4. Vafa-Witten Formula with `-Classes

Let ( be a smooth projective surface satisfying 11(() = 0 and ?6 (() > 0. In an appendix of [19],

Göttsche and Nakajima gave a conjectural formula for

vd∑

:=0

∫

[" ]vir

4` (21 (!))_vd−:2: ()vir
" ), (2)

where " := "�
(
(2, 21, 22), vd is given by (1), and we assume ‘stable=semistable’. Here, _ is a formal

parameter. Setting _ = 0 in (2) gives 4vir ("). Replacing _ with _−1, then multiplying by _vd, and

finally setting _ = 0 gives Donaldson invariants
∫
[" ]vir 4

` (21 (!)) . Therefore, (2) interpolates between

Donaldson invariants and virtual Euler characteristics. Let �2(@) be the Eisenstein series of weight 2,

and define

�2(@) = �2 (@) +
1

24
=

∞∑

3=1

f1(3) @3 ,

where f1(3) =
∑
3 |= 3. Furthermore, let \3(@) := \3(@, 1) and � := @ 3

3@
.

Conjecture 4.7 (Göttsche-Nakajima). Let ( be a smooth projective surface with ?6 (() > 0, 11 (() = 0,

and let ! ∈ Pic((). Let �, 21, 22 be chosen such that there are no rank 2 strictly Gieseker �-semistable

sheaves on ( with Chern classes 21, 22. Let " := "�
(
(2, 21, 22). Then

vd∑

:=0

∫

[" ]vir

4` (21 (!))_vd−:2: ()vir
" )

is given by the coefficient of Gvd of

4

(
1

2[(G2)12

)j (O( ) (
2[(G4)2

\3(G)

) 2
( (
4��2 (G2)

) (_!)2
2

(
4−2�2 (G2)

)_! (

·
∑

0∈� 2 ((,Z)
(−1)210 SW(0)

(
\3 (G, H

1
2 )

\3 (−G, H
1
2 )

)0 ( (
4�2 (G)−�2 (−G)

) _! ( (−20)
2

.

Recall that specializing Conjecture 1.2 to H = 0 implies Conjecture 1.1 (after replacing G by GH
1
2 ; see

Section 1). We show that specializing Conjecture 1.2 to H = 1 implies Conjecture 4.7 (after replacing G

with GH
1
2 and ! with _!(H− 1

2 − H 1
2 )−1). In summary, the invariants of this paper interpolate between:

◦ Donaldson invariants

◦ Virtual Euler numbers of moduli spaces of sheaves

◦  -theoretic Donaldson invariants

◦  -theoretic Vafa-Witten invariants

Proposition 4.8. Conjecture 1.2 implies Conjecture 4.7.

Proof of Proposition 4.8. Recall the definition of H−
A
2 X−H (�) for any complex � of rank A on " from

Section 2.1. Suppose A ≥ 0, and denote by {·}A the degree A part in �∗(")Q. Then [12, Theorem 4.5]

{
H−

A
2 X−H (�)

}
A
= 2A (�) mod (1 − H).
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For � ∈ �1(")Q, we are interested in

{
A∑

:=0

4�_A−:2: (�)
}

A

,

which is insertion (2) for � = )vir
"

and � = `(21 (!)). We consider

4_� (H−
1
2 −H

1
2 )−1

H−
A
2 X−H (�).

Again using [12, Theorem 4.5], we find

{
4_� (H−

1
2 −H

1
2 )−1

H−
A
2 X−H (�)

}

A

=

{∑

:

4�_A−:2: (�)H−
:
2

}

A

mod (1 − H).

Hence,
{
4_� (H−

1
2 −H

1
2 )−1

H−
A
2 X−H (�)

���
H=1

}

A

=

{
A∑

:=0

4�_A−:2: (�)
}

A

. (3)

Take � = )vir
"

and � = `(21 (!)). Replacing ! with

_!

H−
1
2 − H 1

2

in Conjecture 1.2 and setting H = 1 gives the invariants (2) by equation (3).

This reduces the proof to the following identities:

��2 (G2) = lim
H→1

∞∑

==1

=2

(H− 1
2 − H 1

2 )2
log

(1 − G2=)2

(1 − G2=H) (1 − G2=H−1)
,

�2(G2) = −1

2
lim
H→1

∞∑

==1

=

(H− 1
2 − H 1

2 )
log

(1 − G2=H−1)
(1 − G2=H)

,

�2 (G) − �2 (−G) = lim
H→1

∑

=>0
odd

=

H−
1
2 − H 1

2

log
(1 − G=H 1

2 ) (1 + G=H− 1
2 )

(1 − G=H− 1
2 ) (1 + G=H 1

2 )
.

These identities follow from an elementary computation using repeatedly that

log(1 − G) = −
∞∑

==1

G=

=
,

lim
H→1

H−
=
2 − H =2

H−
1
2 − H 1

2

= =.

Therefore,

lim
H→1

∞∑

==1

=2

(H− 1
2 − H 1

2 )2
log

(1 − G2=)2

(1 − G2=H) (1 − G2=H−1)
= lim
H→1

∑

=,;>0

=2G2=;

;

(
H−

;
2 − H ;2

H−
1
2 − H 1

2

)2

=

∑

=,;>0

=2; G2=;
= ��2 (G2).

The other identities follow similarly. �
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