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VERLINDE FORMULAE ON COMPLEX SURFACES I:

K-THEORETIC INVARIANTS

L. GÖTTSCHE, M. KOOL, AND R. A. WILLIAMS

Abstract. We conjecture a Verlinde type formula for the moduli space of
Higgs sheaves on a surface with a holomorphic 2-form. The conjecture spe-
cializes to a Verlinde formula for the moduli space of sheaves. Our formula
interpolates between K-theoretic Donaldson invariants studied by the first
named author and Nakajima-Yoshioka and K-theoretic Vafa-Witten invari-
ants introduced by Thomas and also studied by the first and second named
authors. We verify our conjectures in many examples (e.g. on K3 surfaces).

1. Introduction

Let C be a smooth projective curve of genus g ≥ 2 over C. The classical
θ-functions at level k ≥ 1 for C are defined as follows. The map C → Pic1(C),
p 7→ [OC(p)] gives rise to the Abel-Jacobi map on the symmetric product

Symg−1(C) → Picg−1(C)

and the image Θ, which has codimension one, is known as the theta divisor.
Denote by L the corresponding line bundle. The θ-functions of level k are
defined as the elements ofH0(Picg−1(C),L⊗k). SinceH>0(Picg−1(C),L⊗k) = 0,
the Riemann-Roch theorem gives the dimension of the space of θ-functions of
level k as the degree of exp(kΘ). Since Θg/g! = 1, one obtains

dimH0(Picg−1(C),L⊗k) = kg.

The Verlinde formula extends this equation to moduli spaces of rank 2 (and
higher) stable vector bundles on C as follows. See [Bot] for a survey.
Denote by M := MC(2, 0) the moduli space of rank 2 semistable vector

bundles E on C with detE ∼= OC . Then Pic(M) is generated by the deter-
minant line bundle L [Bea, DN]. The Verlinde formula (for rank 2 and trivial
determinant), originating from conformal field theory [Ver], is the following

dimH0(M,L⊗k) =

(
k + 2

2

)g−1 k+1∑

j=1

sin
( πj

k + 2

)2−2g

.

http://arxiv.org/abs/1903.03869v1
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This formula has been proved by several people [Sze, BS, Tha, Kir, Don, Ram,
DW, Zag2] (for rank 2) and [Fal, BL] (for general rank). Numerical aspects of
this formula were studied by D. Zagier [Zag1].
Let N := NC(2, 0) be the moduli space of rank 2 semistable Higgs bundles

(E, φ) on C with detE ∼= OC . Here E is a rank 2 vector bundle and φ : E →
E ⊗KC is called the Higgs field. The moduli space N is non-compact. It has
a C∗-action defined by scaling the Higgs field. The determinant line bundle L
on N is C∗-equivariant, therefore H0(N,L⊗k) is a C∗-representation. Recently,
Halpern-Leistner [H-L] and Andersen-Gukov-Du Pei [AGDP] found a formula
for dimH0(N,L⊗k), which can be seen as a Verlinde formula for Higgs bundles.
In this paper, we study Verlinde type formulae on the moduli space of rank

2 Gieseker stable (Higgs) sheaves on S, where S is a smooth projective surface
satisfying pg(S) > 0 and b1(S) = 0.

1.1. Verlinde formula for moduli of sheaves. Denote byM :=MH
S (2, c1, c2)

the moduli space of rank 2 Gieseker H-stable torsion free sheaves on S with
Chern classes c1 ∈ H2(S,Z) and c2 ∈ H4(S,Z). We assume there are no rank
2 strictly Gieseker H-semistable sheaves on S with Chern classes c1, c2. Then
M is a projective scheme with perfect obstruction theory of virtual dimension

(1) vd = 4c2 − c21 − 3χ(OS).

When a universal sheaf E exists on M ×S, the virtual tangent bundle is given
by T vir

M = RHomπM
(E,E)0[1], where πM : M × S → M denotes projection

and (·)0 denotes trace-free part. In general E exists only étale locally. Never-
theless, RHomπM

(E,E)0[1] exists globally on M × S, essentially because this
expression is invariant under replacing E by E ⊗ L for any L ∈ Pic(M × S)
[HL, Sect. 10.2]. Algebraic Donaldson invariants are defined by integrating
polynomial expressions in slant products over [M ]vir. These were studied in
detail, for any rank, in T. Mochizuki’s remarkable monograph [Moc].
Let α ∈ Hk(S,Q). When a universal sheaf E exists on M × S, we consider

the µ-insertion defined by the slant product

(2) µ(α) := πM∗

(
π∗
Sα ·

(
c2(E)−

1

4
c1(E)

2
)
∩ [M × S]

)
∈ H∗(M,Q).

Note that

c2(E)−
1

4
c1(E)

2 = −1

4
ch2(E⊗ E⊗ det(E)∗),

where the sheaf E ⊗ E ⊗ det(E)∗ always exists globally on M × S, again,
essentially because this expression is invariant under replacing E by E ⊗ L.
Therefore (2) is always defined. When L ∈ Pic(S) satisfies c1(L)c1 ∈ 2Z, there
exists a line bundle µ(L) ∈ Pic(M), whose class in cohomology is (Poincaré
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dual to) (2) for α = c1(L) [HL, Ch. 8]. One refers to µ(L) as a Donaldson line
bundle. The first conjecture concerns

χvir(M,µ(L)) := χ(M,Ovir
M ⊗ µ(L)),

known as K-theoretic Donaldson invariants [GNY2].1 The first named author,
H. Nakajima, and K. Yoshioka determined their wall-crossing behaviour, when
S is a toric surface using the K-theoretic Nekrasov partition function [GNY2].
For rational surfaces the first named author and Y. Yuan established structure
formulae for these invariants and relations to strange duality [GY, Got1].
We denote intersection numbers such as

∫
S
c1(L)c1(O(KS)) by c1(L)c1(O(KS))

or simply LKS. Denote by SW(a) the Seiberg-Witten invariant of a ∈ H2(S,Z).2

Conjecture 1.1. Let S be a smooth projective surface with pg(S) > 0, b1(S) =
0, and L ∈ Pic(S). Let H, c1, c2 be chosen such that there are no rank 2
strictly Gieseker H-semistable sheaves on S with Chern classes c1, c2. Then
χvir(MH

S (2, c1, c2), µ(L)) equals the coefficient of xvd of

22−χ(OS)+K2
S

(1− x2)
(L−KS )2

2
+χ(OS)

∑

a∈H2(S,Z)

SW(a) (−1)ac1
(
1 + x

1− x

)(
KS
2

−a
)
(L−KS)

.

In Section 2 we verify this conjecture in many cases for: S a K3 surface,
elliptic surface, Kanev surface, double cover of P2 branched along a smooth
octic curve, quintic surface, and blow-ups thereof. Our strategy is similar to
[GNY3, GK1, GK2, GK3]. We first express χvir(M,µ(L)) in terms of algebraic
Donaldson invariants. Using Mochizuki’s formula [Moc, Thm. 1.4.6], the latter
can be written in terms of integrals on Hilbert schemes of points. We show that
these integrals can be combined into a generating series which is a cobordism
invariant and hence determined on P2 and P1 × P1. On P2 and P1 × P1, we
determine this generating series (to some order) by localization.
Finally, in Section 4 we discuss interesting special cases of Conjecture 1.1.

1.2. Verlinde formula for moduli of Higgs sheaves. Let H be a polar-
ization on S. Recently Y. Tanaka and R. P. Thomas [TT1] proposed a mathe-
matical definition of SU(r) Vafa-Witten invariants of S. We consider the case
r = 2. Their definition involves the moduli space of Higgs sheaves (E, φ)

N := NH
S (2, c1, c2) =

{
(E, φ) : trφ = 0, c1(E) = c1, c2(E) = c2

}
,

1When the Donaldson line bundle does not exist, we define χvir(M,µ(L)) by the virtual
Hirzebruch-Riemann-Roch formula [FG, Cor. 3.4], i.e.

∫
[M ]vir

eµ(c1(L)) td(T vir
M ).

2We use Mochizuki’s convention: SW(a) = S̃W(2a−KS) with S̃W(b) the usual Seiberg-
Witten invariant in class b ∈ H2(S,Z). Moreover, there are finitely many a ∈ H2(S,Z) such
that SW(a) 6= 0. Such classes are called Seiberg-Witten basic classes.
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where E is a rank 2 torsion free sheaf, φ : E → E ⊗ KS is a morphism,
and the pair (E, φ) satisfies a (Gieseker) stability condition with respect to H .
Tanaka-Thomas show that N admits a symmetric perfect obstruction theory
in the sense of [Beh]. As in the curve case, one can scale a Higgs sheaf by
sending (E, φ) to (E, tφ) for any t ∈ C∗. This defines an action of C∗ on N . As
in the previous section, we assume stability and semistability coincide. Then
the fixed locus NC∗

is projective and the Vafa-Witten invariants are defined as∫

[NC∗ ]vir

1

e(Nvir)
∈ Q,

where Nvir denotes the virtual normal bundle and e(·) is the equivariant Euler
class [GP]. The fixed locus NC∗

has two types of connected components:

• Components containing (E, φ) with φ = 0, which we refer to as the
instanton branch. This branch is isomorphic to the Gieseker moduli
space M := MH

S (2, c1, c2). The C∗-localized perfect obstruction theory
on M coincides with the one from the previous section.

• Components containing (E, φ), where E = E0 ⊕E1 ⊗ t
−1 is the decom-

position of E into rank 1 eigensheaves, and φ : E0 → E1 ⊗ KS ⊗ t.
Here t denotes the weight one character of C∗. These components con-
stitute the monopole branch, which we collectively denote by Mmon.
Denote by S [n] the Hilbert scheme of n points on S and by |β| the lin-
ear system of a class β ∈ NS(S) ⊂ H2(S,Z) (recall that we assume
b1(S) = 0). A. Gholampour and Thomas [GT1, GT2] prove that the
monopole components are isomorphic to incidence loci3

S
[n0,n1]
β := {(Z0, Z1, C) : IZ0(−C) ⊂ IZ1} ⊂ S [n0] × S [n1] × |β|,

for certain n0, n1, β, where IZ ⊂ OS is the ideal sheaf corresponding to
Z ⊂ S. Moreover, they show that the C∗-localized perfect obstruction

theory on S
[n0,n1]
β is naturally obtained by realizing this space as a de-

generacy locus inside the smooth space S [n0] × S [n1] × |β| and reducing
the perfect obstruction theory coming from this description (Section 3).

LetM ′ ⊂Mmon be a connected component of the monopole branch. Similar
to the previous section, we define

(3) µ(α) := πM ′∗

(
π∗
Sα ·

(
cC

∗

2 (E)− 1

4
cC

∗

1 (E)2
)
∩ [M ′ × S]

)
∈ HC∗

∗ (M ′,Q),

where the Chern classes are C∗-equivariant, M ′ and S carry the trivial torus
action, and E is the universal sheaf on M ′ × S.

3For fixed r = 2, c1, c2, the virtual dimension of Mmono ⊂ NC
∗

is in general not given by
(1). In fact, Mmono can have components of different virtual dimension (see Remark 3.3).
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Vafa-Witten invariants can also be seen as reduced Donaldson-Thomas in-
variants counting 2-dimensional sheaves on X = Tot(KS) —the total space of
the canonical bundle on S [GSY2]. From this perspective, it is more natural
to work with the Nekrasov-Okounkov twist of Ovir

N , which is defined as

Ôvir
N :=

√
Kvir

N ⊗Ovir
N ,

where
√
Kvir

N is a choice of square root of Kvir
N = det(Ωvir

N ). Over the fixed
locus NC∗

, this choice of square root is canonical [Tho, Prop. 2.6]. For any
(possibly infinite-dimensional) graded vector spaces set

χ
(⊕

i

t
ai −

⊕

j

t
bj
)
:=
∑

i

yai −
∑

j

ybj .

The K-theoretic Vafa-Witten invariants are [Tho, (2.12), Prop. 2.13]

χ(N, Ôvir
N ) := χ(RΓ(N, Ôvir

N )) = χ
(
NC∗

,
Ovir

N

Λ−1(Nvir)∨
⊗
√
Kvir

N

)
.

Here Λ−1(·) is introduced in Section 2 and y is related to t := cC
∗

1 (t) by y = et.
The Nekrasov-Okounkov twist ensures that these invariants are unchanged
under y ↔ y−1 [Tho, Prop. 2.27]. Our next two conjectures concern

χ(N, Ôvir
N ⊗ µ(L)) := χ(RΓ(N, Ôvir

N ⊗ µ(L))),

where L ∈ Pic(S).4 This expression has instanton and monopole contribu-
tions corresponding to the decomposition NC∗

= M ⊔Mmono. The instanton
contribution equals5

(−1)vdy−
vd
2 χvir

−y(M,µ(L)) := (−1)vdy−
vd
2

∑

p

(−y)pχvir(M,ΛpΩvir
M ⊗ µ(L)),

where vd is given by (1) and χvir
y (M, ·) is the twisted virtual χy-genus [FG].

Consider the following two theta functions and the normalized Dedekind eta
function

(4) θ3(x, y) =
∑

n∈Z

xn
2

yn, θ2(x) =
∑

n∈Z+ 1
2

xn
2

yn, η(x) =
∞∏

n=1

(1− xn).

We also use the following notation. For any a, b ∈ H2(S,Z), define

(5) δa,b = #
{
γ ∈ H2(S,Z) : a− b = 2γ

}
.

4If the line bundle µ(L) does not exist on N (or NC
∗

), then we define these invariants by
virtual C∗-localization combined with the virtual HRR formula as before.

5By essentially the same argument as in [Tho, Sect. 2.5].
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Conjecture 1.2. Let S be a smooth projective surface with pg(S) > 0, b1(S) =
0, and L ∈ Pic(S). Let H, c1, c2 be chosen such that there are no rank 2 strictly
Gieseker H-semistable sheaves on S with Chern classes c1, c2. Let vd be defined

by (1). Then y−
vd
2 χvir

−y(M
H
S (2, c1, c2), µ(L)) equals the coefficient of xvd of

4

(
1

2

∞∏

n=1

1

(1− x2n)10(1− x2ny)(1− x2ny−1)

)χ(OS)
(

2η(x4)2

θ3(x, y
1
2 )

)K2
S

·
(

∞∏

n=1

(
(1− x2n)2

(1− x2ny)(1− x2ny−1)

)n2
)L2

2
(

∞∏

n=1

(
1− x2ny−1

1− x2ny

)n
)LKS

·
∑

a∈H2(S,Z)

(−1)c1a SW(a)

(
θ3(x, y

1
2 )

θ3(−x, y
1
2 )

)aKS

·
(

∞∏

n=1

(
(1− x2n−1y

1
2 )(1 + x2n−1y−

1
2 )

(1− x2n−1y−
1
2 )(1 + x2n−1y

1
2 )

)2n−1)L(KS−2a)

2

.

Conjecture 1.3. Let S be a smooth projective surface with pg(S) > 0, b1(S) =
0, and L ∈ Pic(S). Let H, c1, c2 be chosen such that there are no rank 2
strictly Gieseker H-semistable Higgs sheaves on S with Chern classes c1, c2. Let
N := NH

S (2, c1, c2) and let vd be defined by (1). Then the monopole contribution

to χ(N, Ôvir
N ⊗ µ(L)) equals the coefficient of (−x)vd of

(
∞∏

n=1

1

(1− x8n)10(1− x8ny2)(1− x8ny−2)

)χ(OS)(
η(x4)2

θ2(x4, y)

)K2
S

·
(

∞∏

n=1

(
(1− x8n)2

(1− x8ny2)(1− x8ny−2)

)n2
)2L2 (

∞∏

n=1

(
1− x4ny−1

1− x4ny

)n
)2LKS

·
∑

a∈H2(S,Z)

δc1,KS−a SW(a) ka

(
θ2(x

4, y)

θ3(x4, y)

)aKS
(

∞∏

n=1

(
1 + x8n−4y−1

1 + x8n−4y

)2n−1
)2aL

·
(

∞∏

n=1

(
1 + x8ny−1

1 + x8ny

)n
)4L(KS−a)

·
(

∞∏

n=1

(
1 + x4ny−1

1 + x4ny

)n
)LKS

,

where ka := x−3χ(OS )(y
1
2 + y−

1
2 )−χ(OS)y

1
2
L(a−KS).
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Together these two conjectures give a Verlinde type formula for the moduli
space of Higgs sheaves on a surface S satisfying b1(S) = 0 and pg(S) > 0.
Moreover our formulae interpolate between the following two invariants:

• K-theoretic Donaldson invariants. After replacing x by xy
1
2 in the

formula of Conjecture 1.2, we can set y = 0. This replacement provides
a formula for χvir

−y(M,µ(L)) and setting y = 0 implies the formula for
K-theoretic Donaldson invariants of Conjecture 1.1.

• K-theoretic Vafa-Witten invariants. Putting L = OS in Conjec-
tures 1.2 and 1.3, we obtain the conjectural formulae for K-theoretic
Vafa-Witten invariants of [GK3, Rem. 1.3, 1.7].

In [GK1, Appendix], the first named author and Nakajima conjectured a for-
mula interpolating between Donaldson invariants and virtual Euler numbers of
M :=MH

S (2, c1, c2). Conjecture 1.2 also implies this formula (Section 4).
Using the same strategy as for Conjecture 1.1, we verify Conjecture 1.2 in

many examples. On the other hand, for Conjecture 1.3, we prove the universal
dependence by presenting a variation on an argument of T. Laarakker [Laa2],
which in turn is an application of Gholampour-Thomas’s description of the
monopole virtual class in terms of nested Hilbert schemes [GT1, GT2].

Theorem 1.4. There exist universal series

C1(y, q), . . . , C6(y, q) ∈ 1 + qQ[y
1
2 ][[q]]

with the following property. Let S be a smooth projective surface with pg(S) >
0, b1(S) = 0, and L ∈ Pic(S). Let H, c1, c2 be chosen such that there are no
rank 2 strictly Gieseker H-semistable Higgs sheaves on S with Chern classes
c1, c2. Let N := NH

S (2, c1, c2) and let vd defined by (1). Then the monopole

contribution to χ(N, Ôvir
N ⊗ µ(L)) equals the coefficient of (−x)vd of

C1(y, x
4)χ(OS)C2(y, x

4)K
2
S C3(y, x

4)L
2

C4(y, x
4)LKS

·
∑

a∈H2(S,Z)

δc1,KS−a SW(a) ℓaC5(y, x
4)aKS C6(y, x

4)aL,

where ℓa := xaKS−K2
S−3χ(OS)(y

1
2 + y−

1
2 )aKS−K2

S−χ(OS)y
1
2
L(a−KS).

For L = OS this was proved in [Laa2] (actually, for L = OS, the analog of
this theorem is proved in any prime rank [Laa2]). Universality on the instanton
branch is still open. The universal series Ci can be expressed in terms of
intersection numbers on products of Hilbert schemes of points on surfaces.
Again, these intersection numbers are determined on P2 and P1×P1, where we
calculate using localization. This way, we determine Ci mod q15 and we find
a match with Conjecture 1.2 (Section 3).
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1.3. K3 surfaces. By adapting an argument from [GNY2] combined with a
new formula for twisted elliptic genera of Hilbert schemes of points on surfaces,
the first named author proves Conjecture 1.2 for K3 surfaces in [Got2]. By
adapting an argument of [Laa2] combined with the above-mentioned formula
for twisted elliptic genera of Hilbert schemes of points on surfaces, we prove the
following (where the formula for C1 was previously determined in [Tho, Laa2]):

Theorem 1.5. The universal functions C1(y, q), C3(y, q) are given by

C1(y, q) =
∞∏

n=1

1

(1− q2n)10(1− q2ny2)(1− q2ny−2)
,

C3(y, q) =

∞∏

n=1

(
(1− q2n)2

(1− q2ny2)(1− q2ny−2)

)2n2

.

In particular, Conjectures 1.2 and 1.3 hold for K3 surfaces.6

Acknowledgements. We thank T. Laarakker and R. P. Thomas for useful
discussions. We thank Laarakker for providing his SAGE code for calculating
the monopole contribution to Vafa-Witten invariants [Laa2], which allowed us
to gather evidence for Conjecture 1.3.

2. Instanton contribution and Donaldson invariants

In this section we gather evidence for Conjectures 1.1 and 1.2 as follows:

• Reduction to Donaldson invariants. Express the invariants of Con-
jectures 1.1 and 1.2 in terms of Donaldson invariants of S.

• Reduction to Hilbert schemes. Use Mochizuki’s formula [Moc,
Thm. 1.4.6] to express these invariants as intersection numbers on
Hilbert schemes of points on S.

• Reduction to toric surfaces. Show that the intersection numbers of
the previous step are determined on S = P2 and P1 × P1, where they
can be calculated using localization.

The final step allows us to calculate the invariants of Conjectures 1.1 and
1.2 and compare to our conjectured formulae. This strategy has been used
by the first and second named author in the determination of the instanton

6The statement that Conjecture 1.3 holds for K3 surfaces has less content than ini-
tially meets the eye. On a K3 surface, δc1,a is only non-zero when c1 is even. Assum-
ing gcd(2, c1H, 1

2c
2
1 − c2) = 1, which guarantees “stable=semistable”, implies c2 is odd.

Hence the coefficient of (−1)xvd of the conjectured expression is always zero. Indeed “sta-
ble=semistable” implies that the monopole branch is empty [TT1, Prop. 7.4].
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contribution to rank 2 and 3 Vafa-Witten invariants and various refinements
thereof [GK1, GK2, GK3]. Mochizuki’s formula was also used by the first
named author and Nakajima-Yoshioka in their proof of the Witten conjecture
for algebraic surfaces, which expresses (primary, rank 2) Donaldson invariants
in terms of Seiberg-Witten invariants [GNY3].

2.1. Donaldson invariants. Let S be a smooth projective complex surface
such that b1(S) = 0. Let H be a polarization on S and letM :=MH

S (r, c1, c2).
7

We assume there exist no rank r strictly Gieseker H-semistable sheaves on S
with Chern classes c1, c2. For the moment, we also assume there exists a
universal family E on M × S, though we get rid of this assumption in Remark
2.3. For any α ∈ H∗(S,Q) and k ≥ 0, define µ(α) ∈ H∗(M,Q) as in (2) and

τk(α) := πM∗

(
π∗
Sα · chk+2(E) ∩ [M × S]

)
∈ H∗(M,Q).

We refer to τk(α) as a descendent insertion and call it primary when k = 0.
As mentioned in the introduction, if L ∈ Pic(S) satisfies c1(L)c1 ∈ 2Z, then
there exists a line bundle on M , denoted by µ(L) and called “a Donaldson line
bundle”, whose class in cohomology is (Poincaré dual to) (2) for α = c1(L).
Consider the K-group K0(M) generated by locally free sheaves on M . For

any rank r vector bundle on M , define

ΛyV :=
r∑

i=0

[ΛiV ]yi ∈ K0(M)[[y]], Symy V :=
∞∑

i=0

[Symi V ]yi ∈ K0(M)[[y]].

These expressions can be extended to complexes inK0(M) by setting Λy(−V ) =
Sym−y V and Symy(−V ) = Λ−yV . For any complex E ∈ K0(M), we define

(6) Xy(E) := ch(ΛyE
∨) td(E).

Since Λy(E ⊕ F ) = ΛyE ⊗ ΛyF , we obtain

Xy(E ⊕ F ) = Xy(E)Xy(F ).

Furthermore, for any L ∈ Pic(M)

Xy(L) =
L(1 + ye−L)

1− e−L
.

Lemma 2.1. Let S,H, r, c1, c2 and M := MH
S (r, c1, c2) be as above. Let L ∈

Pic(S). Then there exists a polynomial expression P (E) in y and certain de-
scendent insertions τk(α) and µ(c1(L)) such that

χvir
y (M,µ(L)) =

∫

[M ]vir
Xy(T

vir
M ) eµ(c1(L)) =

∫

[M ]vir
P (E).

7In this paragraph, r > 0 is arbitrary and we do not require pg(S) > 0.
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Proof. The first equality is the virtual Hirzebruch-Riemann-Roch theorem [FG,
Cor. 3.4] (or the definition of our invariants when the Donaldson line bundle
µ(L) does not exist on M). The second equality was proved for L = OS in
[GK1, Prop. 2.1] by applying Grothendieck-Riemann-Roch and the Künneth
formula to

ch(T vir
M ) = ch(RHomπM

(E,E)0[1]).

The argument for any L is the same with P (E) now involving µ(c1(L)). �

2.2. Mochizuki’s formula. We recall Mochizuki’s formula [Moc, Thm. 1.4.6].
Let S [n] be the Hilbert scheme of n points on S. On S [n1] × S [n2] × S we

have (pull-backs of) the universal ideal sheaves I1 and I2 from both factors.
For any M ∈ Pic(S), on S [n1] × S [n2] we have (pull-backs of) the tautological
bundles M [n1] and M [n2] from both factors. We endow S [n1] × S [n2] with the
trivial C∗-action and denote the positive generator of the character group of
C∗ by s. Define s := cC

∗

1 (s), then

H∗(BC∗,Q) = H∗
C∗(pt,Q) ∼= Q[s].

Fix L ∈ Pic(S) and let P (E) be any polynomial in µ(c1(L)) and descen-
dent insertions τk(α). We assume P (E) arises from a polynomial expression in
µ(c1(L)) and the Chern classes of T vir

M (e.g. such as in Proposition 2.1). Let
A1(S) be the Chow group of codimension 1 cycles up to linear equivalence,
then for any a1, a2 ∈ A1(S) and n1, n2 > 0, we define (following Mochizuki)

Ψ(L, a1, a2, n1, n2) :=

Coeffs0

(
P (I1(a1)⊗ s

−1 ⊕ I2(a2)⊗ s)

Q(I1(a1)⊗ s−1, I2(a2)⊗ s)

e(O(a1)
[n1]) e(O(a2)

[n2] ⊗ s
2)

(2s)n1+n2−χ(OS)

)
.

(7)

We explain the notation. Here Ii(ai) stands for Ii ⊗ π∗
SO(ai) considered as a

sheaf on S [n1] × S [n2] × S pulled back along projection to S [ni] × S. Similarly
O(ai)

[ni] is viewed as a vector bundle on S [n1]×S [n2] pulled back along projection
to S [ni]. Since S [n1] × S [n2] has a trivial C∗-action, we can view O(ai)

[ni] as
endowed with the trivial C∗-equivariant structure. Moreover

O(a2)
[n2] ⊗ s

2

denotes O(a2)
[n2] with C∗-equivariant structure given by tensoring with char-

acter s2. Similarly, we endow S [n1]×S [n2]×S with trivial C∗-action, give Ii(ai)
the trivial C∗-equivariant structure, and denote by

I1(a1)⊗ s, I2(a2)⊗ s
−1

the C∗-equivariant sheaves obtained by tensoring with the characters s and s
−1

respectively. We denote the C∗-equivariant Euler class by e(·). Moreover, P (·)
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stands for the expression obtained from P (E) by formally replacing E by ·. For
any C∗-equivariant sheaves E1, E2 on S [n1] × S [n2] × S flat over S [n1] × S [n2]

Q(E1, E2) := e(−RHomπ(E1, E2)− RHomπ(E2, E1)),

where π : S [n1]×S [n2]×S → S [n1]×S [n2] denotes projection. Finally Coeffs0(·)
takes the coefficient of s0. We define Ψ̃(L, a1, a2, n1, n2, s) by expression (7)
without Coeffs0(·). Let c1, c2 be a choice of Chern classes. For any decomposi-
tion c1 = a1 + a2, we define (again following Mochizuki)

(8) A(L, a1, a2, c2) :=
∑

n1+n2=c2−a1a2

∫

S[n1]×S[n2]

Ψ(L, a1, a2, n1, n2).

Let Ã(L, a1, a2, c2, s) be defined by the same expression with Ψ replaced by Ψ̃.

Theorem 2.2 (Mochizuki). Let S be a smooth projective surface satisfying
b1(S) = 0, pg(S) > 0, and let L ∈ Pic(S). Let H, c1, c2 be chosen such that
there are no rank 2 strictly Gieseker H-semistable sheaves on S with Chern
classes c1, c2 and such that a universal sheaf E on MH

S (2, c1, c2) × S exists.
Assume the following hold:

(i) χ(ch) > 0, where χ(ch) :=
∫
S
ch ·td(S) and ch = (2, c1,

1
2
c21 − c2).

(ii) pch > pKS
, where pch = χ(emH · ch)/2 and pKS

= χ(emH · eKS) are the
reduced Hilbert polynomials of ch and KS.

(iii) For all SW basic classes a1 satisfying a1H ≤ (c1 − a1)H the inequality
is strict.

Let P (E) be any polynomial in µ(c1(L)) and descendent insertions arising from
a polynomial in µ(c1(L)) and Chern classes of T vir

M (e.g. as in Prop. 2.1). Then

(9)

∫

[MH
S (2,c1,c2)]vir

P (E) = −21−χ(ch)
∑

c1 = a1 + a2

a1H < a2H

SW(a1)A(L, a1, a2, c2).

Remark 2.3. Assuming the existence of a universal sheaf E on M ×S, where
M :=MH

S (2, c1, c2), is unnecessary. As remarked in the introduction, T vir
M and

µ(c1(L)) always exist, so the left-hand side of Mochizuki’s formula is always
defined. Mochizuki [Moc] works over the Deligne-Mumford stack of oriented
sheaves, which has a universal sheaf. This can be used to show that global
existence of E on M × S can be dropped from the assumptions. In fact,
when working on the stack, P can be any polynomial in descendent insertions
defined using the universal sheaf on the stack. Also, since Mochizuki works on
the stack, his formula and our version differ by a factor 2.
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Remark 2.4. Conjecturally, assumptions (ii) and (iii) can be dropped from
Theorem 2.2 [GNY3, GK1, GK2, GK3]. Moreover, also conjecturally, in the
sum in Mochizuki’s formula the inequality a1H < a2H can be dropped. As-
sumption (i) is necessary.

Suppose the assumptions of Theorem 2.2 are satisfied. Combining with

Lemma 2.1, we find that y−
vd
2 χvir

−y(M,µ(L)) is given by (9) with

(10) P (E) = y−
vd
2 X−y(−RHomπ(E,E)0) e

µ(c1(L)),

where E is replaced by

I1(a1)⊗ s
−1 ⊕ I2(a2)⊗ s.

We note that the rank of

−RHomπ(I1(a1)⊗ s
−1 ⊕ I2(a2)⊗ s, I1(a1)⊗ s

−1 ⊕ I2(a2)⊗ s)0

equals the rank of T vir
M = −RHomπ(E,E)0.

2.3. Universal series. In this paragraph, S is any smooth projective surface,
so we allow pg(S) = 0. We want to study the intersection numbers (8) with
P (E) given by (10). Let XC∗

y (·) denote the same expression as in (6), but with
Chern character and Todd class replaced by C∗-equivariant Chern character
and Todd class (recall that we endow S [n1]×S [n2] with trivial C∗-action). Define

f(s, y) := y−
1
2 X

C∗

−y(s
2) = y−

1
2
2s(1− ye−2s)

1− e−2s

where the second equality follows from the properties listed in Section 2.1. We
write χ(a) := χ(OS(a)) for any a ∈ A1(S). For any L, a, c1 ∈ A1(S), we define

Z
inst
S (L, a, c1, s, y, q) :=(2s)−χ(OS)

( 2s

f(s, y)

)−χ(c1−2a)( −2s

f(−s, y)
)−χ(2a−c1)

e(c1−2a)Ls

·
∑

n1,n2

qn1+n2

∫

S[n1]×S[n2]

Ψ̃(L, a, c1 − a, n1, n2, s).

The first line of this expression is just a normalization factor, so

Z
inst
S (L, a, c1, s, y, q) ∈ 1 + qQ[y±

1
2 ]((s))[[q]].

We note that the definition of ZS(L, a, c1, s, y, q) makes sense for any possibly
disconnected smooth projective surface S and L, a, c1 ∈ A1(S).

Lemma 2.5. Let S = S ′⊔S ′′, where S ′, S ′′ are (possible disconnected) smooth
projective surfaces. Let L, a, c1 ∈ A1(S) and define L′ := L|S′, a′ := a|S′,
c′1 := c1|S′, L′′ := L|S′′, a′′ := a|S′′, and c′′1 := c1|S′′. Then

Z
inst
S (L, a, c1, s, y, q) = Z

inst
S′ (L′, a′, c′1, s, y, q)Z

inst
S′′ (L′′, a′′, c′′1, s, y, q).
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Proof. The case L = OS was established in [GK1, Prop. 3.3]. The only new
feature of the present case is the following.
Define S2 = S ⊔ S . As shown in [GK1, Prop. 3.3], the integrals over

S [n1] × S [n2] occuring in the coefficients of Zinst
S (L, a, c1, s, y, q) can be written

as integrals on S
[n]
2 by using the decomposition

S
[n]
2 =

⊔

n1+n2=n

S [n1] × S [n2].

Since S = S ′ ⊔ S ′′, we have a further decomposition

S [n1] × S [n2] =
⊔

l1+l2=n1,m1+m2=n2

S ′[l1] × S ′′[l2] × S ′[m1] × S ′′[m2].

Then the insertion eµ(c1(L)) restricted to S ′[l1] × S ′′[l2] × S ′[m1] × S ′′[m2] equals

p′∗eµ(c1(L
′))p′′∗eµ(c1(L

′′)),

where p′, p′′ are the projections in the diagram

S ′[l1] × S ′′[l2] × S ′[m1] × S ′′[m2]

p′tt✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐✐

p′′ **❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

S ′[l1] × S ′[m1] S ′′[l2] × S ′′[m2]

and S ′[l1]×S ′[m1] is seen as a connected component of S
′[l1+m1]
2 and S ′′[l2]×S ′′[m2]

as a connected component of S
′′[l2+m2]
2 . The rest of the proof proceeds exactly

as in [GK1, Prop. 3.3]. �

Lemma 2.6. There exist universal functions

A1(y, q), . . . , A11(y, q) ∈ 1 + qQ[y±
1
2 ][[q]]

such that for any smooth projective surface S and L, a, c1 ∈ A1(S) we have

Z
inst
S (L, a, c1, s, y, q) = AL2

1 A
La
2 Aa2

3 A
ac1
4 A

c21
5 A

Lc1
6 ALKS

7 AaKS
8 Ac1KS

9 A
K2

S
10 A

χ(OS)
11 .

Proof. By [EGL], tautological integrals on Hilbert schemes of points on surfaces
are universal. We are dealing with integrals over products of Hilbert schemes,
which were handled in [GNY1, Lem. 5.5]. By [GNY1, Lem. 5.5] (see also [GK1,
Prop. 3.3]), there exists a universal power series

G ∈ Q[x1, · · · , x11][[q]]
such that for any smooth projective surface S and L, a, c1 ∈ A1(S) we have

(11) Z
inst
S (L, a, c1, s, y, q) = eG(L2,La,a2,ac1,c21,Lc1,LKS ,aKS ,c1KS ,K

2
S,χ(OS)).

Here we use the fact that Zinst
S (L, a, c1, s, y, q) starts with 1.
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We claim that equation (11) and Lemma 2.5 together imply the result. This
can be seen as follows (see also [GNY1, Lem. 5.5]). Choose 11 quadruples

(S(i), L(i), a(i), c
(i)
1 ) such that the corresponding vectors of Chern numbers

wi := ((L(i))2, . . . , χ(OS(i))) ∈ Q11

form a Q-basis. Now consider any (S, L, a, c1). Then we can decompose its
vector of Chern numbers w = (L2, . . . , χ(OS)) as w =

∑
i niwi, for some ni ∈ Q.

If all ni ∈ Z≥0, then Lemma 2.5 implies that

(12) Z
inst
S (L, a, c1, s, y, q) =

11∏

i=1

(
eG(wi)

)ni

.

Let W be the matrix with column vectors w1, . . . , w11 and M = (mij) its
inverse. Defining Aj := exp(

∑
imijG(wi)), equation (12) implies

Z
inst
S (L, a, c1, s, y, q) = AL2

1 · · ·Aχ(OS)
11 .

Since the set of vectors w with all ni ∈ Z≥0 is Zariski dense in Q11, the propo-
sition holds for any (S, L, a, c1). �

Theorem 2.2 and Lemma 2.6 at once imply the following result.

Proposition 2.7. Let S be a smooth projective surface with b1(S) = 0, pg(S) >
0, and L ∈ Pic(S). Let H, c1, c2 be chosen such that there are no rank 2 strictly
Gieseker H-semistable sheaves on S with Chern classes c1, c2. Assume the
following hold:

(i) χ(ch) > 0, where χ(ch) :=
∫
S
ch ·td(S) and ch = (2, c1,

1
2
c21 − c2).

(ii) pch > pKS
, where pch = χ(emH · ch)/2 and pKS

= χ(emH · eKS) are the
reduced Hilbert polynomials of ch and KS.

(iii) For all SW basic classes a with aH ≤ (c1− a)H the inequality is strict.

Then y−
vd
2 χvir

−y(M
H
S (2, c1, c2), µ(L)) is the coefficient of xvds0 of

− 2
∑

a ∈ H2(S,Z)
aH < (c1 − a)H

SW(a)A1(y, 2x
4)L

2

(
e2sA2(y, 2x

4)

)La

·
(
2−1

(
2s

f(s, y)

)2(
−2s

f(−s, y)

)2

x−4A3(y, 2x
4)

)a2

·
(
2

(
2s

f(s, y)

)−2(
−2s

f(−s, y)

)−2

x4A4(y, 2x
4)

)ac1
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·
(
2−

1
2

(
2s

f(s, y)

) 1
2
(

−2s

f(−s, y)

) 1
2

x−1A5(y, 2x
4)

)c21

·
(
e−sA6(y, 2x

4)

)Lc1

A7(y, 2x
4)LKS

·
((

2s

f(s, y)

)(
−2s

f(−s, y)

)−1

A8(y, 2x
4)

)aKS

·
(
2

1
2

(
2s

f(s, y)

)− 1
2
(

−2s

f(−s, y)

) 1
2

A9(y, 2x
4)

)c1KS

· A10(y, 2x
4)K

2
S

(
s

2

(
2s

f(s, y)

)(
−2s

f(−s, y)

)
x−3A11(y, 2x

4)

)χ(OS)

.

Remark 2.8. By Remark 2.4, conjecturally, assumptions (ii) and (iii) in the
previous proposition, as well as the inequality aH < (c1−a)H in the sum, can
be dropped.

2.4. Reduction to toric surfaces. We now present 11 choices of (S, L, a, c1)
for which the vectors of Chern numbers (L2, . . . , χ(OS)) are Q-independent:

(S, L, a, c1) =(P2,O,O,O),

(P1 × P1,O,O,O),

(P2,O,O(1),O(2)),

(P2,O,O,O(1)),

(P2,O,O(1),O(3)),

(P1 × P1,O,O(0, 1),O(0, 2)),

(P1 × P1,O,O,O(0, 1)),

(P2,O(1),O,O),

(P1 × P1,O(0, 1),O,O),

(P2,O(1),O(1),O(2)),

(P2,O(1),O,O(1)).

Each of these surfaces S is toric and hence has an action of T = C∗ × C∗.
Choose T -equivariant structures on the line bundles corresponding to L, a, c1.
Then we can calculate Z

inst
S (L, a, c1, s, y, q) by Atiyah-Bott localization. More
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precisely, consider one of the intersection numbers
∫

S[n1]×S[n2]

Ψ̃(L, a, c1 − a, n1, n2, s)

appearing in the definition of Z
inst
S (L, a, c1, s, y, q). The action of T lifts to

S [n1] × S [n2] and its fixed locus is indexed by pairs
(
{λ(σ)}e(S)σ=1, {µ(σ)}e(S)σ=1

)
,

where each λ(σ) = (λ
(σ)
1 ≥ λ

(σ)
2 ≥ · · · ) and µ(σ) = (µ

(σ)
1 ≥ µ

(σ)
2 ≥ · · · ) are

partitions such that
∑

σ

|λ(σ)| =
∑

σ,i

λ
(σ)
i = n1,

∑

σ

|µ(σ)| =
∑

σ,i

µ
(σ)
i = n2.

The Euler number e(S) equals the number of torus fixed points pσ of S and
each partition λ(σ), µ(σ) corresponds (in the usual way) to a monomial ideal
on the maximal T -invariant affine open subset C2 ∼= Uσ ⊂ S containing pσ.
E.g. see [GK1, GK2] for more details.
For any pair ({λ(σ)}σ, {µ(σ)}σ) corresponding to 0-dimensional T -fixed sub-

schemes (Z,W ) ∈ S [n1] × S [n2], we are interested in the restriction

(13) Ψ̃(L, a, c1 − a, n1, n2, s)
∣∣∣
(Z,W )

.

Let T̃ := T × C∗, where C∗ is the torus acting trivially on S [n1] × S [n2] (as in
Mochizuki’s formula). Denote by t1, t2, s positive primitive generators of the

character group of each factor of T̃ . Then the T̃ -equivariant K-group of a point
is given by the following ring of Laurent polynomials

K0
T̃
(pt) ∼= Z[t±1 , t

±
2 , s

±].

In order to calculate (13) in terms of ǫ1 := cT̃1 (t1), ǫ2 := cT̃1 (t2), and s := cT̃1 (s),
we must determine the classes of the following complexes in K0

T̃
(pt)

H0(OZ(a)), H0(OW (c1 − a)),

RHomS(OZ ,OZ), RHomS(OW ,OW ),

RHomS(OZ ,OW (c1 − a)⊗ s
2), RHomS(OW (c1 − a)⊗ s

2,OZ),

where IZ , IW ⊂ OS are the ideal sheaves of Z,W . The expressions in the first

line follow at once from the T̃ -representations of Z,W in terms of the partitions
λ(σ), µ(σ). The expressions in lines two and three can be calculated by using a
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T -equivariant resolution of IZ , IW . For explicit formulae, see [GK1, Prop. 4.1].
Finally, µ(L) leads to the insertion

π∗

(
cT̃1 (L) · (chT̃

2 (OZ) + chT̃
2 (OW ) ∩ [S]

)
=

e(S)∑

σ=1

aσ ·
(
|λ(σ)|+ |µ(σ)|

)
,

where π∗ : K0
T̃
(S) → K0

T̃
(pt) denotes equivariant push-forward and aσ is the

character corresponding to L|Uσ .
The calculation of Zinst

S for each of the 11 cases above is now a purely com-
binatorial problem, which we implemented in Pari/GP. We determined the
universal series A1, . . . , A11 of Proposition 2.6 to the following orders:

• For A1(1, q), . . . , A11(1, q), we computed the coefficients of sl−3nqn for
all n ≤ 10, l ≤ 49. (Recall: Ai(1, q), Ai(y, q) are Laurent series in s.)

• For A1(y, q), . . . , A11(y, q), we computed the coefficients of sl−5nymqn

for all n ≤ 6, m ≤ 9, l ≤ 30.

2.5. Verifications. We verified Conjecture 1.1 in the following cases.8 In
each case, we fix S, c1, c2 as indicated, we choose H such that the assump-
tions of Proposition 2.7 are satisfied, and we use the explicit expansions of
A1(1, q), . . . , A11(1, q) determined in the previous section.

(1) S is a K3 surface, c1 such that c21 = 0, 2, . . . , 20, and vd < 14.
(2) S is the blow-up of a K3 surface in a point, c1 = π∗C + rE such that

C2 = −4,−2, . . . , 10, r = −2,−1, . . . , 2, and vd < 15.
(3) S is the blow-up of a K3 surface in two distinct points, c1 = π∗C +

ǫ1E1 + ǫ2E2 such that C2 = −2, 0, . . . , 6, ǫ1, ǫ2 = 0, 1, and vd < 13.
(4) S → P1 is an elliptic surface of type E(N),9 N = χ(OS) = 3, 4, . . . , 7,

c1 = mB + nF where B is the class of a section, F is the class of a
fibre, m = −1, 0, 1, 2, n = −2,−1, . . . , 5, and vd < 12.

(5) S is the blow-up of an elliptic surface of type E(3) in a point, c1 =
π∗C + ǫE such that CKS = −1, 0, . . . , 4, C2 = −4,−3, . . . , 10, ǫ = 0, 1,
and vd < 12.

(6) S is a minimal general type surface with b1(S) = 0, χ(OS) = 2, K2
S = 1

[Kyn], c1 such that c1 ·KS = 0, 1, c21 = −2,−1, . . . , 11, and vd < 12.
(7) S is a double cover of P2 branched along a smooth octic, c1 such that

c1 ·KS = 0, 1, . . . , 10, c21 = 0, 1, . . . , 30, and vd < 12.

8In this list, π : S → S′ always denotes the blow-up in a point and the exceptional divisor
is written as E (or E1, E2 in the case of a blow-up in two dinstinct points).

9I.e. an elliptic surface S → P1 with section, 12N rational 1-nodal fibres, and no other
singular fibres.
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(8) S is the blow-up of a surface S ′ as in (7) in a point, c1 = π∗C+ ǫE such
that CKS = −2,−1, . . . , 2, C2 = −2,−1, . . . , 8, ǫ = 0, 1, and vd < 11.

(9) S is a very general smooth quintic in P3 (then Pic(S) = Z[H ]), c1 = 2H
and vd < 8, or c1 = 3H and vd < 7.

Assuming the strong form of Mochizuki’s formula holds (Remark 2.4), we
also verified Conjecture 1.1 in the following cases:

(10) S is a smooth quintic surface in P3, c1 such that c1 ·KS = 0, 1, . . . , 25,
c21 = −4,−3, . . . , 20, and vd < 11.

(11) S is the blow-up of a quintic in P3 in a point, c1 = π∗C + ǫE such that
CKS = −5,−4, . . . , 5, C2 = −4,−3, . . . , 8, ǫ = 0, 1, and vd < 10.

Applying the same method and using our explicit expansions of A1(y, q), . . .,
A11(y, q), we verified Conjecture 1.2 in the following cases:

(1) S is a K3 surface, c1 such that c21 = 0, 2, . . . , 14, and vd < 11.
(2) S is the blow-up of a K3 surface in a point, c1 = π∗C + rE such that

C2 = −4,−2, . . . , 14, r = −2,−1, . . . , 2, and vd < 10.
(3) S is the blow-up of a K3 surface in two distinct points, c1 = π∗C +

ǫ1E1 + ǫ2E2 such that C2 = −2, 0, . . . , 6, ǫ1, ǫ2 = 0, 1, and vd < 10.
(4) S is an elliptic surface of type E(N) with N = 3, 4, 5, c1 = mB + nF

with m = −1, 0, 1, 2, n = −2,−1, . . . , 10, and vd < 9.
(5) S is the blow-up of an elliptic surface of type E(3) in a point, c1 =

π∗C+ǫE such that CKS = −1, 0, . . . , 4, C2 = −16,−15, . . . , 0, ǫ = 0, 1,
and vd < 9.

(6) S is the double cover of P2 branched along a smooth octic, c1 such that
c1 ·KS = −2,−1, . . . , 2, c21 = −16,−15, . . . ,−6, and vd < 9.

(7) S is the blow-up of S ′ as in (6) in a point, c1 = π∗C + ǫE such that
CKS = −2,−1, . . . , 2, C2 = −16,−15 . . . , 8, ǫ = 0, 1, and vd < 7.

Assuming the strong form of Mochizuki’s formula holds (Remark 2.4), we
also verified Conjecture 1.2 in the following cases:

(8) S is a smooth quintic in P3, c1 such that c1 · KS = 2, 3, . . . , 6, c21 =
−16,−15, . . . ,−3, and vd < 7.

(9) S is the blow-up of a smooth quintic in P3 in a point, c1 = π∗C + ǫE
such that CKS = 0, C2 = −23,−22, . . . ,−14, ǫ = 0, 1, and vd < 4.

3. Monopole contribution and nested Hilbert schemes

In this section, we study the contribution of the monopole branch to the

invariants χ(N, Ôvir
N ⊗ µ(L)) defined in the introduction. We prove that this

is determined by universal series C1, . . . , C6 as stated in Theorem 1.4. More-
over, we express these universal functions in terms of integrals over products
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over Hilbert schemes of points on S. Much like in the previous section, these
integrals are determined by their value on P2 and P1 × P1, where we calculate
them, modulo q15, by localization.
The methods of this section are a variation on Laarakker’s work [Laa2],

which in turn relies on Gholampour-Thomas’s work [GT1, GT2]. For L = OS

and r = 2, Theorem 1.4 was previously proved in [Laa2] (in fact, for L = OS,

he proved the analog of Theorem 1.4 in any prime rank). Then χ(N, Ôvir
N ) are

the rank 2 K-theoretic Vafa-Witten invariants defined by Thomas [Tho] and
determined by the universal series C1, C2, C5. Closed formulae for these uni-
versal series were conjectured in [GK3] (refining Vafa-Witten’s original formula
[VW, (5.38)]) and subsequently verified in [Laa2] up to the following orders:

C1(y, q) =

∞∏

n=1

1

(1− q2n)10(1− q2ny2)(1− q2ny−2)
mod q15

C2(y, q) = (y
1
2 + y−

1
2 )q

1
4
η(q)2

θ2(q, y)
mod q15

C5(y, q) =
1

(y
1
2 + y−

1
2 )q

1
4

θ2(q, y)

θ3(q, y)
mod q15,

(14)

where η(q), θ2(q, y), θ3(q, y) were introduced in (4). The universal power series
C3, C4, C6 are new. In accordance with Conjecture 1.3, we show

C3(y, q) =

∞∏

n=1

(
(1− q2n)2

(1− q2ny2)(1− q2ny−2)

)2n2

mod q15

C4(y, q) =

∞∏

n=1

(
1− qny−1

1− qny

)n(
1− q2ny−2

1− q2ny2

)n(
1 + q2ny−1

1 + q2ny

)4n

mod q15

C6(y, q) =

∞∏

n=1

(
1− (−1)nqny−1

1− (−1)nqny

)2n(
1− q4ny2

1− q4ny−2

)4n

mod q15.

(15)

3.1. Gholampour-Thomas’s formula. Let S be a smooth projective surface
satisfying b1(S) = 0 and pg(S) > 0. Let r = 2 and c1, c2 be chosen such that
there are no rank 2 strictly Gieseker H-semistable Higgs sheaves on S with
Chern classes c1, c2. Let N := NH

S (2, c1, c2) and let Mmon ⊂ NC∗
be the

monopole branch discussed in the introduction. Gholampour-Thomas [GT1]
(see also [GSY1]) prove that the components of Mmono are isomorphic to

S
[n0,n1]
β := {(Z0, Z1, C) : IZ0(−C) ⊂ IZ1} ⊂ S [n0] × S [n1] × |β|,
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for certain (see Remark 3.2 below) n0, n1 ≥ 0 and β ∈ NS(S) ⊂ H2(S,Z). In
particular, such n0, n1, β satisfy

c1 − β +KS ∈ 2H2(S,Z),

c2 = n0 + n1 +
(c1 − β +KS

2

)(c1 + β −KS

2

)
.

(16)

Whenever we have n0, n1, β satisfying (16), it is convenient to define

L0 :=
c1 − β +KS

2
, L1 :=

c1 + β −KS

2
.

Consider the inclusion

ι : S
[n0,n1]
β ⊂ S [n0] × S [n1] × |β|,

where |β| denotes the linear system determined by OS(β). The universal sheaf

E on Mmon × S restricted to the component S
[n0,n1]
β × S is

(17) E ∼= I0 ⊗ L0 ⊕ I1 ⊗ L1(1)⊗ t
−1,

where t is a positive primitive character of the trivial C∗-action onMmon×S ⊂
NC∗ ×S. Moreover, I0, I1 are the universal ideal sheaves pulled back from the

factors of S [n0] × S [n1] × S × |β| (and then along ι× idS to S
[n0,n1]
β ), L0, L1 are

pulled back from S, and O(1) is pulled back from |β|. Consider Mmono ⊂ NC∗

with its C∗-localized perfect obstruction theory [GP].

Theorem 3.1 (Gholampour-Thomas). The class ι∗[S
[n0,n1]
β ]vir is given by

SW(β) e
(
RΓ(β)⊗O − RHomπ(I0, I1(β)

)
∈ H2n0+2n1(S

[n0] × S [n1] × |β|),

where π : S [n0] ×S [n1] ×S → S [n0] ×S [n1] denotes projection, e(·) = cn0+n1(·),10
and the LHS should be interpreted as the image under push-forward along the
inclusion S [n0] × S [n1] × {pt} →֒ S [n0] × S [n1] × |β| for any point pt ∈ |β|.

Remark 3.2. Not all n0, n1, β satisfying (16) correspond to spaces S
[n0,n1]
β

containing Gieseker H-stable Higgs sheaves on S with Chern classes c1, c2.
However, such components still have a virtual class given by the formula of

Theorem 3.1 (and induced by realizing S
[n0,n1]
β as an incidence locus inside

S [n0]×S [n1]×|β| [GT1]). Laarakker proves that components S
[n0,n1]
β , which are

not part of Mmono, satisfy [S
[n0,n1]
β ]vir = 0 [Laa2]. This implies we may as well

consider all n0, n1, β satisfying (16) and their corresponding spaces S
[n0,n1]
β .

10By Carlsson-Okounkov vanishing, c>n0+n1
(RΓ(β)⊗O−RHomπ(I0, I1(β)) = 0 [GT1].
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Remark 3.3. Unlike the instanton branch, it may happen that the monopole
branch Mmono of NH

S (2, c1, c2)
C∗

has components of different virtual dimen-
sion with respect to the C∗-localized perfect obstruction theory. A component

S
[n0,n1]
β ⊂ Mmono, where n0, n1, β satisfy (16), has virtual dimension n0 + n1.

As an example, take S → P2 a double cover branched over a smooth curve of
degree 10, then KS = 2L, where L ⊂ S is the pull-back of the line from P2.
Let H = L, c1 = KS, and c2 ≥ 3 odd, then gcd(2, c1H,

1
2
c1(c1 −KS)− c2) = 1,

in which case there are no rank 2 strictly Gieseker H-semistable Higgs sheaves
on S with Chern classes c1, c2. For β = 0 and any 0 ≤ n1 ≤ n0 such that
c2 = n0 + n1, we obtain a non-empty component of virtual dimension c2. For
β = KS and any 0 ≤ n0 < n1 such that c2 = n0 + n1 + 2, we obtain a non-
empty component of virtual dimension c2 − 2. In both cases, the elements of
the component correspond to Gieseker H-stable Higgs sheaves. Also note that
in this example β = 0, KS are the Seiberg-Witten basic classes of S.

Although the virtual dimension of the monopole branch is in general not
given by (1), we still define

vd(2, c1, c2) := vd = 4c2 − c21 − 3χ(OS)

and use xvd as the formal variable of our generating series. Equivalently, one
could use ξc2 as a formal variable.

3.2. Virtual normal bundle and µ(c1(L))-insertion. The (dual) Tanaka-
Thomas perfect obstruction theory is given by [TT1]

E•∨
TT = RHomπ(E,E⊗KS ⊗ t)0 −RHomπ(E,E)0.

Using (17), the class of E•∨
TT|S[n0,n1]

β

in K0
C∗(S

[n0,n1]
β ) equals the restriction of the

following element of K0
C∗(S [n0] × S [n1] × |β|)

Vn0,n1,β :=RHomπ(I0, I1(β)⊗O(1)) +RΓ(OS)⊗O
− RHomπ(I0, I0)− RHomπ(I1, I1)

+RHomπ(I1(β)⊗O(1), I0 ⊗K2
S ⊗ t

2)− RΓ(KS ⊗ t)⊗O
+RHomπ(I0, I0 ⊗KS ⊗ t) +RHomπ(I1, I1 ⊗KS ⊗ t)

− RHomπ(I0, I1(β)⊗K∗
S ⊗ t

−1)− RHomπ(I1(β)⊗K∗
S ⊗ t

−1, I0),

where lines 1–2 have C∗-weight zero and lines 3–5 have non-zero C∗-weight. We
denote by (·)mov the weight 6= 0 part of a complex and by (·)C∗

the weight zero

part. Therefore, on S
[n0,n1]
β , the virtual normal bundle Nvir and C∗-localized

perfect obstruction theory are given by

Nvir := (E•∨
TT)

mov = V mov
n0,n1,β

|
S
[n0,n1]
β

,
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(E•∨
TT)

C∗

= V C∗

n0,n1,β|S[n0,n1]
β

.

Finally, we write

Vn0,n1 := Vn0,n1,β|S[n0]×S[n1]×{pt} ∈ K0
C∗(S [n0] × S [n1]).

This restriction essentially amounts to removing O(1) from the expression of

Vn0,n1,β. Using Theorem 3.1, we conclude that the contribution of S
[n0,n1]
β to

χ(N, Ôvir
N ⊗ µ(L)) equals

SW(β) ·
∫

S[n0]×S[n1]

e
(
RΓ(β)⊗O −RHomπ(I0, I1(β)

)

·ch(
√
det(Vn0,n1)

∨)

ch(Λ−1(V mov
n0,n1

)∨)
eµ(c1(L)) td(V C∗

n0,n1
).

Here we used that µ(c1(L)) = π∗(π
∗
Sc1(L) ∩ (− ch2(E) +

1
4
c1(E)

2) restricted to

S
[n0,n1]
β also pulls back from an expression on S [n0] × S [n1] × |β|. On

S [n0] × S [n1] × {pt} ⊂ S [n0] × S [n1] × |β|
this expression is given by

µ(c1(L)) = π∗
(
π∗
Sc1(L) · (− ch2(I0)− ch2(I1)) ∩ [S [n0] × S [n1] × S]

)

− 1

4

∫

S

L ·
(c1 − β +KS

2

)2
− 1

4

∫

S

L ·
(c1 + β −KS

2
− t
)2

+
1

2

∫

S

L ·
(c1 − β +KS

2

)(c1 + β −KS

2
− t
)

= π∗
(
π∗
Sc1(L) · (− ch2(I0)− ch2(I1)) ∩ [S [n0] × S [n1] × S]

)

+
t

2

∫

S

L · (β −KS),

where the equivariant integrals
∫
S
(· · · ) ∈ K0

C∗(pt) = Z[t±1] are multiplied with

the fundamental class [S [n0] × S [n1]] and, as usual, we are suppressing some
Poincaré duals. Exponentiating and using y := et gives

eµ(c1(L)) = y
1
2
L(β−KS)eπ∗(π∗

Sc1(L)·(− ch2(I0)−ch2(I1))∩[S[n0]×S[n1]×S]).

3.3. Universal series. Let S be any smooth projective surface not necessarily
satisfying b1(S) = 0 and pg(S) > 0. For any L, β ∈ Pic(S) and n0, n1, the
expressions

Vn0,n1 , µ(c1(L)) ∈ K0
C∗(S [n0] × S [n1])
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are defined as in the previous paragraph. We define

Z
mon
S (L, β, y, q) := y−

1
2
L(β−KS)

(
−1

y
1
2 + y−

1
2

)−χ(β−KS)

(y
1
2 − y−

1
2 )−χ(β)+χ(OS)

·
∑

n0,n1≥0

qn0+n1

∫

S[n0]×S[n1]

e
(
RΓ(β)⊗O − RHomπ(I0, I1(β)

)

·ch(
√

det(Vn0,n1)
∨)

ch(Λ−1(V mov
n0,n1

)∨)
eµ(c1(L)) td(V C∗

n0,n1
).

Here the first line is a normalization factor which ensures that

Z
mon
S (L, β, y, q) ∈ 1 + qQ[y±

1
2 ][[q]].

The normalization factor can be computed as follows. Putting n0 = n1 = 0,
the definition of Vn0,n1 gives

V0,0 =RΓ(OS(β))− RΓ(OS) +RΓ(OS(−β + 2KS)⊗ t
2)

+RΓ(OS(KS)⊗ t)−RΓ(OS(β −KS)⊗ t
−1)−RΓ(OS(−β +KS)⊗ t).

(18)

Using

ch(
√
L∗)

ch(Λ−1L∗)
=

1

e
1
2
c1(L) − e−

1
2
c1(L)

combined with Serre duality and y = et, we obtain

eµ(c1(L))
ch(
√
det(V0,0)∨)

ch(Λ−1(V mov
0,0 )∨)

td(V C∗

0,0 )

= y
1
2
L(β−KS)

(
y−

1
2 − y

1
2

y − y−1

)χ(β−KS)

(y
1
2 − y−

1
2 )χ(β)−χ(OS).

The generating series Zmon
S (L, β, y, q) has the following universal property.

Lemma 3.4. There exist universal functions

B1(y, q), . . . , B7(y, q) ∈ 1 + qQ[y±
1
2 ][[q]]

such that for any smooth projective surface S and L, β ∈ A1(S) we have

Z
mon
S (L, β, y, q) = BL2

1 BLβ
2 Bβ2

3 B
LKS
4 BβKS

5 B
K2

S
6 B

χ(OS)
7 .

Proof. The case L = OS is proved (for any rank r) in [Laa2, Sect. 8]. The
strategy is similar to the proof of Proposition 2.6:
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Step 1: Multiplicativity. Let S = S ′ ⊔ S ′′, where S ′, S ′′ are possibly dis-
connected smooth projective surfaces. Let L, β ∈ A1(S) and define L′ := L|S′,
β ′ := β|S′, L′′ := L|S′′, and β ′′ := β|S′′. Then

(19) Z
mon
S (L, β, y, q) = Z

mon
S′ (L′, β, y, q)Zmon

S′′ (L′′, β ′′, y, q).

The only new feature compared to [Laa2, Sect. 8] is the insertion

π∗
(
π∗
Sc1(L) · (− ch2(I0)− ch2(I1)) ∩ [S [n0] × S [n1]]

)
,

which we discussed in Lemma 2.5.

Step 2: Universality. This is proved as in Lemma 2.6. �

Lemma 3.5. Let S be a smooth projective surface with b1(S) = 0, pg(S) > 0,
and L ∈ Pic(S). Let H, c1, c2 be chosen such that there exist no rank 2 strictly
Gieseker H-semistable Higgs sheaves on S with Chern classes c1, c2. For vd

given by (1), the monopole contribution to χ(N, Ôvir
N × µ(L)) is given by the

coefficient of (−x)vd of

∑

β∈H2(S,Z)

δc1,KS−β SW(β)B1(y, x
4)L

2

(
y

1
2B2(y, x

4)

)Lβ

·
((

−1

y
1
2 + y−

1
2

) 1
2

(y
1
2 − y−

1
2 )

1
2 (−x)−1B3(y, x

4)

)β2

·
(
y−

1
2B4(y, x

4)

)LKS
((

−1

y
1
2 + y−

1
2

)− 3
2

(y
1
2 − y−

1
2 )−

1
2 (−x)2B5(y, x

4)

)βKS

·
((

−1

y
1
2 + y−

1
2

)
(−x)−1B6(y, x

4)

)K2
S
((

−1

y
1
2 + y−

1
2

)
(−x)−3B7(y, x

4)

)χ(OS)

.

Proof. By Remark 3.2, we sum the contributions to the invariant of S
[n0,n1]
β for

all β ∈ H2(S,Z), n0, n1 ∈ Z≥0 such that c1 + β −KS ∈ 2H2(S,Z) and

c2 = n0 + n1 +
(c1 − β +KS

2

)(c1 + β −KS

2

)
,

or, equivalently, vd = 4(n0 + n1) − (β −KS)
2 − 3χ(OS). As shown in [Laa2,

Sect. 8], this gives
∑

β∈H2(S,Z) δc1,KS−β SW(β) · (· · · ), where δa,b was defined in
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(5), and (· · · ) equals the coefficient of (−1)vdxvd of

(−1)vdy
1
2
L(β−KS)

(
y−

1
2 − y

1
2

y − y−1

)χ(β−KS)

(y
1
2 − y−

1
2 )χ(β)−χ(OS)Z

mon
S (L, β, y, x4).

Lemma 3.4 then gives Zmon
S (L, β, y, x4) in terms of the universal series Bi. �

Proof of Theorem 1.4. There are finitely many β ∈ H2(S,Z) for which SW(β) 6=
0. These classes satisfy β2 = βKS [Moc, Prop. 6.3.1]. The theorem follows by
defining C1 := B7, C2 := B6, C3 := B1, C4 := B4, C5 := B3B5, C6 := B2. �

3.4. Reduction to toric surfaces. Consider the following 7 choices of (S, L, β)
for which the corresponding vectors of Chern numbers (L2, . . . , χ(OS)) are Q-
independent:

(S, L, β) =(P2,O,O),

(P2,O(−3),O),

(P2,O(−6),O),

(P2,O,O(6)),

(P2,O,O(−6)),

(P2,O(−3),O(−6)),

(P1 × P1,O,O).

In each case, localization (as in Section 2.4) reduces the series Zmon
S (L, β, y, q)

to a purely combinatorial expression. In this way, we determined the univer-
sal series B1, . . . , B7 modulo q15. For our calculations, we used (and slightly
adapted) a SAGE program of Laarakker, which was used for the calcula-
tion of K-theoretic Vafa-Witten invariants in [Laa2]. Using the definitions
of C1, . . . , C6 in terms of B1, . . . , B7, we obtain (14) and (15).

3.5. K3 surfaces. In this section, we consider Zmon
S (L, β, y, q) when S is a K3

surface and β = 0. Note that 0 is the only Seiberg-Witten basic class of a K3

surface and SW(0) = 1. Let ι : S
[n0,n1]
0 →֒ S [n0]×S [n1] be the natural inclusion.

Laarakker [Laa2, Sect. 10] observes that

(20) ι∗[S
[n0,n1]
0 ]vir =

{
∆∗S

[n] when n0 = n1 = n
0 otherwise,

where ∆ : S [n] →֒ S [n] × S [n] is the diagonal embedding. In other words, only
universally thickened nestings Z0 = Z1 contribute to the invariants.11 This fact

11The case n0 = n1 = n appears in [GSY1].
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is explained geometrically using cosection localization in [Tho, Sect. 5.3]. This
gives a simplication of Vn,n,0 (derived in [Laa2, Sect. 10] for any rank r)

(21) ∆∗Vn,n = TS[n] + TS[n] ⊗ t
−1 − TS[n] ⊗ t− TS[n] ⊗ t

2 + V0,0,

where V0,0 is the normalization term (18), which should be viewed as pulled
back from S [n] → pt. Using (20) and (21), Laarakker expresses the universal
function C1 of Theorem 1.4 in terms of

χy(S
[n]) = χ(S [n],ΛyΩS[n]), where S = K3.

In turn, χy-genera of Hilbert schemes of points on K3 surfaces were calculated
by the first named author and W. Soergel [GS].
Recently, using Borisov-Libgober’s proof of the Dijkgraaf-Moore-Verlinde-

Verlinde formula [BL], the first named author found a formula for elliptic gen-
era, with values in a line bundle, of Hilbert schemes of points on surfaces
[Got2]. We briefly discuss this result. Let S be any smooth projective surface
(not necessarily K3) and L ∈ Pic(S). The determinant line bundle on S [n] is
µ(L) := det((L−OS)

[n]). Its first Chern class is described as follows. Consider
projections from the universal subscheme Z ⊂ S [n] × S

Z
p

}}⑤⑤
⑤⑤
⑤⑤
⑤

q

��
❅❅

❅❅
❅❅

❅❅

S [n] S.

Then

(22) c1(µ(L)) = µ(c1(L)) := p∗q
∗c1(L) ∈ H2(S [n],Z).

Specialized to χy-genera the results of [Got2] imply:

Theorem 3.6 (Göttsche). Let S be a smooth projective surface and L ∈
Pic(S). Then

∞∑

n=0

χ(S [n],Λ−yΩS[n] ⊗ µ(L)) (qy−1)n =

(
∞∏

n=1

1

(1− qn)10(1− qny)(1− qny−1)

)χ(OS)( ∞∏

n=1

(1− qn)

)K2
S

(
∞∏

n=1

(
(1− qn)2

(1− qny)(1− qny−1)

)n2
)L2

2 ∞∏

n=1

((
1− qny−1

1− qny

)n)LKS
2

.
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Adapting an argument from [GNY2] and combining with Theorem 3.6, Con-
jecture 1.2 (and hence Conjecture 1.1) are proved for K3 surfaces in [Got2].
We now use (20), (21), and Theorem 3.6 to prove Theorem 1.5.

Proof Theorem 1.5. Let S be a K3 surface. The case L = OS was done in
[Laa2] and gives C1. Let L ∈ Pic(S) be arbitrary. It is useful to work with
V ◦
n,n := Vn,n−V0,0, where V0,0 is the normalization factor (18) pulled back along

S [n] × S [n] → pt. For S a K3 surface and β = 0, (20) and (21) imply

Z
mon
S (L, 0, y, q) =

∑

n

q2n
∫

S[n]

eµ(2c1(L)) ∆∗
ch(
√

det(V ◦
n,n)

∨)

ch(Λ−1(V ◦
n,n)

mov∨)
td((V ◦

n,n)
C∗

),

where we used

∆∗π∗
(
π∗
Sc1(L) · (− ch2(I0)− ch2(I1)) ∩ [S [n] × S [n] × S]

)
= π∗(π

∗
Sc1(L) ∩ (2[Z]))

= µ(2c1(L)),

where Z ⊂ S [n]×S is the universal subscheme and µ(c1(L)) is defined by (22).
We require two identities from [Tho]. By [Tho, Prop. 2.6], the canonical

square root is given by
√

det(V ◦
n,n)

∨ =
(
det(V ◦

n,n)
∨
)≥0 · t 12 r≥0 ,

where (·)≥0 denotes the part with non-negative C∗-weight and r≥0 is its rank.
Moreover, for any complex E we have [Tho, (2.28)]

(23) Λ−1E
∨ ∼= (−1)rkEΛ−1E ⊗ detE∨.

Pulling back along ∆ : S [n] →֒ S [n] × S [n] and using (21) yields

∆∗
√
(det V ◦

n,n)
∨ = det (ΩS[n] + ΩS[n] ⊗ t) · t2n = det(ΩS[n]) · det(ΩS[n] ⊗ t) · t2n.

Furthermore

∆∗ 1

Λ−1(V ◦
n,n)

mov∨
=

Λ−1(ΩS[n] ⊗ t
−1)

Λ−1(ΩS[n] ⊗ t)
· Λ−1(ΩS[n] ⊗ t

−2).

Hence

∆∗

√
det(V ◦

n,n)
∨

Λ−1(V ◦
n,n)

mov∨
= det(ΩS[n]) · det(ΩS[n] ⊗ t)

Λ−1(ΩS[n] ⊗ t)
· t2n · Λ−1(ΩS[n] ⊗ t

−1) · Λ−1(ΩS[n] ⊗ t
−2)

= det(ΩS[n]) · t2n · Λ−1(ΩS[n] ⊗ t
−1)

Λ−1(TS[n] ⊗ t−1)
· Λ−1(ΩS[n] ⊗ t

−2)

= t
2n · Λ−1(ΩS[n] ⊗ t

−2),
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where the second equality uses (23), the third equality uses TS[n]
∼= ΩS[n] (be-

cause S [n] is holomorphic symplectic), and the last equation uses KS[n]
∼= O.

Using y := et and Serre duality (see also [FG, Rem. 4.13]), we find

Z
mon
S (L, 0, y, q) =

∞∑

n=0

y2nχ(S [n],Λ−1(ΩS[n] ⊗ t
−2)⊗ µ(L⊗ L)) q2n

=
∞∑

n=0

y2nχ(S [n],Λ−y−2ΩS[n] ⊗ µ(L⊗ L)) q2n

=
∞∑

n=0

y−2nχ(S [n],Λ−y2ΩS[n] ⊗ µ(L∗ ⊗ L∗)) q2n

The result follows from Theorem 3.6 and Lemmas 3.4, 3.5. �

3.6. Higher rank. The methods of Section 3.1–3.5 generalize to any rank r.
Let S be any smooth projective surface with b1(S) = 0 and pg(S) > 0. Let
N := NH

S (r, c1, c2). Consider the components of N containing Higgs sheaves
(E, φ) such that

E = E0 ⊕E1 ⊗ t
−1 ⊕ · · · ⊕ Er−1 ⊗ t

−(r−1)

and rkE0 = · · · = rkEr−1 = 1. We denote the union of such components
by M1r . These components are described by Gholampour-Thomas in terms of
nested Hilbert schemes [GT1, GT2] (see also [Laa2])

S
[n0,...,nr]
β1,...,βr−1

⊂ S [n0] × · · · × S [nr−1] × |β1| × · · · × |βr−1|.
Suppose there are no strictly Gieseker H-semistable Higgs sheaves on S with
Chern classes c1, c2. Let L ∈ Pic(S) and replace c2(E) − 1

4
c1(E)

2 by c2(E) −
r−1
2r
c1(E)

2 in definitions (2), (3). Let vd be defined by (1). Then the contribu-

tion of M1r to χ(N, Ôvir
N ⊗ µ(L)) is given by the coefficient of (−x)vd of

C̃
(r)
1 (y, x2r)χ(OS) C̃

(r)
2 (y, x2r)K

2
S C̃

(r)
3 (y, x2r)L

2

C̃
(r)
4 (y, x2r)LKS

·
∑

a1,...,ar−1∈H2(S,Z)

δc1,KS−a1,...,KS−ar−1

r−1∏

i=1

SW(ai) C̃
(r)
5i (y, x

2r)aiKS C̃
(r)
6i (y, x

2r)aiL

·
∏

i<j

C̃
(r)
7ij (y, x

2r)aiaj ,

where C̃
(r)
i , C̃

(r)
ij , C̃

(r)
ijk are universal series in Q(y

1
2 )((x)) and

δa,b1,...,br−1 := #

{
γ ∈ H2(S,Z) : a−

r−1∑

i=1

ibi = rγ

}
.
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We did not normalize the universal series to start with 1. Since [Laa2] works
in any rank, Section 3.1–3.3 readily generalize to the above statement.
Equations (20) and (21) have analogs in any rank [Laa2, Sect. 10]. Define

C̃
(r)
1 (y, q) = x−(r2−1)(y−

r−1
2 + y−

r−2
2 + · · ·+ y

r−1
2 )−1C

(r)
1 (y, q),

C̃
(r)
3 (y, q) = C

(r)
3 (y, q),

then C
(r)
3 , C

(r)
5 ∈ 1 + qQ(y

1
2 )[[q]]. Generalizing Section 3.5 accordingly yields

C
(r)
1 (y, q) =

∞∏

n=1

1

(1− qrn)10(1− qrnyr)(1− qrny−r)
,

C
(r)
3 (y, q) =

∞∏

n=1

(
(1− qrn)2

(1− qrnyr)(1− qrny−r)

) r2n2

2

,

where C
(r)
1 was previously derived in [Laa2, Tho] and C

(r)
3 is new.

Let M :=MH
S (r, c1, c2) and assume there are no rank r strictly Gieseker H-

semistable sheaves on S with Chern classes c1, c2. The instanton contribution

to (−1)vdχ(N, Ôvir
N ⊗ µ(L)), which equals y−

vd
2 χvir

−y(M,µ(L)), is determined in
[Got2] for S a K3 surface. It is derived by combining Theorem 3.6 with an
adaptation of an argument of [GNY2]. The result is the coefficient of qvd/2 of

(
∞∏

n=1

1

(1− qn)20(1− qny)2(1− qny−1)2

)(
∞∏

n=1

(
(1− qn)2

(1− qny)(1− qny−1)

)n2
)L2

2

.

Unlike the monopole contribution, these universal series are independent of r.

4. Applications

In this section, we discuss special cases of Conjectures 1.1 and 1.2: (1) min-
imal surfaces of general type, (2) surfaces with disconnected canonical divisor,
(3) a blow-up formula, and (4) Vafa-Witten invariants with µ-classes. We
denote the formula of Conjecture 1.1, after some slight rewriting, by

ψS,L,c1(x) :=

22−χ(OS)+K2
S

(1− x2)χ(L)

∑

a∈H2(S,Z)

SW(a) (−1)ac1(1 + x)(KS−a)(L−KS)(1− x)a(L−KS).
(24)



30 GÖTTSCHE, KOOL, WILLIAMS

4.1. Minimal surfaces of general type.

Proposition 4.1. Let S be a smooth projective surface satisfying pg(S) > 0,
b1(S) = 0, KS 6= 0, and such that its only Seiberg-Witten basic classes are
0 and KS. Let L ∈ Pic(S) and let H, c1, c2 be chosen such that there are no
rank 2 strictly Gieseker H-semistable sheaves on S with Chern classes c1, c2.
Suppose Conjecture 1.1 holds in this setting. Then χvir(MH

S (2, c1, c2), µ(L)) is
given by the coefficient of xvd of

23−χ(OS)+K2
S
(1 + x)KS(L−KS)

(1− x2)χ(L)
.

Proof. Since SW(0) = 1, we have SW(KS) = (−1)χ(OS) [Moc, Prop. 6.3.4].
By Conjecture 1.1, χvir(MH

S (2, c1, c2), µ(L)) is given by the coefficient of xvd of
(24), which simplifies to

22−χ(OS)+K2
S

(1− x2)χ(L)
[
(1 + x)KS(L−KS) + (−1)c1KS+χ(OS)(1− x)KS(L−KS)

]
.

Varying over c2, we put the coefficients of all terms xvd of ψS,L,c1(x) into a
generating series as follows. Suppose ψS,L,c1(x) =

∑∞
n=0 ψnx

n and i =
√
−1.

Then for vd given by (1), we have
∑

c2

Coeffxvd(ψS,L,c1(x)) x
vd =

∑

n≡−c21−3χ(OS) mod 4

ψn x
n

=

3∑

k=0

1

4
ik(c

2
1+3χ(OS))ψ(ikx)

= 21−χ(OS)+K2
S

[
(1 + x)KS(L−KS)

(1− x2)χ(L)
+ (−1)c

2
1+3χ(OS)

(1− x)KS(L−KS)

(1− x2)χ(L)

+ic
2
1+3χ(OS)

(1 + ix)KS(L−KS)

(1 + x2)χ(L)
+ (−i)c21+3χ(OS)

(1− ix)KS(L−KS)

(1 + x2)χ(L)

]
,

where the third equality uses c1KS ≡ c21 mod 2. Now define

φS,L,c1(x) := 23−χ(OS)+K2
S
(1 + x)KS(L−KS)

(1− x2)χ(L)
.

Then
∑

c2

Coeffxvd(φS,L,c1(x)) x
vd =

∑

n≡−c21−3χ(OS) mod 4

φn x
n
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=
3∑

k=0

1

4
ik(c

2
1+3χ(OS))φ(ikx)

is given by the same expression as above, which proves the proposition. �

Remark 4.2. Examples of surfaces satisfying the conditions of Proposition
4.1 are (1) minimal surfaces of general type satisfying pg(S) > 0 and b1(S) = 0
[Mor, Thm. 7.4.1], (2) smooth projective surfaces with b1(S) = 0 and contain-
ing an irreducible reduced curve C ∈ |KS| (e.g. discussed in [GK1, Sect. 6.3]).

Remark 4.3. In general, the formula of Proposition 4.1 only has integer co-
efficients when χ(OS) − 3 ≤ K2

S. For minimal surfaces of general type, this
inequality is implied by Noether’s inequality χ(OS)− 3 ≤ 1

2
K2

S.

Corollary 4.4. Let S be a smooth projective surface with b1(S) = 0 and con-
taining a smooth connected curve C ∈ |KS| of genus g. Let L ∈ Pic(S) and let
H, c1, c2 be chosen such that there are no rank 2 strictly Gieseker H-semistable
sheaves on S with Chern classes c1, c2. Suppose Conjecture 1.1 holds in this
setting. Then χvir(MH

S (2, c1, c2), µ(L)) is given by the coefficient of xvd of

23−χ(OC)−χ(OS)
(1 + x)χ(L|C)

(1− x2)χ(L)
.

Proof. We have g = K2
S+1 and χ(L|C) = 1−g+deg L|C by Riemann-Roch. �

4.2. Disconnected canonical divisor.

Proposition 4.5. Let S be a smooth projective surface with b1(S) = 0 and
suppose there exists 0 6= C1 + · · ·+ Cm ∈ |KS|, where C1, . . . , Cm are mutually
disjoint irreducible reduced curves. Let L ∈ Pic(S) and let H, c1, c2 be cho-
sen such that there are no rank 2 strictly Gieseker H-semistable sheaves on S
with Chern classes c1, c2. Suppose Conjecture 1.1 holds in this setting. Then
χvir(MH

S (2, c1, c2), µ(L)) is given by the coefficient of xvd of

22−χ(OS)+K2
S

(1 − x2)χ(L)

m∏

j=1

[
(1 + x)χ(L|Ci

) + (−1)Cic1+h0(NCi/S
)(1− x)χ(L|Ci

)
]
,

where NCi/S denotes the normal bundle of Ci ⊂ S.

Proof. We describe the Seiberg-Witten basic classes and invariants for S in this
setting [GK1, Lem. 6.14]. For any I ⊂M := {1, . . . , m}, define CI :=

∑
i∈I Ci

and we write I ∼ J when CI and CJ are linearly equivalent. Also C∅ := 0.
The Seiberg-Witten basic classes of S are precisely {CI}I⊂M and

SW(CI) = #[I]
∏

i∈I

(−1)h
0(NCi/S

),
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where #[I] denotes the number of elements of equivalence class [I]. Therefore
(24) becomes

22−χ(OS)+K2
S

(1− x2)χ(L)

(
∑

[I]

#[I]
∏

i∈I

(−1)h
0(NCi/S

)

)
(−1)CIc1(1 + x)CM\I (L−KS)(1− x)CI (L−KS)

=
22−χ(OS)+K2

S

(1− x2)χ(L)

∑

I⊂M

(
∏

i∈I

(−1)Cic1+h0(NCi/S
)(1− x)Ci(L−Ci)

)(
∏

i∈M\I

(1 + x)Ci(L−Ci)

)
,

where we used KS = CM and the assumption that the curves Ci are mutually
disjoint. The result follows from χ(L|Ci

) = 1 − g(Ci) + degL|Ci
= Ci(L− Ci)

and expanding the product in the statement of the proposition. �

4.3. Blow-up formula.

Proposition 4.6. Let S be a smooth projective surface, π : S̃ → S the blow-
up of S in a point, and E the exceptional divisor. Let L, c1 ∈ Pic(S), c̃1 =

π∗c1 − kE, and L̃ = π∗L− ℓE. Then

ψS̃,L̃,c̃1
(x) =

1

2
(1− x2)(

ℓ+1
2 )
[
(1 + x)ℓ+1 + (−1)k(1− x)ℓ+1

]
ψS,L,c1(x).

Proof. The Seiberg-Witten basic classes of S̃ are π∗a and π∗a+ E with corre-
sponding Seiberg-Witten invariant SW(a), where a runs over all Seiberg-Witten
basic classes of S [Mor, Thm. 7.4.6]. Using χ(OS̃) = χ(OS), KS̃ = π∗KS + E,

E2 = −1, χ(L̃) = χ(L)−
(
ℓ+1
2

)
, the proposition follows at once from (24). �

4.4. Vafa-Witten formula with µ-classes. Let S be a smooth projective
surface satisfying b1(S) = 0 and pg(S) > 0. In an appendix of [GK1], the first
named author and Nakajima gave a conjectural formula for

(25)
vd∑

k=0

∫

[M ]vir
eµ(c1(L))λvd−kck(T

vir
M ),

whereM :=MH
S (2, c1, c2), vd is given by (1), and we assume “stable=semistable”.

Setting λ = 0 in (25) gives evir(M). Replacing λ by λ−1, then multiplying
by λvd, and finally setting λ = 0 gives Donaldson invariants

∫
[M ]vir

eµ(c1(L)).

Therefore (25) interpolates between Donaldson invariants and virtual Euler
characteristics. Let G2(q) be the Eisenstein series of weight 2 and define

G2(q) = G2(q) +
1

24
=

∞∑

d=1

σ1(d) q
d,

where σ1(d) =
∑

d|n d. Furthermore, let θ3(q) := θ3(q, 1) and D := q d
dq
.
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Conjecture 4.7 (Göttsche-Nakajima). Let S be a smooth projective surface
with pg(S) > 0, b1(S) = 0, and let L ∈ Pic(S). Let H, c1, c2 be chosen such
that there are no rank 2 strictly Gieseker H-semistable sheaves on S with Chern
classes c1, c2. Let M :=MH

S (2, c1, c2), then

vd∑

k=0

∫

[M ]vir
eµ(c1(L))λvd−kck(T

vir
M )

is given by the coefficient of xvd of

4

(
1

2η(x2)12

)χ(OS)(2η(x4)2

θ3(x)

)K2
S (
eDG2(x2)

) (λL)2

2
(
e−2G2(x2)

)λLKS

·
∑

a∈H2(S,Z)

(−1)c1a SW(a)

(
θ3(x, y

1
2 )

θ3(−x, y
1
2 )

)aKS (
eG2(x)−G2(−x)

)λL(KS−2a)

2 .

Recall that specializing Conjecture 1.2 to y = 0 implies Conjecture 1.1 (after

replacing x by xy
1
2 , see Section 1). We show that specializing Conjecture 1.2

to y = 1 implies Conjecture 4.7 (after replacing x by xy
1
2 and L by λL(y−

1
2 −

y
1
2 )−1). In summary: the invariants of this paper interpolate between:

• Donaldson invariants,
• virtual Euler numbers of moduli spaces of sheaves,
• K-theoretic Donaldson invariants,
• K-theoretic Vafa-Witten invariants.

Proposition 4.8. Conjecture 1.2 implies Conjecture 4.7.

Proof of Proposition 4.8. Recall the definition of y−
r
2X−y(E), for any complex

E of rank r on M , from Section 2.1. Suppose r ≥ 0 and denote by {·}r the
degree r part in A∗(M)Q. Then [FG, Thm. 4.5]

{
y−

r
2X−y(E)

}
r
= cr(E) mod (1− y),

For D ∈ A1(M)Q, we are interested in
{

r∑

k=0

eDλr−kck(E)

}

r

,

which is insertion (25) for E = T vir
M and D = µ(c1(L)). We consider

eλD(y−
1
2−y

1
2 )−1

y−
r
2X−y(E).
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Again using [FG, Thm. 4.5], we find

{
eλD(y−

1
2 −y

1
2 )−1

y−
r
2X−y(E)

}
r
=

{
∑

k

eDλr−kck(E)y
− k

2

}

r

mod (1− y).

Hence

(26)

{
eλD(y−

1
2 −y

1
2 )−1

y−
r
2X−y(E)

∣∣∣
y=1

}

r

=

{
r∑

k=0

eDλr−kck(E)

}

r

.

Take E = T vir
M and D = µ(c1(L)). Replacing L by

λL

y−
1
2 − y

1
2

in Conjecture 1.2 and setting y = 1 gives the invariants (25) by equation (26).
This reduces the proof to the following identities

DG2(x
2) = lim

y→1

∞∑

n=1

n2

(y−
1
2 − y

1
2 )2

log
(1− x2n)2

(1− x2ny)(1− x2ny−1)
,

G2(x
2) = −1

2
lim
y→1

∞∑

n=1

n

(y−
1
2 − y

1
2 )

log
(1− x2ny−1)

(1− x2ny)
,

G2(x)−G2(−x) = lim
y→1

∑

n>0
odd

n

y−
1
2 − y

1
2

log
(1− xny

1
2 )(1 + xny−

1
2 )

(1− xny−
1
2 )(1 + xny

1
2 )
.

These identities follow from an elementary computation using repeatedly that

log(1− x) = −
∞∑

n=1

xn

n
,

lim
y→1

y−
n
2 − y

n
2

y−
1
2 − y

1
2

= n.

Therefore

lim
y→1

∞∑

n=1

n2

(y−
1
2 − y

1
2 )2

log
(1− x2n)2

(1− x2ny)(1− x2ny−1)
= lim

y→1

∑

n,l>0

n2x2nl

l

(
y−

l
2 − y

l
2

y−
1
2 − y

1
2

)2

=
∑

n,l>0

n2l x2nl = DG2(x
2).

The other identities follow similarly. �
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