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Abstract

We study site and bond percolation on directed simple random graphs with a given de-
gree distribution and derive the expressions for the critical value of percolation probability
above which the giant strongly connected component emerges and the fraction of vertices in
this component.
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1 Introduction

Percolation on infinite graphs is typically studied in a setting where edges (or vertices) are
removed uniformly at random and some connectivity-related property is being traced as a func-
tion of the percolation probability π ∈ (0, 1) that a randomly chosen edge (or vertex) is present.
The traced property is often chosen to describe connected components or clusters. A connected
component is a maximal set of vertices, such that any pair of them is connected with a path.
Many results about sizes of connected components, are known for percolation in infinite regular
lattices, see, for example [1]. More recently, random graphs [2, 3] became an object of study for
percolation too. Fountoulakis [4] and Jason [5] studied percolation in random graphs indepen-
dently using different techniques, both of which rely on Molloy and Reed’s theorem [6, 7], which
indicates whether a simple undirected random graph with a given degree distribution contains
a giant component and how large it is. Remarkably, Fountoulakis showed that a percolated
random graph can be again viewed as a random graph generated by the configuration model,
albeit with a modified degree distribution. The percolation thresholds can also be determined
by applying Molloy and Reed’s existence theorem to the modified degree distribution. Janson [5]
derived the percolation threshold based on a technique called exploding. Due to this approach,
auxiliary vertices of degree 1 are added to the percolated graph.

In digraphs, there exist several non-equivalent definitions for a connected component, all of
which give rise to an interesting percolation problem. Let G = (V,E) be a simple digraph and
n = |V |. We say that C ⊂ V is a strongly connected component (SCC) if for all v1, v2 ∈ C there
are directed paths that connect v1 with v2 and v2 with v1, and no other vertex from V can be
added to C without loosing this property. Suppose Gn is uniformly sampled from the set of all
digraphs with a fixed graphic degree sequence

dn :=
(
(d−1 , d

+
1 ), (d

−
2 , d

+
2 ), . . . , (d

−
n , d

+
n )
)
, (1)
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where d−v and d+v indicate correspondingly the in- and out-degree of v ∈ V . Let

µ =
1

n

∑

v∈V

d−v =
1

n

∑

v∈V

d+v <∞

be expected number of edges per vertex and

µ11 =
1

n

∑

v∈V

d−v d
+
v <∞.

Several authors formulated the existence criteria for the giant component in the context of
directed graphs, see for example Penrose [8], Coulson [9] and Cooper and Frieze [10]. Cooper
and Frieze considered sequences (dn)n∈N and showed that certain regularity conditions guarantee
convergence of (Gn)n∈N. Furthermore, these authors showed that if the limiting degree sequence
has a positive fraction of dead-ends (vertices with one in- and no out-edges or vice versa) and,
in average, large enough degrees, µ11 − µ > 0, then the size of the largest strongly connected
component C1(Gn) is of the order n,

lim
n→∞

|C1(Gn) |
n

= c > 0. (2)

Moreover, a SCC with this property is unique in the sense that the size of the second largest SCC
is o(n). If the latter limit holds, we say the random graph contains the giant strongly connected
component (GSCC). Likewise, if the sign of the inequality is flipped, µ11 − µ < 0, then the size
of all SCCs is o(n), and random graph contains no GSCC. This result shows that there are two
classes of limiting degree sequences, those that correspond to the size of the largest SCC being
O(n) and those for which the size is o(n).

In this paper we show that, if the GSCC exists, removing a positive fraction of edges (or
vertices) can modify the degree distribution just in the right way to flip the sign of the inequality,
while keeping the percolated graph to be uniform in the a set of all graphs with a fixed (modified)
degree distribution. By combining the latter observation with the theory of Cooper and Frieze,
we show that the ‘phase transition’ from O(n) to o(n) takes place at a critical value πc =

µ
µ11

,
such that only for π > πc, Gn contains a GSCC with high probability (w.h.p.). Remarkably,
the critical threshold πc is the same for bond and site percolation, and the expressions for c(π),
as used in (2), are closely related, csite(π) = πcbond(π). This work and the related proofs, are
both largely inspired by the results for percolation on undirected graphs by Fountoulakis[4],
which, in turn, rely upon Molloy and Reed’s theorem [6] for the existence of the giant connected
component.

2 Main result

This section introduces the theorem for the percolation threshold of GSCC. We consider two
types of percolation processes on a simple digraph Gn = (Vn, En), n = |Vn| that result in a
random subgraph Gπ

n on the same vertex set:

• Bond percolation, fix a percolation probability π ∈ (0, 1). Each edge of Gn is removed
independently of the other edges with probability 1− π.
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• Site percolation, fix a percolation probability π ∈ (0, 1). For each vertex of Gn all the
edges incident to this vertex are removed with probability 1 − π, independently of the
other vertices. Such a vertex is then referred to as a deleted vertex.

It should be clear from the context which type of percolation is discussed. Strictly speaking,
existence of the GSCC is a limiting property of a sequence of graphs (Gn)n∈N, in which each
element is defined by a finite graphic degree sequence dn. Thus we refer to an infinite sequence
of degree sequences, (dn)n∈N, as the degree progression, where n is the index and the number of
vertices in each element of this progression. Although our ultimate goal is to make statements
about random graphs satisfying a specific degree distribution in the limit n → ∞, the bulk of
the paper is spent on determining whether a growing degree progression (dn)n∈N maintains or
acquires some property of interest on the way to such a limit. This provides a major differ-
ence between this work and percolation on infinite trees, which features the same percolation
thresholds for the directed case [11, 12, 13].

To make valid statements about GSCC, we need to impose several requirements on the degree
progression. We are interested in simple graphs, which indicates that each degree sequence in
the progression has to be graphic as required by the equivalent of Erdős-Gallai theorem for
directed graphs, Theorem 3.2. In Sections 3 and 4, we progressively add several more technical
constraints on (dn)n∈N, namely Definitions 3.1, 3.3, and 4.8, which we jointly refer to as the
requirements for a proper degree progression. The latter condition guarantees sufficient regularity
of the degree progression to allow us to reason about the limiting behaviour of the corresponding
random graphs.

Definition 2.1. The percolation threshold of a proper degree progression (dn)n∈N is given by

πc = sup

{
π ∈ (0, 1)

∣∣ ∀ε > 0, lim
n→∞

P

[ |C1(Gπ
n)|

n
≥ ε

]
= 0

}
, (3)

where superscripts are used to further specify the type of percolation, hence πbondc or πsitec .

For each n, the probability in this definition is taken with respect to probability spaces Gπ
n –

random graphs that remain after percolation on uniform simple random graphs obeying (dn)n∈N.

Theorem 2.2. Let (dn)n∈N be a proper degree progression and µ11 − µ > 0 for each element of
this progression. Then the percolation threshold for the existence of a giant strongly connected
component is given by

πc = πbondc = πsitec =
µ

µ11
< 1. (4)

Let Nj,k (n) be the number of vertices with degree (j, k) in Gn,

Nj,k (n) :=
∣∣{i ∈ Vn|d−i = j, d+i = k}

∣∣ , (5)

and

pj,k := lim
n→∞

Nj,k (n)

n
(6)

be the corresponding limiting degree distribution. Let additionally,

Uπ(x, y) :=
∑

j,k≥0

pj,k(1− π + πx)j(1− π + πy)k,
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U−
π (y) := (πµ)−1 ∂

∂x
Uπ(x, y)|x=1,

and

U+
π (x) := (πµ)−1 ∂

∂y
Uπ(x, y)|y=1

be formal power series in x and y, having π ∈ (0, 1) as a parameter.

Theorem 2.3. Let (dn)n∈N be a proper degree progression and π ∈ (πc, 1), then there are unique
values cbond(π) and csite(π), such that for all ε1, ε2 > 0,

lim
n→∞

P

[
| |C1(G

π
n)|

n
− cbond(π)| ≥ ε1

]
= 0,

for the bond percolation process, and

lim
n→∞

P

[
| |C1(G

π
n)|

n
− csite(π)| ≥ ε2

]
= 0,

for the site percolation process, where

cbond(π) = 1− Uπ(x
∗, 1) − Uπ(1, y

∗) + Uπ(x
∗, y∗),

csite(π) = πcbond(π)

and x∗, y∗ ∈ (0, 1) are the unique solutions of

x∗ = U+
π (x∗), (7)

y∗ = U−
π (y∗). (8)

Our Theorems 2.2, and 2.3 can be regarded a generalisation of Theorem 1.1 in Ref. [4],
which determines the percolation threshold for the existence of a giant connected component in
undirected simple graphs for the bond and site percolation processes.

The reminder of the paper is structured as follows: we start with a technical premise and
introduce in Section 3 the working framework for the directed random graph, namely the directed
configuration model, which is based on random matchings of half-edge configurations. We then
introduce definitions of the giant components and recap the necessary existence theorems for
these objects in Section 4. The latter section also contains Definition 4.8, introducing proper
degree progressions. Section 5 proves our main result for percolation, Theorems 2.2 and 2.3. The
section starts with several concentration inequalities and formulates Lemmas 5.5 and 5.7, stating
that conditional on the degree sequence after bond/site percolation, a random configuration
remains uniform. The section concludes with two separate proofs for bond and site percolation,
provided in Subsections 5.2 and 5.3 respectively.

3 Random digraphs with a given degree distribution

A degree sequence of a digraph, as introduced in equation (1), can be uniquely defined by
adopting the lexicographic order. Let us denote the set of all multigraphs obeying degree
sequence dn by Gdn . Given a degree sequence dn, one may define a ‘model’ according to which
a graph is chosen uniformly at random from Gdn . Such a model can be viewed as a graph-
valued alternative to the uniform random variable. When choosing the degree sequence dn at
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random, there is no guarantee that there is a graph that corresponds to it, as it could happen
that Gdn = ∅. Additionally, to enable us to study its limiting behaviour, a degree progression
(dn)n∈N must satisfy some regularity constraints. Therefore, we introduce a notion of a graphical
degree sequence and a feasible degree progression.

Definition 3.1. A degree sequence dn is valid if for all i ∈ {1, 2, . . . , n}, d−i , d+i ∈ N0 and

m :=
n∑

i=1

d−i =
n∑

i=1

d+i , (9)

where m = |E| is the number of edges.

Since the sum of the in-degrees equals the sum of the out-degrees, it will always be possible
to draw edges such that the graph obeys the desired degree sequence if self-loops and multi-edges
are allowed. Thus, so long as multigraphs are of concern, the set Gdn is non-empty for any valid
degree sequence.

A random simple graph that obeys a given degree sequence will be denoted by Gdn , and

random multigraph obeying the same degree sequence, G̃dn . If there is a simple graph obeying
a degree sequence, the sequence is called graphical. The following generalisation of the Erdős-
Gallai theorem gives necessary and sufficient conditions for a degree sequence to be graphical.

Theorem 3.2 (Fulkerson). [14, Theorem 4] Let dn be a valid degree sequence and dn a positive
lexicographical ordering of dn, that is d+i ≥ d+i+1 and d−i ≥ d−i+1 if d+i = d+i+1 for all i ∈
{1, 2, . . . , n−1}. Furthermore let dn be negative lexicographical ordering of dn, that is d−i ≥ d−i+1

and d+i ≥ d+i+1 if d−i = d−i+1. Then the degree sequence is graphical, i.e. it can be represented by
a simple graph, if and only if for all k ∈ {1, 2, . . . , n}:

(i)

k∑

i=1

min[d−i , k − 1] +

n∑

i=k+1

min[d−i , k] ≥
k∑

i=1

d+i , (10)

(ii)

k∑

i=1

min[d+i , k − 1] +

n∑

i=k+1

min[d+i , k] ≥
k∑

i=1

d−i . (11)

Since our primary goal is to study connected components, we rely on additional assumptions on
the degree distribution, as formalised by the following definition:

Definition 3.3. A degree progression (dn)n∈N is called feasible if for any n ∈ N, dn is graphical
and there exists a bivariate probability distribution pj,k that is independent of n and its first
moment are equal, i.e.

∞∑

j,k=0

jpj,k =
∞∑

j,k=0

kpj,k. (12)

Furthermore, for this probability distribution the following must hold:

(i) for every j, k ≥ 0, lim
n→∞

Nj,k(n)
n = pj,k <∞;

(ii) lim
n→∞

∑∞
j,k=0

jNj,k(n)
n =

∑∞
j,k=0 jpj,k ∈ (0,∞);
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(iii) lim
n→∞

∑∞
j,k=0

jkNj,k(n)
n =

∞∑
j,k=0

jkpj,k ∈ (0,∞);

(iv) lim
n→∞

∑∞
j,k=0

j2Nj,k(n)
n =

∑∞
j,k=0 j

2pj,k ∈ (0,∞);

(v) lim
n→∞

∑∞
j,k=0

k2Nj,k(n)
n =

∑∞
j,k=0 k

2pj,k ∈ (0,∞).

We refer to the probability distribution pj,k as the degree distribution of a feasible degree pro-
gression and denote its moments by

µil :=

∞∑

j,k=0

jiklpj,k, i, l ∈ {0, 1, 2}, (13)

and the probability generating function by

U (x, y) :=
∞∑

j,k=0

pj,kx
jyk. (14)

Then, condition (12) can be now written out as µ := µ10 = µ01.
We consider the following construction process for a graph progression: We draw a degree
sequence dn from the bivariate degree distribution pj,k, which is equivalent to saying that the
limit

pj,k = lim
n→∞

Nj,k (n)

n

converges for all j, k ≥ 0. Suppose further, we uniformly choose a multigraph from Gdn . When
collected together for n = 1, 2 . . . , such degree sequences result in degree (dn)n∈N and multigraph(
G̃dn

)

n∈N
progressions. Generally speaking, we are interested in the statements of the form

lim
n→∞

P

[
G̃dn ∈ A (dn)

]
= 1,

where A (dn) is the set of all graphs, which obey the degree sequence dn and additionally satisfy
some desired property. If the limit exists for a given property A, then we say that the random
graph has this property with high probability (w.h.p) or asymptotically almost surely (a.a.s.).

3.1 Directed configuration model

We will now show that the directed configuration model can be used to study the behaviour of
simple directed random graphs, despite the fact that this model generates multigraphs.

Definition 3.4. Let dn be a valid degree sequence. For all i ∈ {1, 2, . . . , n} define a set of
in-stubs W−

i consisting of d−i unique elements and a set out-stub W+
i containing d+i elements.

Let W− = ∪i∈{1,2,...,n}W
−
i andW+ = ∪i∈{1,2,...,n}W

+
i . Then a configuration is a random perfect

bipartite matching of W− and W+, that is a set of tuples (a, b) such that each tuple contains
one element from W− and one from W+ and each element of W− and W+ appears in exactly
one tuple.
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A configuration M prescribes a matching for all stubs, and therefore, defines a multigraph G̃dn

with vertices V = {1, 2, . . . , n} and edges

E = {(i, j) | (a, b) ∈ M, a ∈W+
i , b ∈W−

j }. (15)

The resulting multigraph will satisfy the degree sequence dn, as each vertex has d−i = |W−
i |

incoming edges and d+i = |W+
i | outgoing edges.

We will now study the probability that the configuration model generates a specific multi-
graph G̃dn . Note that multiple configurations may result in the same graph. As an example, let
a, a′ ∈ W+

i , b ∈ W−
j and c ∈ W−

k . Consider a matching M with (a, b), (a′, c) ∈ M and define
M′ = M\ ((a, b), (a′, c))∪ ((a′, b), (a, c)). Then the multigraph induced by M is the same as the
one induced by M′. Since the configuration is chosen uniformly at random, the probability that
the configuration model generates G̃dn depends on the number of configurations that induce this
multigraph. Let CMn (d

n) be the random variable producing the outcome of the configuration
model.

Proposition 3.5. Let G̃dn be a multigraph with degree sequence dn. For all pairs i, j ∈ V let
xij denote the number of copies of the edge (i, j) in the graph. Then there holds

P

[
CMn (d

n) = G̃dn

]
=

1

m!

∏n
i=1 d

−
i !
∏n

i=1 d
+
i !∏

1≤i,j≤n xij!
. (16)

Proof. This proposition and its proof are adapted for directed graphs from [15, Proposition
7.4], which is presented for the undirected case. First, we determine the number of different
configurations, which is equal to the number of perfect bipartite matchings between W− and
W+. Suppose we sequentially choose a match in W+ for each element of W−. Each element of
W− receives a match amongst the unmatched elements of W+. The first element of W− has m
choices for its match. Then the second element can choose its match from the remaining m− 1
unmatched elements of W+. Continuing in this fashion, we find m! different perfect matchings.
Thus there are m! different configurations. As the configuration is chosen uniformly at random,
this implies that

P

[
CMn (d

n) = G̃dn

]
=

1

m!
N
(
G̃dn

)
,

with N
(
G̃dn

)
being the number of different configurations M inducing the graph G̃dn . From

equation (15) it follows that the exact matching of the stubs does not matter. As long as an
element of W+

i is matched to an element of W−
j , the graph gets an edge (i, j). In other words

permuting the stub labels leads to a different configuration that induces the same multigraph.
There are

∏n
i=1 d

−
i !
∏n

i=1 d
+
i ! of such permutations. However some permutations lead to the

same configuration M. For a, a′ ∈W+
i and b, b′ ∈W−

j with (a, b), (a′, b′) ∈ M, any permutation
swapping a with a′ and b with b′ leads to the same configuration as the permutation acting on
a, a′, b and b′ as the identity. We have to compensate for this by a factor xij! for all edges. This
leads to

N
(
G̃dn

)
=

∏n
i=1 d

−
i !
∏n

i=1 d
+
i !∏

1≤i,j≤n xij!
,

completing the proof.
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So, despite the fact that the configuration model generates uniformly random configurations,
it does not generate uniformly random multigraphs. That being said, it does generate all simple
graphs with equal probability. To see this remark that xij is 0, 1 for every pair i, j in a simple
graph. Therefore, conditional on the event that configuration model generates a simple graph,
an element of Gdn is chosen uniformly.

The configuration model allows us to sample a random element of Gdn . Surprisingly, it can
be shown that results on uniformly random configurations and their induced multigraphs can
be transferred to uniformly generated simple graphs. Let A (dn) be the set of all multigraphs,
which obey the degree sequence dn while additionally satisfying some property. The goal of the
remainder of this section is to show that

lim
n→∞

P

[
G̃dn ∈ A (dn)

]
= 1,

implies that

lim
n→∞

P

[
G̃dn ∈ A (dn) | G̃dn is simple

]
= 1.

The first step is showing that the probability that the configuration model generates a simple
graph is bounded away from zero. To show this, we need to pose restrictions on the maximum
degree, which we define as:

dmax = max
{
max{d−1 , d−2 , . . . , d−n },max{d+1 , d+2 , . . . , d+n }

}
.

Theorem 3.6. [16, Theorem 4.3] Let (dn)n∈N be a feasible degree progression with dmax =
O (

√
n). Then the probability that the configuration model generates a simple graph is asymp-

totically

e
−

µ11
µ

−
(µ20−µ)(µ02−µ)

µ > 0.

Proof. The proof of the Theorem follows from the proof [16, Theorem 4.3] which is based on [16,
Proposition 4.2]. The main difference is that in [16] the in-degree of a vertex is independent of its
out-degree, i.e. the bivariate degree distribution is the product of two univariate distributions.
It suffices to replace Condition 4.1 and Lemma 5.2 from Ref. [16] with the requirement of a
feasible degree progression obeying dmax = O (

√
n) to generalise the proof to the case of an

arbitrary bivariate degree distribution.

Lemma 3.7. Let (dn)n∈N be a feasible degree progression with dmax = O (
√
n) and let A (dn)

be a set of multigraphs, all obeying the degree sequence dn. If for a random multigraph G̃dn

generated by the configuration model there holds

lim
n→∞

P

[
G̃dn ∈ A (dn)

]
= 0,

then it is also true that

lim
n→∞

P

[
G̃dn ∈ A (dn) | G̃dn is simple

]
= 0.

8



Proof. By Bayes’rule

P

[
G̃dn ∈ A (dn) | G̃dn is simple

]
≤

P

[
G̃dn ∈ A (dn)

]

P

[
G̃dn is simple

] . (17)

Because we have a feasible degree progression with dmax = O (
√
n), Theorem 3.6 assures that

P

[
G̃dn is simple

]
= (1 + o(1)) e−

µ11
µ

−
(µ20−µ)(µ02−µ)

µ .

Hence

lim
n→∞

inf P
[
G̃dn is simple

]
> 0.

This completes the proof as the numerator in equation (17) converges to zero.

Corollary 3.8. Let (dn)n∈N be a feasible degree progression with dmax = O (
√
n). Take A (dn)

to be a set of multigraphs, all obeying the degree sequence dn. Let G̃dn be a random multigraph
generated by the configuration model. If there holds

lim
n→∞

P

[
G̃dn ∈ A (dn)

]
= 1,

then it is also true that

lim
n→∞

P

[
G̃dn ∈ A (dn) | G̃dn is simple

]
= 1.

Proof. Let Gdn denote the set of all multigraphs on n vertices obeying the degree sequence dn

and define

A (dn) := Gdn \ A (dn) .

As there holds that G̃dn ∈ Gdn by definition and limn→∞ P

[
G̃dn ∈ A (dn)

]
= 1 by assumption,

the law of total probability implies limn→∞ P

[
G̃dn ∈ A (dn)

]
= 0. Then Lemma 3.7 implies

that
lim
n→∞

P

[
G̃dn ∈ A (dn) | G̃dn is simple

]
= 0.

Again using that A (dn)∪A (dn) is the set of all multigraphs obeying the given degree sequence,
the claim follows.

4 Giant strongly connected component in a directed graph

In simple graphs, a connected component is a maximal subset C ⊂ V such that there is a path
between any pair of vertices u, v ∈ C. Here maximal means that no vertex can be added to C
without destroying the property that all vertices are connected by a path. In directed graphs,
a path may also be directed.

Definition 4.1. Let Gn = (V,E) be a digraph. A pair of vertices v1, vk ∈ V is connected by a
directed path if there exist distinct vertices v2, v3, . . . , vk−1 ∈ V such that for all i ∈ {2, 3, . . . , k}
(vi−1, vi) ∈ E. We refer to such a sequence as a directed v1 − vk path.
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We therefore adapt the definition of a connected component to be based on a directed path.

Definition 4.2. (Strongly connected component) Consider a directed graph Gn. The strongly
connected components of Gn are the maximal subsets of V such that between any pair of vertices
u, v directed u− v and v − u paths exist simultaneously.

Definition 4.3. Consider a directed graph Gn = (V,E) and take v ∈ V . Then

• the in-component of v, denoted by In (v), consists of v itself and all vertices u ∈ V such
that a directed u− v path exists;

• the out-component of v, denoted by Out (v), consists of v itself and all vertices w ∈ V for
which a directed v − w path exists;

• the strong-component of v, denoted by SCC(v), consists of v itself and all vertices w ∈ V
for which both v − w and v − w paths exist.

Note that u ∈ In (v) does not imply In (u) = In (v). The same observation holds for the out-
component as well. This means that these types of components do not partition the vertices of
the graph. Furthermore, we note that In (v) ,Out (v) ⊃ SCC(v). These components allow to
characterize the strongly connected component in the following way.

Lemma 4.4. Consider a directed graph Gn = (V,E). For any v ∈ V there holds:

In (v) ∩Out (v) = SCC (v) .

Proof. To prove that In (v)∩Out (v) = SCC(v), it suffices to show SCC(v) ⊂ In (v)∩Out (v) and
SCC(v) ⊃ In (v)∩Out (v). Take u ∈ SCC(v). By definition of the strongly connected component
this implies that directed u− v and v − u paths exist. Hence u ∈ In (v) and u ∈ Out (v), which
shows that SCC(v) ⊂ In (v)∩Out (v). Next take u ∈ In (v)∩Out (v). This implies that directed
u − v and v − u paths exist. For u to be an element of SCC (v) it must also hold that for any
w ∈ SCC(v) directed w − u and u − w paths exist. Because w ∈ SCC(v), directed v − w and
w − v paths are present in Gn. This implies existence of a u− w path by concatenation of the
u− v and v−w paths. Similarly the w−u path can be formed by concatenating the w− v path
with the v − u path. Thus u ∈ SCC(v), which shows that SCC(v) ⊃ In (v) ∩Out (v).

By denoting the largest strongly connected component of Gn by C1(Gn), the notion of a giant
strongly connected component can be defined as follows.

Definition 4.5. The graph progression
(
Gdn

)
n∈N

contains a giant strongly connected component
(GSCC) if

lim
n→∞

|C1
(
Gdn

)
|

n
= cscc > 0. (18)

Here cscc represents the fraction of the vertices engaged in the GSCC, which we simply refer to
as the size of the GSCC.

Definition 4.6. The graph progression
(
Gdn

)
n∈N

contains a giant in-component (GIN) if for a
uniformly random vertex v

lim
n→∞

|In (v)|
n

= cin > 0. (19)
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Definition 4.7. The graph progression
(
Gdn

)
n∈N

contains a giant out-component (GOUT) if
for a uniformly random vertex v

lim
n→∞

|Out (v)|
n

= cout > 0. (20)

4.1 Existence of GIN, GOUT & GSCC

In this section we introduce a theorem that determines whether a random graph progression(
Gdn

)
n∈N

w.h.p. contains a GSCC. Cooper and Frieze showed that the out-component of each

vertex either contains O
(
d2max ln(n)

)
vertices or w.h.p. contains a+0 n vertices, for some constant

a+0 > 0. Similarly they show that the in-component of each vertex either contains O
(
d2max ln(n)

)

vertices or w.h.p. contains a−0 n vertices, for some a−0 > 0. Denote the set of all vertices with
out-component of size a+0 n by L+ and the set of all vertices with in-component of size a−0 n
by L−. Lemma 4.4 implies that a strongly connected component is the intersection of the in-
component and the out-component of some vertex. Thus a vertex v must be in L+ and L− to
be in the GSCC, if the GSCC exists.

Definition 4.8. A degree progression (dn)n∈N is proper if it is feasible and additionally satisfies

1. dmax ≤ n1/12

ln(n) ;

2. ρ := max
(∑∞

j,k=0
j2kNj,k(n)

µn ,
∑∞

j,k=0
jk2Nj,k(n)

µn

)
= o(dmax).

In what follows, we first present an intuitive explanation for the probability that a random
vertex is in L+ (respectively L−) by investigating the out-components (in-components) of a
random graph and then formalise the explanation with a rigours theorem. To investigate the
out-component of a random graph, we take a proper degree progression (dn)n∈N with underlying
degree distribution (pj,k)j,k∈N. In Section 3.1 we showed that results on multigraphs induced by
uniformly random configurations can be transferred to uniformly random simple graphs. Thus
we will consider multigraphs generated by the configuration model. As discussed in Section
3.1, the configuration model generates a uniformly random configuration of W− and W+. This
gives us the freedom to construct the configuration in such a way that the out-component of
a vertex v is constructed first: Pick a vertex v, then choose any out-stub of v and match it
to a uniformly random unmatched in-stub. Suppose this in-stub is an element of W−

w . This
implies that we add w to Out (v). Now also the out-stubs of w can extend the out-component
of v. Hence at the next step, we take any unmatched out-stub from the set W+

v ∪W+
w and

match it to a uniformly random unmatched in-stub. This process continues until all out-stubs
of ∪w∈Out(v)W

+
w are matched. At that point the out-component of v is completed. Randomly

match the remaining unmatched in-stubs with the unmatched out-stubs to complete the config-
uration.

The construction of the out-component of v, as described above, is similar to a Galton-Watson
branching process. A Galton-Watson branching process is a discrete time process. It starts with
one individual. At each time-step a random living individual generates an integer amount of
off-spring and dies. The amount of off-spring generated is governed by the off-spring distribution
Z(k). Such a process either continues on indefinitely, i.e. at each time-step at least one indi-
vidual remains alive, or it becomes extinct at some point, i.e. at some time-step all individuals
are dead. Let ξ be the probability that the branching process becomes extinct at some point.
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Lemma 4.9. Consider a Galton-Watson branching process with offspring distribution Z(k).
The extinction probability ξ of this process is

• 1 if E [Z(k)] < 1;

• the unique solution in [0, 1) of the equation x =
∑∞

k=0 P [Z(k) = k] xk if E [Z(k)] > 1.

The parallel between the branching process and the construction of the out-component be-
comes apparent when we identify an individual with an unmatched out-stub. An unmatched
out-stub ’dies’ when it is matched to a random in-stub b. The amount of off-spring it generates,
equals d+w , where w is the vertex such that b ∈ W−

w . There is one exception: in case w was
already an element of Out (v), the amount of off-spring is zero. This means that the off-spring
distribution is approximately

(
p+k
)
k∈N

, with p+k being the probability that by following a uni-
formly random chosen in-stub, we find a vertex with out-degree k. This latter probability is
given by

p+k =
∞∑

j=0

j

µ
pj,k. (21)

Here the division by µ ensures that the probability distribution is normalized. We expect that
v ∈ L+ if the corresponding Galton-Watson branching with off-spring distribution

(
p+k
)
k∈N

continues on indefinitely. Applying Lemma 4.9 to the distribution, we find that this can happen
only if

∞∑

k=0

kp+k =

∑∞
k=0

∑∞
j=0 jkpj,k

µ
=
µ11
µ

> 1.

Thus we expect that L+ is empty unless µ11

µ > 1. When µ11

µ > 1, the probability that the

branching process does not become extinct is η+, where 1−η+ is the unique solution in [0, 1) to

1− η+ =

∞∑

k=0

p+k
(
1− η+

)k
. (22)

Recall that the Galton-Watson process always starts with one individual. However the gen-
eration of the out-component of v starts with d+v out-stubs. Assuming that each out-stub of
v generates a disjoint subset of Out (v), this can be regarded as d+v independent copies of the
branching process. This collection of processes terminates if and only if all of the individual
branching processes become extinct. Therefore the probability that the process corresponding

to the generation of the out-component of v becomes extinct is (1− η+)
d+v . Thus for a random

vertex v the probability that v ∈ L+ is approximately ζ+, where 1− ζ+ is given by

1− ζ+ =

∞∑

j=0

∞∑

k=0

pj,k
(
1− η+

)k
. (23)

The same idea can be applied to the in-component, but with a different off-spring distribution.
In this case we need to probability that following a uniformly random chosen out-stub, we find
a vertex with out-degree j, i.e.

p−j =
∞∑

k=0

k

µ
pj,k. (24)
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A Galton-Watson branching process with off-spring distribution
(
p−j

)
j∈N

has an extinction

probability smaller than 1 if

∞∑

j=0

jp−j =

∑∞
k=0

∑∞
j=0 jkpj,k

µ
=
µ11
µ

> 1.

Note that this is the same condition as for the off-spring distribution of the out-component. In
other words L+ and L− are expected to become non-empty under the same conditions. The
probability that this branching process does not become extinct is η−, where 1−η− is the unique
solution in [0, 1) to

1− η− =

∞∑

j=0

p−j
(
1− η−

)j
. (25)

Thus we expect a random vertex v to be in L− with probability ζ−, with 1− ζ− defined by

1− ζ− =

∞∑

j=0

∞∑

k=0

pj,k
(
1− η−

)j
. (26)

Using these probabilities for a random vertex to be in L− or L+ and Lemma 4.4, we can
determine whether a giant strongly connected component is present in the graph. For a vertex
v ∈ L− and a vertex u ∈ L+ it is very likely that there exists an edge from a vertex in Out (u)
to one in In (v), i.e. v ∈ Out (u) and u ∈ In (v). Thus if u, v ∈ L− and u, v ∈ L+, it is likely that
u and v are in each others in-component and out-component. By Lemma 4.4 this implies that u
and v lie in the same strongly connected component. Hence we expect a GSCC consisting of the
vertices L+∩L−. This set is expected to be non-empty if µ11

µ > 1. To determine the probability

for a random vertex to be in L+ ∩ L−, i.e. to approximate the size of the GSCC, define

ψ =

∞∑

j=0

∞∑

k=0

pj,k
(
1− η−

)j (
1− η+

)k
. (27)

This approximates the probability that the branching process corresponding to the generation
of the in-component and the out-component both become extinct. Hence the probability that
both process go on indefinitely is given by

c = ζ+ + ζ− + ψ − 1. (28)

The above intuitive exposition is rigorously proven by Cooper and Frieze for proper degree
progressions.

Theorem 4.10 (Existence of a GIN, GOUT and GSCC ). [10, Theorem 1 and 2] Consider
a proper degree progression (dn)n∈N. Take a uniformly random sequence of simple graphs(
Gdn

)
n∈N

obeying this degree progression. Then the following statements hold.

1. If µ11

µ < 1, with high probability the size of the in-component and the out-component of

each vertex is O
(
d2max ln(n)

)
.

2. If µ11

µ > 1 and p+0 , p
−
0 > 0, with high probability

13



• There are ζ+n vertices with an out-component containing ζ−n vertices;

• There are ζ−n vertices with an in-component containing ζ+n vertices;

• There is a unique giant strongly connected component with vertex set L+∩L− of size
(ζ+ + ζ− + ψ − 1)n.

Note that in case µ11

µ < 1, the theorem only regards the size of the in-components and out-
components. Applying Lemma 4.4 it follows that the size of the strongly connected component
to which a vertex belongs is upper bounded by the minimum of the size of its in-component
and out-component. Hence the fact that w.h.p. the in-component and the out-component do
not scale linear in n for any vertex, implies that w.h.p. no GSCC is present. Furthermore we
remark in case µ11

µ > 1 and p+0 , p
−
0 > 0 the theorem assures that a GIN and GOUT exist w.h.p.

5 Proofs of Theorems 2.2 and 2.3

5.1 Concentration inequalities

We consider several concentration results that will be used in the proof of Theorem 2.2. Con-
centration inequalities are important as we deal with two sources of randomness: the initial
multigraph is random and percolation randomly removes edges.

Theorem 5.1. (Hoeffding’s inequality)[17] Let X1,X2, . . . ,Xn be independent random variables.
Suppose that ai ≤ Xi ≤ bi for all i ∈ {1, 2, . . . , n} and define ci = bi − ai. Furthermore define
Sn =

∑n
i=1Xi. Then there holds

P [|Sn − E [Sn]| > t] ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
. (29)

The following concentration inequality is a corollary of a theorem by McDiarmid.

Theorem 5.2. [18, Theorem 7.4] Let (V, d) be a finite metric space. Suppose there exists a
sequence P0,P1, . . . ,Ps of increasingly refined partitions with P0 the trivial partition consisting
of V and Ps the partition where each element of V is a partition element on its own. Take a
sequence of positive integers c0, c1, . . . , cs such that for all k ∈ {1, 2, . . . , s} and any A,B ∈ Pk

with C satisfying A,B ⊂ C ∈ Pk−1 there exists a bijection φ : A → B with d (x, φ(x)) ≤ ck for
all x ∈ A. Let the function f : V → R satisfy |f(x)− f(y)| ≤ d(x, y) for all x, y,∈ V . Then for
X uniformly distributed over V and any t > 0 there holds

P [|f(X)− E [f(X)]| > t] ≤ 2 exp

(
− 2t2∑s

k=0 c
2
k

)
.

Corollary 5.3. Consider two finite sets A0 and A1 with |A0| = a0 and |A1| = a1. Let S :=
∪i∈{0,1}{(x, i) | x ∈ Ai}. A subset of S containing b0 elements with i = 0 and b1 elements with
i = 1 is called a (b0, b1)-subset of S. Let V be the space of all (b0, b1)-subsets of S. Let f : V → R

be a function such that for any B,B′ ∈ V there holds |f (B) − f (B′)| ≤ |B△B′|. Here B△B′

denotes the symmetric difference, i.e. B△B′ = (B ∪B′) \ (B ∩B′). Then for X distributed
uniformly over V and any t > 0 there holds

P [|f(X)− E [f(X)]| > t] ≤ 2 exp

(
− t2

8(b0 + b1)

)
. (30)
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Proof. Consider a (b0, b1)-subset of S. Assign each element a unique number from the index set
{1, 2, . . . , b0+ b1}, such that for all elements with i = 0 this number is smaller than b0+1. Note
that this implies that for each element with i = 1 its index is larger than b0. A (b0, b1)-subset of
S with such a numbering is called a (b0, b1)-ordering of S. Define W to be the set of all (b0, b1)-
orderings of S. The function f : V → R can be extended to a function f : W → R by regarding
each (b0, b1)-ordering as (b0, b1)-subset. This extension respects the relation |f(x)−f(y)| ≤ x△y,
i.e. it holds for x, y ∈ W as well. This is true since for any two orderings x, y their symmetric
difference as (b0, b1)-orderings is bounded from bellow by their symmetric difference as (b0, b1)-
subsets. The next step in proving equation (30) is applying Theorem 5.2 to the metric space
(W,△).

We will now define a sequence of refined partitions on W using the notion of an i-prefix. An
i-prefix determines the first i elements of an ordering. This allows for all k ∈ {0, 1, . . . , b0 + b1}
to construct the partition Pk by defining its elements to be the sets of orderings with the same
k-prefix. The partition P0 is the trivial partition consisting of W. As each (b0, b1)-ordering has
b0 + b1 elements, Pb0+b1 will be the partition where each element is a single ordering. Next the
values ck need to be determined. Take B,D ∈ Pk with C satisfying B,D ⊂ C ∈ Pk−1. This
implies that any ordering in B has the same k − 1-prefix as an ordering in D. Furthermore
these orderings must differ at the kth element. The remaining b0 + b1 − k elements can be any
element that is not present in the k-prefix that lead to a valid ordering. Denote the kth element
of any ordering in B by aB,k. Similarly let aD,k denote the kth element of any ordering in D.
Define the bijection φ : B → D by taking x ∈ B and mapping its kth element to aD,k. If x
contains aD,k at some position l > k, map the lth element of x to aB,k. All the other elements
are unchanged by the bijection. By definition this is an element of D.

According to definition of φ for any x ∈ B we have |x△φ(x)| ≤ 4. Thus we may take ck = 4
for all k ∈ {1, 2, . . . , b0 + b1}. Applying Theorem 5.2 we find that for distributing X uniformly
random over W and any t > 0 there holds

P [|f(X)− E [f(X)]| > t] ≤ 2 exp

(
− t2

8(b0 + b1)

)
.

Remark that each element in V gives rise to b0! + b1! different orderings. All these orderings
have the same value under f . Thus the probability that f(X) = c does not change when we
take X to be a uniformly random element of V instead ofW . Together with the above equation,
this proves the claim.

5.2 Bond percolation

Theorem 2.2 is proven separately for bond and site percolation, by using similar techniques
as in the proof of [4, Theorem 1.1], which determines the percolation threshold in undirected
graphs. Although Theorem 2.2 gives the percolation threshold for simple graphs, we work
with uniformly random configurations and their induced multigraphs that obey a proper degree
progression (dn)n∈N. The results on the multigraphs are then transferred to the simple graphs

using Corollary 3.8, as for any proper degree progression there holds dmax ≤ n1/12

ln(n) = O (
√
n).

This means that Theorem 4.10 is applied to configurations and their induced multigraphs rather
than simple graphs.

Let Dn be the random variable for the degree sequence after percolation and dn
π a possible

value of Dn. Percolation removes edges in a graph, thus in a configuration it removes in-stubs
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together with their matched out-stubs. Let W−,π and W+,π denote the in-stubs and out-stubs
surviving percolation. Conditional on Dn = dn

π these stubs are in one-to-one correspondence
with W−

dn
π
and W+

dn
π
, the sets of stubs inducing the degree sequence dn

π . The one-to-one corre-

spondence follows from the fact that all vertices have the same amount of in-stubs (respectively
out-stubs) inW−,π(W+,π ) as inW−

dn
π
(W+

dn
π
). Thus any mapping sending an in-stub of vertex i of

W−,π to an in-stub of the same vertex inW−
dn
π
, as well as an out-stub of i ofW+,π to an out-stub

of i in W+
dn
π
, induces a bijection. Let us fix such a bijection. This induces a one-to-one corre-

spondence between the configuration on (W−,π,W+,π ) and the configuration on
(
W−

dn
π
,W+

dn
π

)
.

Let Dn be the probability space containing all degree sequences dn
π that can be obtained by

applying percolation to a random configuration on (W−,W+). The probability assigned to each
dn
π is the probability that it is induced by (W−,π,W+,π ). The probability space for the degree

progression
(
dn
π

)
n∈N

is the product space D =
∏∞

n=1Dn with the product measure ν.
In the reminder of this section, we show in Section 5.2.1 that conditional on the degree

sequence after percolation, each configuration onW−
dn
π
andW+

dn
π
is equally likely. In Section 5.2.2,

we determine the limit of the expected number of vertices with degree (j, k) after percolation
and show that there is always a positive fraction of dead ends, p+0 , p

−
0 > 0. Combining these

results in Section 5.2.3, the proof of Theorem 2.2 is completed by showing that an element of D
is ν-a.s. proper, which allows us to apply Theorem 4.10.

5.2.1 A percolated configuration is a uniformly random configuration

Consider a uniformly random configuration on (W−,W+). In this section we show that that
conditional on the degree sequence after percolation, the configuration on (W−,π,W+,π ) is also
a uniformly random one. The proof is split into two lemma’s.

Lemma 5.4. Suppose that l out of m edges survive bond percolation applied to a uniformly
random configuration M on (W−,W+) . Then the surviving stubsW−,π ⊂W− andW+,π ⊂W+

are uniformly distributed amongst all pairs of subsets of W− and W+ of size l.

Proof. As l edges survive percolation, there holds |W−,π| = |W+,π | = l. The probability that
W−,π ⊂W− andW+,π ⊂W+ are the stubs surviving percolation equals the probability that all
points in W−,π have their match in W+,π and that exactly these l matches survive percolation.
Since the graph contains m matches of which l survive percolation, the probability that exactly
those l matches remain is 1

(ml )
.

It is left to investigate the probability that all stubs in W−,π have their match in W+,π . This
implies that M must decompose into a perfect bipartite matching of W−,π with W+,π and a
perfect bipartite matching ofW−\W−,π withW+\W+,π . Between two sets of size l there are l!
perfect bipartite matchings, hence the probability thatM decomposes as desired, is l!(m−l)!/m!.
Thus the probability that (W−,π,W+,π ) are the stubs surviving percolation is

l! (m− l)!

m!

1(
m
l

) =
1
(m
l

)2 .

This is the probability that W−,π is a uniformly random subset of size l of W− and W+,π is a
uniformly random subset of W+ of size l.
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Lemma 5.5. Apply bond percolation to a uniformly random configuration on (W−,W+) obeying
the degree sequence dn. Conditional on having degree sequence dn

π after bond percolation, i.e.
Dn = dn

π , all configurations of W−
dn
π
with W+

dn
π
are equally likely.

Proof. The goal is to show that all configurations onW−
dn
π
andW+

dn
π
have equal probability, given

that Dn = dn
π. This implies that for any perfect bipartite matching Mπ of W−

dn
π
withW+

dn
π
there

must hold

P
[
Mπ |Dn = dn

π

]
=

1

l!
.

Here l denotes the sum of the in-degrees of dn
π . First, rewrite this probability using P

[
|W−,π| = l

∣∣Dn = dn
π

]
=

1 and due to the law of total probability obtain

P
[
Mπ |Dn = dn

π

]
= P

[
Mπ

∣∣ |W−,π| = l,Dn = dn
π

]
.

Applying Bayes’ formula to the right hand side of the previous equation gives

P
[
Mπ |Dn = dn

π

]
=

P
[
Mπ ∩Dn = dn

π

∣∣ |W−,π| = l
]

P
[
Dn = dn

π

∣∣W−,π| = l
] . (31)

It will now be shown that this expression equals 1
l! . First determine the value of P

[
Dn = dn

π

∣∣W−,π| = l
]
.

Let S(dn
π) be the collection of pairs of subsets of (W−,W+) that induce the degree sequence

dn
π . Recalling that |W−,π| = |W+,π |, we see that for any pair of subsets in S(dn

π), both sets
must contain l elements. In combination with Lemma 5.4 this implies

P
[
Dn = dn

π

∣∣ |W−,π| = l
]
=

|S(dn
π)|(m

l

)2 .

Next we investigate P
[
Mπ ∩Dn = dn

π

∣∣ |W−,π| = l
]
. By definition of S(dn

π), D
n = dn

π implies
that (W−,π,W+,π ) ∈ S(dn

π). So let (W−,π,W+,π ) ∈ S(dn
π), then we aim to find the probability

that the configuration on these stubs induces the configuration Mπ on
(
W−

dn
π
,W+

dn
π

)
. As we fixed

a bijection between (W−,π,W+,π ) and
(
W−

dn
π
,W+

dn
π

)
, exactly one configuration of (W−,π,W+,π )

induces the configuration Mπ on
(
W−

dn
π
,W+

dn
π

)
. However we are free to choose the configuration

on (W− \W−,π,W+ \W+,π ). Thus assuming that (W−,π,W+,π ) ∈ S(dn
π), the probability that

it induces the configuration Mπ on (W−,π,W+,π ) is

(m− l)!

m!
.

Thus for any collection of remaining stubs that induce the right degree sequence, it has probabil-
ity (m−l)!

m! to induce the right matching. However, as we condition only on the size of W−,π, we
also must take into account the probability that exactly the desired l edges survive percolation.
Hence, we have:

P
[
Mπ ∩Dn = dn

π

∣∣ |W−,π| = l
]
=

(m− l)!

m!

|S(dn
π)|(m

l

) .

Plugging our findings back in equation (31), we obtain:

P
[
Mπ |Dn = dn

π

]
=

1

l!
.
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5.2.2 The expected number of vertices with degree (j, k) after bond percolation

Let Nπ
j,k (n) be the number of vertices in the percolated graph (or configuration) with in-degree

j and out-degree k. In this section we show that the limit

lim
n→∞

E

[
Nπ

j,k (n)
]

n
:= pbondj,k (32)

exists and determine its value for j, k ∈ N0.
For all values of (j, k) with j > dmax or k > dmax, or both, the limit of equation (32) is easily

evaluated to be pbondj,k = 0. Let j, k ≤ dmax, remark that

E

[
Nπ

j,k (n)
]
=

m∑

l=0

E

[
Nπ

j,k (n)
∣∣∣ |W−,π| = l

]
P
[
|W−,π| = l

]
. (33)

This conditional expectation of Nπ
j,k (n) can be written as

E

[
Nπ

j,k (n)
∣∣∣ |W−,π| = l

]
=

dmax∑

d−=j

dmax∑

d+=k

Nd−,d+ (n)P
[
(d−, d+) → (j, k)

∣∣|W−,π| = l
]
.

Here (d−, d+) is the degree of a vertex before percolation and (j, k) is its degree after percolation.
As Lemma 5.4 implies that the surviving stubs are chosen uniformly at random, conditional on
the size of W−,π, there holds

P
[
(d−, d+) → (j, k)

∣∣|W−,π| = l
]
=

(
d−

j

)(m−d−

l−j

)
(
m
l

)
(
d+

k

)(m−d+

l−k

)
(
m
l

) .

This value can be further approximated for l ∈ I :=
[
mπ − ln(n)

√
n,mπ + ln(n)

√
(n)
]
. As the

edges are removed independently of each other, the size of W−,π is the sum of m independent
Bernoulli variables, each having expectation π. Applying Theorem 5.1 yields

P
[
| |W−,π | −mπ| > ln(n)

√
n
]
≤ exp

[
−Ω(ln2(n))

]
. (34)

This implies that P [l /∈ I] = o
(

1
n3

)
. Fountoulakis [4] showed that for dmax ≤ n1/9 and l ∈ I

there holds
(2m−d
2l−j

)
(2m
2k

) = πj(1− π)d−j

(
1 +O

(
ln(n)

n7/18

))
.

As we consider proper degree progressions, there holds dmax ≤ n1/12

ln(n) , and since n1/12

ln(n) < n1/9 for
all n ≥ 3, an analogous argument to that of Fountoulakis gives:

P
[
(d−, d+) → (j, k) | |W−,π | = l

]
=

(
d−

j

)(
d+

k

)
πj+k (1− π)d

−+d+−j−k

(
1 +O

(
ln(n)

n7/18

))
,

for all d−, d+ ≤ dmax and l ∈ I. This allows to determine E

[
Nπ

j,k (n) ||W−,π | = l
]
for all l ∈ I.

In combination with equation (33), P [l /∈ I] = o
(

1
n3

)
, and the fact that Nπ

j,k (n) ≤ n, we find

E

[
Nπ

j,k (n)
]
=

(
1 +O

(
ln(n)

n7/18

)) dmax∑

d−=j

dmax∑

d+=k

Nd−,d+ (n)

(
d−

j

)(
d+

k

)
πj+k (1− π)d

−+d+−j−k + o

(
1

n3

)
,

(35)
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using same argument as for E [D′
i(n)] in [4, p. 344]. With this approximation of E

[
Nπ

j,k (n)
]
,

we can show that the limit of equation (32) exists. This requires for all ǫ > 0 the existence of
κ (ǫ) and N (ǫ) such that for all n > N,

1

n

(dmax,dmax)∑

(d−,d+)=(0,0)
d−≥κ+1or d+≥κ+1

Nd−,d+ (n)

(
d−

j

)(
d+

k

)
πj+k (1− π)d

−+d+−j−k ≤ 1

n

(dmax,dmax)∑

(d−,d+)=(0,0)
d−≥κ+1or d+≥κ+1

Nd−,d+ (n) < ǫ. (36)

The left inequality follows from the binomial theorem, which implies that
∑d−

j=0

(d−
j

)
πj(1 −

π)d
−−j =

∑d+

k=0

(
d+

k

)
πk(1 − π)d

+−k = 1, yielding that
(
d−

j

)(
d+

k

)
pj+k (1− p)d

−+d+−j−k ≤ 1 for

all j ≤ d−, k ≤ d+. The right inequality holds since limn→∞
Nj,k(n)

n = pj,k for j, k ≥ 0, which
follows from the degree progression being proper. Equations (35) and (36) combined together
are sufficient for the existence of the limit in equation (32). Moreover, the value of the limit is:

lim
n→∞

E

[
Nπ

j,k (n)
]

n
= pbondj,k =

∞∑

d−=j

∞∑

d+=k

pd−,d+

(
d−

j

)(
d+

k

)
πj+k (1− π)d

−−j+d+−k , (37)

and the generating function for pbondj,k is given by:

Uπ(x, y) = U(1− π + πx, 1− π + πy). (38)

We will now show that pbondj,k is normalized and obeys equation (12). The normalization follows
from the binomial theorem and that fact that pj,k is normalized:

∞∑

j=0

∞∑

k=0

∞∑

d−=j

∞∑

d+=k

pd−,d+

(
d−

j

)(
d+

k

)
πj+k (1− π)d

−−j+d+−k

=

∞∑

d−=0

∞∑

d+=0

pd−,d+

d−∑

j=0

(
d−

j

)
πj (1− π)d

−−j
d+∑

k=0

(
d+

k

)
πk (1− π)d

+−k

=

∞∑

d−=0

∞∑

d+=0

pd−,d+ = 1.

By using the equality
∑n

k=0

(n
k

)
kxkyn−k = xn(x + y)n−1, which can be obtained by applying

x d
dx to the binomial theorem, we find that

∞∑

j=0

∞∑

k=0

jpbondj,k =

∞∑

j=0

j

∞∑

k=0

∞∑

d−=j

(
d−

j

)
πj (1− π)d

−−j
∞∑

d+=k

(
d+

k

)
πk (1− π)d

+−k pd−,d+

=

∞∑

d−=0

∞∑

d+=0

pd−,d+

d−∑

j=0

j

(
d−

j

)
πj (1− π)d

−−j
d+∑

k=0

(
d+

k

)
πk (1− π)d

+−k

= π
∞∑

d−=0

∞∑

d+=0

d−pd,d+ ,
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and by symmetry,

∞∑

j=0

∞∑

k=0

kpbondj,k = π
∞∑

d−=0

∞∑

d+=0

d+pd,d+ .

This proves that

µπ,bond :=
∞∑

j=0

∞∑

k=0

jpbondj,k =
∞∑

j=0

∞∑

k=0

kpbondj,k = πµ. (39)

Thus pbondj,k indeed is normalized and satisfies equation (12). In analogy to (39), we also find
that

µπ,bond11 :=

∞∑

j,k=0

jkpbondj,k = π2
∞∑

d−=0

∞∑

d+=0

d−d+pd−,d+ = π2µ11. (40)

We now see that after percolation with 0 < π < 1 the fraction of dead-end vertices having no
out edges is positive:

p+,bond
0 =

∞∑

j=0

jpbondj,0

µπ,bond
=

1

πµ

∑

d+,d−≥0

d−π(1 − π)d
+
pd−,d+ > 0, (41)

and a similar bound holds for vertices with no in edges, p−,bond
0 > 0. Therefore, assuming that

pbondj,k is the degree distribution of the percolated graph, Equations (41), (39) and (40) together

justify applying Theorem 4.10 to pbondj,k and hence formally defining the percolation threshold as

such a value of π = π̂bond that

∞∑

j,k=0

jkpbondj,k =

∞∑

j,k=0

jpbondj,k . (42)

By plugging equations 40 and (39) into the latter equation gives:

π̂bond =

∑∞
d−=0

∑∞
d+=0 d

−pd−,d+∑∞
d−=0

∑∞
d+=0 d

−d+pd−,d+
=

µ

µ11
.

In Section 5.2.3 we show that pbondj,k is indeed ν-a.s the degree distribution of the percolated

graph, and therefore, πbondc = π̂bond.

5.2.3 Determining πbondc and cbond

To prove the equality πbondc = π̂bond it is sufficient to apply Theorem 4.10 to the percolated

multigraph progression
(
G̃π

dn

)
n∈N

. Theorem 4.10 requires
(
G̃π

dn

)
n∈N

to obey a proper degree

progression. We make use of Lemma 5.5, stating that instead of actually removing edges, one
may view the percolated multigraph G̃π

dn as a uniformly random configuration obeying the

percolated degree sequence dn
π , which requires

(
dn
π

)
n∈N

to be proper. We show that
(
dn
π

)
n∈N

is

indeed ν-a.s. proper as an element of D, and hence, Theorem 4.10 is applicable to
(
G̃π

dn

)
n∈N

.
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This means that Theorem 4.10 may be then applied to almost all degree progressions
(
dn
π

)
n∈N

to determine πbondc and cbond for random multigraphs. Finally we apply a variant of Lemma
3.7 and Corollary 3.8 and show that similar assertions hold for a graph progression (Gπ

n)n∈N
for percolated simple graphs obeying (dn)n∈N, hence proving Theorem 2.3 for the case of bond
percolation. In the remainder of this section, we make the above-stated argument formal.

Definition 4.8 implies that each proper degree progression must be feasible. For any feasible(
dn
π

)
n∈N

∈ D, it can be shown that it is also proper, using the fact that (dn)n∈N is proper. So we

will first prove that any
(
dn
π

)
n∈N

∈ D is ν-a.s. feasible. By Definition 3.3 a degree progression
(
dn
π

)
n∈N

is feasible if
Nπ

j,k(n)

n and its first, first mixed, and second moments converge to those of a
bivariate distribution obeying equation (12). For now, we replace the constraint of each degree
sequence being graphical with each degree sequence being valid, as we consider multigraphs
at this point. The assertion that each dn

π is valid, is a direct consequence of the fact that dn

is valid, which holds when (dn)n∈N is proper. This implies that Theorem 4.10 can be readily
applied to multigraphs and configurations. When conditioning on the graph before percolation
being simple later on in the proof, we implicitly replace valid by graphical. Conditioning on the
graph before percolation being simple will ensure that the percolated graph is simple as well.

Now we will show that ν-a.s.
Nπ

j,k(n)

n and its first, first mixed and second moments converge
to pbondj,k and its corresponding moments. The first step is showing that

lim
n→∞

Nπ
j,k (n)

n
= pbondj,k , ν-a.s. for j, k ∈ N0, (43)

for which, it suffices to show (see e.g. [19, Lemma 6.8]) that for all ǫ > 0,

∞∑

n=1

P

[∣∣∣∣
1

n
Nπ

j,k (n)− pbondj,k

∣∣∣∣ > ǫ

]
<∞. (44)

By definition of pbondj,k , for any fixed ǫ > 0 there is K such that for all n > K

∣∣∣∣
1

n
E

[
Nπ

j,k (n)
]
− pbondj,k

∣∣∣∣ ≤
ǫ

2
.

This implies that

P

[∣∣∣∣
1

n
Nπ

j,k (n)− pbondj,k

∣∣∣∣ > ǫ

]
≤ P

[
1

n

∣∣∣Nπ
j,k (n)− E

[
Nπ

j,k (n)
]∣∣∣ >

ǫ

2

]
.

Lemma 5.4 states that conditional on |W−,π| = l, the stubs surviving percolation (W−,π,W+,π )
are uniformly distributed amongst all pairs of subsets of (W−,W+) of size l. The value Nπ

j,k (n)

is a function of W−,π ∪ W+,π . Furthermore for two sets W−,π ∪ W+,π and W−,π ′ ∪ W+,π ′

their values of Nπ
j,k (n) differ by at most the number of elements in the symmetric difference of

W−,π ∪W+,π and W−,π ′ ∪W+,π ′. This implies that for A0 = W−, A1 = W+, b0 = b1 = l and
Nπ

j,k (n) as function f the requirements of Corollary 5.3 are fulfilled. Applying this corollary
gives

P

[∣∣∣Nπ
j,k (n)− E

[
Nπ

j,k (n)
]∣∣∣ >

nǫ

2
| |W−,π | = l

]
≤ 2 exp

(
ǫ2n2

64l2

)
.
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If l ∈ I, this probability is o
(

1
n3

)
. By equation (34) the probability that l /∈ I is o

(
1
n3

)
.

Combining these observations we find that for all ǫ > 0 the terms in (44) are vanishing:

P

[∣∣∣Nπ
j,k (n)− E

[
Nπ

j,k (n)
]∣∣∣ > nǫ

]
= o

(
1

n3

)
. (45)

which in turn proves that the limit in equation (43) holds ν-a.s.
To prove that

(
dn
π

)
n∈N

is ν-a.s. feasible, it remains to show that the first, first mixed and

second moments of
Nπ

j,k(n)

n converge ν-a.s. to those of pbondj,k . In Section 5.2.2 we showed that∑∞
j,k=0 jp

bond
j,k =

∑∞
j,k=0 kp

bond
j,k , which implies that

∑∞
j,k=0 jN

π
j,k (n) =

∑∞
j,k=0 kN

π
j,k (n). We can

thus restrict ourself to showing that

Q := lim
n→∞

∑∞
j,k=0 jN

π
j,k (n)

n
= πµ, ν-a.s (46)

to show that both first moments converge. To determine the limit in equation (46), let us define

Q′
n :=

1

n

∞∑

j,k=0

jNπ
j,k (n) ,

Xκ,n :=
1

n

κ∑

j=0

κ∑

k=0

jNπ
j,k (n) ,

and remark that Xκ,n ≤ Q′
n. Since (dn)n∈N is a proper degree progression, for all ǫ > 0 there

exists κ̃ (ǫ) ,m (ǫ) such that for all κ > κ̃ and n > m

1

n

(dmax,dmax)∑

(d−,d+)=(0,0)
d−>κ or d+>κ

jNj,k (n) < ǫ. (47)

Thus for κ > κ̃ there holds Xκ,n ≤ Q′
n ≤ Xκ,n + ǫ. This implies that if ν-a.s.

lim
n→∞

Xκ,n =

κ∑

j=0

κ∑

k=0

jpbondj,k := X̃κ, (48)

then limn→∞Q′
n = Q ν-a.s. as well [4, (3.5)]. Thus the goal is to prove equation (48). Applying

Lemma 6.8 [19] we can show that this limit ν-a.s. holds, if for any ǫ > 0 there holds

∞∑

n=1

P

[∣∣∣Xκ,n − X̃κ

∣∣∣ > ǫ
]
<∞. (49)

We show this analogous to the proof of equation (44). By the definition of Xκ,n, X̃κ and pbondj,k ,

for all ǫ > 0 there exists Ñ such that for all n > Ñ
∣∣∣E [Xκ,n]− X̃κ

∣∣∣ <
ǫ

2
.

Combing this with the reverse triangle inequality, we find for any ǫ > 0

P

[∣∣∣Xκ,n − X̃κ

∣∣∣ > ǫ
]
≤ P

[
|Xκ,n − E [Xκ,n]| >

ǫ

2

]
.

22



Remark that

|Xκ,n − E [Xκ,n]| =
1

n

κ∑

j=0

κ∑

k=0

j
(
Nπ

j,k (n)− E

[
Nπ

j,k (n)
])
. (50)

This implies that for ǫ′ = ǫ
2
∑

j≤κ j there holds

P

[
|Xκ,n − E [Xκ,n]| >

ǫ

2

]
≤

∑

j≤κ,k≤κ

P

[
1

n
|Nπ

j,k (n)− E

[
Nπ

j,k (n)
]
| > ǫ′

]
.

Using equation (45) we find

P

[
|Xκ,n − E [Xκ,n]| >

ǫ

2

]
≤

∑

j≤κ,k≤κ

o

(
1

n3

)
≤ o

(
1

n2
7
9

)
.

Here we used the fact that dmax = O
(
n1/9

)
and that for j > dmax or k > dmax or both, there

holds Nπ
j,k (n) = E

[
Nπ

j,k (n)
]
= 0. This shows equation (49) and hence proves that Q′

n converges

ν-a.s. to Q.
By redefining Q′

n, Q,Xκ,n, X̃κ and setting

ǫ′ := min

{
ǫ

2
,

ǫ

2
∑

j≤κ j
,

ǫ

2
∑

j≤κ,k≤κ jk
,

ǫ

2
∑

j≤κ j
2
,

ǫ

2
∑

k≤κ k
2

}
,

similar derivations hold for the first mixed moment and the second moments, that is one may
show that all the moments of interest and the distribution itself converge simultaneously ν-a.s.
for an element of D. Thus we have shown that

(
dn
π

)
n∈N

is ν-a.s. feasible.

To prove that
(
dn
π

)
n∈N

is ν-a.s. proper according to Definition (4.8), we will now show that

for each feasible
(
dn
π

)
n∈N

∈ D, there holds:

dπmax ≤ n1/12

ln(n)

and

ρπ = max

{∑∞
j,k=0 j

2kNπ
j,k (n)

µπn
,

∑∞
j,k=0 jk

2Nπ
j,k (n)

µπn

}
= o

(
n1/12

ln(n)

)
,

where dπmax is the maximum degree of the percolated degree sequence. As the degree progression

before percolation (dn)n∈N is proper, there holds dmax ≤ n1/12

ln(n) . Percolation can only decrease
the in-degree and the out-degree of a vertex, implying dπmax ≤ dmax. Together these observations

show that dπmax ≤ n1/12

ln(n) for any
(
dn
π

)
n∈N

∈ D. It remains to show ρπ = o
(
n1/12

ln(n)

)
. Consider

the sum
∑∞

j,k=0 j
2kNπ

j,k (n) (respectively
∑∞

j,k=0 jk
2Nπ

j,k (n)). Each vertex of degree (j, k) con-

tributes j2k (or jk2) to the total sum. As the in-degree and the out-degree can only decrease
due to percolation, this implies that

∞∑

j,k=0

j2kNπ
j,k (n) ≤

∞∑

j,k=0

j2kNj,k (n) and

∞∑

j,k=0

jk2Nπ
j,k (n) ≤

∞∑

j,k=0

jk2Nj,k (n) .
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Recall that µπ,bond = πµ and π is a constant, i.e. it is assigned a fixed value before percolation.
These observations together with the fact that (dn)n∈N is proper imply

ρπ ≤ max

{∑∞
j,k=0 j

2kNj,k (n)

πµn
,

∑∞
j,k=0 jk

2Nj,k (n)

πµn

}
=
ρ

π
= o

(
n1/12

ln(n)

)
.

Thus any
(
dn
π

)
n∈N

∈ D is ν-a.s. proper.
Let E ⊂ D be the event over which the degree progression is proper. As any element of

D is ν-a.s. proper, there holds ν (E) = 1. For any
(
dn
π

)
n∈N

∈ E we may apply Theorem 4.10

to a sequence of random multigraphs
(
G̃π

dn

)
n∈N

arising from uniformly random configurations.

Recall that Lemma 5.5 implies that this is the case for all n if we condition on Dn = dn
π . We

will now fix
(
dn
π

)
n∈N

∈ E and apply Theorem 4.10 to
(
G̃π

dn

)

n∈N
, distinguishing two cases π:

π < π̂bond and π > π̂bond, with π̂bond = µ
µ11

.

Let π < π̂bond. Define Aǫ

(
dn
π

)
to be the set of all multigraphs obeying dn

π for which the
largest strongly connected component contains no more than ǫn vertices, for ǫ ∈ (0, 1). As
µπ
11
µπ = π µ11

µ < 1, Theorem 4.10 implies that for all ǫ:

lim
n→∞

P

[
G̃π

dn ∈ Aǫ

(
dn
π

)
|Dn = dn

π

]
= 1. (51)

Next consider π > π̂bond. Define Bǫ

(
dn
π

)
to be the set of all graphs whose largest strongly

connected component contains ǫn vertices, for ǫ ∈ (0, 1). As
µπ
11
µπ = π µ11

µ > 1, Theorem 4.10
implies that there exists a unique ǫ, such that

lim
n→∞

P

[
G̃π

dn ∈ Bǫ

(
dn
π

)
|Dn = dn

π

]
= 1. (52)

Not only does the theorem imply existence of such of ǫ, it also determines its value. This
value plays the same role for the degree distribution pbondj,k as (ζ+ + ζ− + ψ − 1) for pj,k. We
will express this value in terms of pj,k. This requires us to determine the probability that a
uniformly at random chosen in-stub is attached to a vertex of out-degree k in the percolated
graph. In analogy to equation (21) this equals

p+,bond
k =

1

µπ,bond

∞∑

j=0

jpbondj,k =
1

πµ

∞∑

d+=k

∞∑

d−=0

pd−,d+

d−∑

j=0

j

(
d−

j

)
πj (1− π)d

−−j

(
d+

k

)
πk (1− π)d

+−k

=
π

πµ

∞∑

d+=k

∞∑

d−=0

d−pd−,d+

(
d+

k

)
πk (1− π)d

+−k =

∞∑

d+=k

p+d+

(
d+

k

)
πk (1− π)d

+−k ,

(53)
having generating function

U+
π (x) := (πµ)−1 ∂

∂y
Uπ(x, y)|y=1.

Similarly the probability that a uniformly random out-stub is attached to a vertex of in-degree
j in the percolated graph becomes

p−,bond
j =

∞∑

d−=j

p−
d−

(
d−

j

)
πj (1− π)d

−−j , (54)
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which corresponds to generating function

U+
π (x) := (πµ)−1 ∂

∂y
Uπ(x, y)|y=1.

The distributions
(
p−,bond
j

)
j∈N0

and
(
p+,bond
j

)
j∈N0

both have expected value π µ11

µ > 1, and,

p−,bond
0 , p+,bond

0 > 0, we have unique fixed points x∗, y∗ ∈ (0, 1), see [10, Lemma 1]:

x∗ = U+
π (x∗), (55)

y∗ = U−
π (y∗). (56)

Using x∗ and y∗ we can determine the analogues of ζ+, ζ− and ψ, as used in Theorem 4.10, for
the degree distribution pbondj,k . Using equations (26), (23) and (27) these are defined as

ζ−,bond := 1−
∞∑

j,k=0

pbondj,k (x∗)j , ζ+,bond := 1−
∞∑

j,k=0

pbondj,k (y∗)k (57)

and

ψbond :=
∞∑

j,k=0

pbondj,k (x∗)j (y∗)k . (58)

We can now define

cbond := ζ−,bond + ζ+,bond + ψbond − 1 = 1− Uπ(x
∗, 1) − Uπ(1, y

∗) + Uπ(x
∗, y∗). (59)

Hence, ǫ = cbond is the unique value required by equation (52).
To finalise the proofs for Theorem 2.2 and 2.3, we need to supplement Equations (52) and
(51) with two minor observations. First, the theorem is stated for a percolated multigraph

progression
(
G̃π

dn

)
n∈N

without conditioning on the degree progression of percolated graphs. As

ν (E) = 1, the argument of Fountoulakis [4, p. 348 ] can be applied to show that:

• lim
n→∞

P

[
G̃π

dn ∈ Aǫ

(
dn
π

)]
= 1 for all ǫ ∈ (0, 1) if π < π̂bond;

• lim
n→∞

P

[
G̃π

dn ∈ Bcbond
(
dn
π

)]
= 1 and lim

n→∞
P

[
G̃π

dn ∈ Bǫ

(
dn
π

)]
= 0 for all ǫ ∈ (0, 1), ǫ 6= cbond

if π > π̂bond.

Second, Theorems 2.2 and 2.3 make assertions about uniformly random simple graphs instead of
random multigraphs. Replace the the graph G̃dn in Lemma 3.7 and Corollary 3.8 by the graph

G̃π
dn and condition on the graph to which percolation is applied (Gdn) being simple. This yields

slightly different variants of the lemma and corollary that do not require additional changes to
the proof. Now applying this variant of Lemma 3.7 and Corollary 3.8 to the above limits, we
deduce that

• lim
n→∞

P
[
Gπ

n ∈ Aǫ

(
dn
π

)]
= 1 for all ǫ ∈ (0, 1) if π < π̂bond;

• lim
n→∞

P
[
Gπ

n ∈ Bcbond
(
dn
π

)]
= 1 and lim

n→∞
P
[
Gπ

n ∈ Bǫ

(
dn
π

)]
= 0 for all ǫ ∈ (0, 1), ǫ 6= cbond if

π > π̂bond,

completing the proofs of Theorems 2.2 and 2.3 for the case of bond percolation.
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5.3 Site percolation

The proofs of Theorems 2.2 and 2.3 for site percolation have similar structures as those for bond
percolation. Hence, we will refer back to Section 5.2 where applicable. As in the case of bond
percolation, the proof is split into three steps. First, in Section 5.3.1 we show that applying site
percolation to a uniformly random configuration results in another uniformly random configu-
ration, if we condition on the degree sequence after percolation. Second, we determine the limit
of the expected number of vertices with degree (j, k) after site percolation, see Section 5.2.2.
The proof is completed in Section 5.3.3 by combining the first two steps with results of Section
5.2.
Recall from Section 2 that deleting a vertex means that we remove all edges adjacent to this
vertex. In the setting of the configuration model this implies that all stubs attached to a deleted
vertex are removed. Let us denote these stubs by (W−,r,W+,r). As site percolation removes
any edges adjacent to a vertex, the match of any stub in (W−,r,W+,r) will be removed too. A
stub in (W−,r,W+,r) may or may not have its match in the same set, as it might happen that
both endpoints of one edge are deleted. Let (W−,m,W+,m) contain all the matches of stubs
in (W−,r,W+,r) that are not connected to a deleted vertex. Thus W−,r ∪W−,m (respectively
W+,r ∪W+,m) are all in-stubs (out-stubs) removed by site percolation. The stubs that survive
percolation are still denoted by (W−,π,W+,π ). Remark that this implies

W− =W−,π ∪W−,r ∪W−,m and W+ =W+,π ∪W+,r ∪W+,m . (60)

These definitions of (W−,r,W+,r) and (W−,m,W+,m) will be important throughout the proof.

5.3.1 A percolated configuration is a uniformly random configuration

As in the case of bond percolation, conditional on dn
π being the degree sequence after percola-

tion, applying site percolation to a uniformly random configuration on (W−,W+) results in a
uniformly random configuration obeying dn

π . We shown in Lemma 5.6 that conditional on the
stubs that are removed by site percolation, the matching on the surviving stubs is uniformly
random.

Lemma 5.6. Apply site percolation to a uniformly random configuration M on (W−,W+).
Conditional on the elements of (W−,r,W+,r) and (W−,m,W+,m), each configuration on (W−,π,W+,π )
is equally likely.

Proof. According to equation (60), fixing the elements of (W−,r,W+,r) and (W−,m,W+,m),
uniquely determines the elements of (W−,π,W+,π ). Choosing the elements of (W−,r,W+,r) and
(W−,m,W+,m) furthermore implies that the configuration M is the union of a configuration on
(W−,r ∪W−,m,W+,r ∪W−,m) with the one on (W−,π,W+,π ). As M is a uniformly random
configuration obeying this split and the elements of (W−,π,W+,π ) are fixed, the configuration
on (W−,π,W+,π ) will be a uniformly random one.

This lemma allows us to prove that conditional on the degree sequence after percolation,
there remains a uniformly random configuration.

Lemma 5.7. Apply site percolation to a uniformly random configuration on (W−,W+). Con-

ditional on Dn = dn
π , any configuration on

(
W−

dn
π
,W+

dn
π

)
is equally likely.
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Proof. Define l = |W−,π| and let S(dn
π) contains all sets of surviving stubs (W−,π,W+,π ) that

induce the degrees sequence dn
π. Fix a matching Mπ of

(
W−

dn
π
,W+

dn
π

)
. Then it holds that

P
[
Mπ

∣∣Dn = dn
π

]
=

∑

(A,B)∈S(dn
π)

P
[
Mπ

∣∣Dn = dn
π ,
(
W−,π,W+,π

)
= (A,B)

]
×

P
[(
W−,π,W+,π

)
= (A,B) |Dn = dn

π

]
.

Remark that P
[
Mπ

∣∣Dn = dn
π , (W

−,π,W+,π ) = (A,B)
]

= P [Mπ |(W−,π,W+,π ) = (A,B)] as
(A,B) ∈ S(dn

π) implies that (W−,π,W+,π ) must induce the degree sequence dn
π. Using Lemma

5.6 and the bijection between (W−,π,W+,π ) and
(
W−

dn
π
,W+

dn
π

)
we find:

P
[
Mπ

∣∣(W−,π,W+,π
)
= (A,B)

]
=

1

l!
.

Furthermore, combining these observations with
∑

(A,B)∈S(dn
π )

P
[(
W−,π,W+,π

)
= (A,B) |Dn = dn

π

]
= 1

following from the definition of S(dn
π), we obtain

P
[
Mπ

∣∣Dn = dn
π

]
=

1

l!

∑

(A,B)∈S(dn
π )

P
[(
W−,π,W+,π

)
= (A,B) |Dn = dn

π

]
=

1

l!
,

completing the proof.

5.3.2 The expected number of vertices with degree (j, k) after site percolation

The next step in the proof of Theorem 2.2 for site percolation is proving existence of the limit

psitej,k := lim
n→∞

E

[
Nπ

j,k (n)
]

n
, (61)

and determining its value for j, k ∈ N0. Then, given psitej,k , π̂
site is determined analogously to

π̂bond, and in Section 5.3.3, π̂site is shown to be the desired threshold for site percolation.
If the in-degree j or out-degree k, or both, are larger than dmax, then

psitej,k = lim
n→∞

E

[
Nπ

j,k (n)
]

n
= 0.

Let 0 ≤ j, k ≤ dmax. We will now bound the value of E
[
Nπ

j,k (n)
]
. Let Nπ,r

d−,d+
(n) denote the

number of vertices of degree (d−, d+) before percolation that are not deleted. Thus Nd−,d+ (n)−
Nπ,r

d−,d+
(n) equals the number of vertices of degree (d−, d+) that are deleted. Each vertex is

deleted with probability 1− π independently of other vertices, hence:

E

[
Nπ,r

d−,d+
(n)
]
= πNd−,d+ (n) , (62)

E

[
Nd−,d+ (n)−Nπ,r

d−,d+
(n)
]
= (1− π)Nd−,d+ (n) . (63)
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A deleted vertex will have degree (0, 0) after percolation with probability 1. Let Pj,k (d
−, d+) be

the probability that a non-deleted vertex of degree (d−, d+) has degree (j, k) after percolation.
For (j, k) = (0, 0) we have

E

[
Nπ

0,0 (n)
]
=

dmax∑

d−=0

dmax∑

d+=0

(
(1− π)Nd−,d+ (n) + πP0,0

(
d−, d+

)
Nd−,d+ (n)

)
, (64)

and otherwise,

E

[
Nπ

j,k (n)
]
=

dmax∑

d−=j

dmax∑

d+=k

πPj,k

(
d−, d+

)
Nd−,d+ (n) . (65)

We will now derive the expression for Pj,k (d
−, d+). Let s− = |W−,π ∪W−,m|, s+ = |W+,π ∪

W+,m |, r− = |W−,m| and r+ = |W+,m |. Note that there must hold s− − r− = s+ − r+

as s− − r− = |W−,π |, s+ − r+ = |W+,π | and the remaining configuration on (W−,π,W+,π )
forms a directed graph. Let Pj,k (d

−, d+, s−, s+, r−, r+) denote the probability Pj,k (d
−, d+)

conditional on the values s−, s+, r−, r+. We will now determine this conditional probability.
Site percolation combines the independent random processes of deleting vertices and creating a
uniformly random configuration on (W−,W+). As these processes are independent, we may first
determine the elements of (W−,r,W+,r) and then randomly create a configuration on (W−,W+).
Thus conditional on the value r− (respectively r+), each subset of W− \W−,r(W+ \W+,r) of
this size is equally likely to be W−,m (or W+,m). This implies that

Pj,k

(
d−, d+, r−, r+, s−, s+

)
=

(
d−

d− − j

)(
d+

d+ − k

)( s−−d−

r−−d−+j

)
(s−
r−

)
(

s+−d+

r+−d++k

)
(s+
r+

) . (66)

To approximate this probability we will show that with high probability s−, s+ will in some
bounded interval I ′ and r−, r+ in I both. This enables us to determine Pj,k (d

−, d+, r−, r+, s−, s+)
for s−, s+, r−, r+ in these intervals. First consider s− and s+. By using equation (62), we obtain:

E
[
s−
]
=

dmax∑

d−=0

dmax∑

d+=0

πd−Nπ,r
d−,d+

(n) = mπ and E
[
s+
]
=

dmax∑

d−=0

dmax∑

d+=0

πd+Nπ,r
d−,d+

(n) = mπ.

Using dmax ≤ n1/9 and Hoeffding’s inequality we also find that

P

[∣∣s− − E
[
s−
]∣∣ > n2/3 ln(n)

]
≤ e−Ω(ln2(n)) and P

[∣∣s+ − E
[
s+
]∣∣ > n2/3 ln(n)

]
≤ e−Ω(ln2(n)).

(67)

This implies that

s−, s+ ∈ I ′ :=
[
mπ − n2/3 ln(n),mπ + n2/3 ln(n)

]

with probability 1− e−Ω(ln2(n)). The following Lemma specifies such an interval for r− and r+.

Lemma 5.8. Conditional on s−, s+ ∈ I ′, there holds

r+, r− ∈ I :=
[
mπ(1− π)− n2/3 ln2(n),mπ(1− π) + n2/3 ln(n)2

]

with probability 1− e−Ω(ln2(n)) for both values separately.
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Proof. We present the proof for r−. The proof for r+ is identical to the one for r− up to
switching the roles of in-stubs and out-stubs. Since we consider a uniformly random configuration
on (W−,W+), the probability that any in-stub is matched to an out-stub in W+,r is m−s+

m =

(1−π)
(
1 +O

(
n−1/3 ln(n)

))
as s−, s+ ∈ I ′. Since r− equals the number of in-stubs inW−\W−,r

with a match in W+,r , this implies

E
[
r−
]
= s−

m− s+

m
= mπ (1− π)

(
1 +O

(
n2/3 ln(n)

))
.

To complete the proof, we will now show that

P

[
|r− − E

[
r−
]
| > n2/3 ln2(n)

]
≤ e−Ω(ln2(n)).

This is realized by applying Theorem 5.2 to the space of configurations on (W−,W+) with the
symmetric difference as the metric. The value of r− plays the role of the function f . To partition
this space, we order the in-stubs of W−. Define an i-prefix to be the first i in-stubs together
with their match. An element of the partition Pk consists of all configurations with the same
k-prefix for all k ∈ {0, 1, . . . ,m}. For any A,B ∈ Pk such that A,B ⊂ C ∈ Pk−1 a bijection
φ : A → B can be defined. Denote the kth pair of a configuration in A by (x, yA) and the kth

pair of a configuration in B by (x, yB). Then φ maps M ∈ A to the configuration in B with
(x, yA) replaced by (x, yB) and with yA the match of the in-stub in M matched to yB. By
definition of φ it follows that ck := |M − φ(M)| = 4 for all k ∈ {1, 2, . . . ,m}. As the value of
r− also changes by at most the symmetric difference of the two matchings, Theorem 5.2 implies

P

[
|r− − E

[
r−
]
| > n2/3 ln2(n)

]
≤ 2 exp

(
n4/3 ln2(n)

2m

)
= e−Ω(ln2(n)),

as m ≤ ndmax ≤ n10/9.

Fountoulakis [4, Section 4] shows that for dmax ≤ n1/9 there holds uniformly for r ∈ I and
s ∈ I ′:

(
d

d− i

)( s−d
r−d+i

)
(s
r

) =

(
d

d− i

)
(1− π)d−i πi

(
1 +O

(
ln2(n)

n1/3

))
.

Applying this to equation 66 implies that uniformly for all s−, s+ ∈ I ′ and r−, r+ ∈ I there
holds

Pj,k

(
d−, d+, r−, r+, s−, s+

)
=

(
d−

d− − j

)(
d+

d+ − k

)
πj+k (1− π)d

−+d+−j−k

(
1 +O

(
ln2(n)

n1/3

))
.

However we cannot yet determine this probability if at least one of the following conditions is
violated: s−, s+ ∈ I ′, r−, r+ ∈ I. Instead of determining the probability in these cases, we show
that such violations are unlikely, that is, instead of bounding the probability

P
[
s− /∈ I ′ ∨ s+ /∈ I ′ ∨ r− /∈ I ∨ r+ /∈ I

]
,

we add a condition on Nπ,r
d−,d+

(n), allowing us to bound the value of E
[
Nπ

j,k (n)
]
. Theorem 5.1

implies that

P

[
Nπ,r

d−,d+
(n)− E

[
Nπ,r

d+,d−
(n)
]
| > √

n ln(n)
]
< e−Ω(ln2(n)). (68)
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In combination with equation (62) this implies that

Nπ,r
d−,d+

(n) ∈ I ′′(d−, d+) =
[
max

{
πNd−,d+ (n)−√

n ln(n), 0
}
, πNd−,d+ (n) +

√
n ln(n)

]
,

with probability 1− e−Ω(ln2(n)). Together with equation (67) and Lemma 5.8 there follows:

P

[
s− /∈ I ′ or s+ /∈ I ′ or r− /∈ I or r+ /∈ I orNπ,r

d−,d+
(n) /∈ I ′′

(
d−, d+

)]

≤P
[
s− /∈ I ′

]
+ P

[
s+ /∈ I ′

]
+ P

[
r− /∈ I

]
+ P

[
r+ /∈ I

]
+ P

[
Nπ,r

d−,d+
(n) /∈ I ′′

(
d−, d+

)]

=o

(
1

n3

)
+ P

[
r− /∈ I

]
+ P

[
r+ /∈ I

]
.

By the law of total probability

P
[
r− /∈ I

]
=P
[
r− /∈ I|s− ∈ I ′, s+ ∈ I ′

]
P
[
s− ∈ I ′, s+ ∈ I ′

]
+

P
[
r− /∈ I|s− /∈ I ′, s+ ∈ I ′

]
P
[
s− /∈ I ′, s+ ∈ I ′

]
+

P
[
r− /∈ I|s− ∈ I ′, s+ /∈ I ′

]
P
[
s− ∈ I ′, s+ /∈ I ′

]
+

P
[
r− /∈ I|s− /∈ I ′, s+ /∈ I ′

]
P
[
s− /∈ I ′, s+ /∈ I ′

]
= o

(
1

n3

)
.

In a similar fashion, it is shown that P [r+ /∈ I] = o
(

1
n3

)
. Thus there holds

P

[
s− /∈ I ′ or s+ /∈ I ′ or r− /∈ I or r+ /∈ I orNπ,r

d−,d+
(n) /∈ I ′′

(
d−, d+

)]
= o

(
1

n3

)
. (69)

This allows to determine a lower and upper bound for the value E

[
Nπ

j,k (n)
]
. As Nπ,r

d−,d+
(n) ≤

Nd−,d+ (n) and (dn)n∈N is proper, for all ǫ > 0 there exist κ (ǫ) and N (ǫ) such that for all
n > N :

(dmax,dmax)∑

(d−,d+)=(0,0)
d−≥κ+1or d+≥κ+1

Pj,k

(
d−, d+

)
Nπ,r

d−,d+
(n) ≤

(dmax,dmax)∑

(d−,d+)=(0,0)
d−≥κ+1or d+≥κ+1

Nd−,d+ (n) ≤ ǫn. (70)

In combination with equation (65) this implies for (j, k) 6= (0, 0)

κ∑

d−=j

κ∑

d+=k

Pj,k

(
d−, d+

)
Nπ,r

d−,d+
(n) ≤ E

[
Nπ

j,k (n)
]
≤

κ∑

d−=j

κ∑

d+=k

Pj,k

(
d−, d+

)
Nπ,r

d−,d+
(n) + ǫn.

(71)

Using equation (69) on the left-hand side of the above equation we find

E

[
Nπ

j,k (n)
]
≥

κ∑

d−=j

κ∑

d+=k

∑

r̃−∈I′

∑

r̃+∈I′

∑

s̃−∈I

∑

s̃+∈I

∑

d̃d−,d+∈I′′(d−,d+)

d̃d−,d+Pj,k

(
d−, d+, r̃−, r̃+, s̃−, s̃+

)
×

P

[
r− = r̃−, r+ = r̃+, s− = s̃−, s+ = s̃+, Nπ,r

d−,d+
(n) = d̃d−,d+

]
+ o

(
1

n2

)
.
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As equation (68) implies that

∑

d̃d−,d+∈I′′(d−,d+)

d̃d−,d+P

[
Nπ,r

d−,d+
(n) = d̃d−,d+

]
= E

[
Nπ,r

d−,d+
(n)
]
+ o

(
1

n2

)
,

following [4] we obtain the lower bound:

E

[
Nπ

j,k (n)
]
≥ o

(
1

n2

)
+ π

κ∑

d−=j

κ∑

d+=k

Nd−,d+ (n)

(
d−

d− − j

)(
d+

d+ − k

)
×

πj+k (1− π)d
−+d+−j−k

(
1 +O

(
ln2(n)

n1/3

))
.

In a similar fashion we can show, using the right-hand side of equation (71), that the upper
bound is

E

[
Nπ

j,k (n)
]
≤ ǫn+ o

(
1

n2

)
+ π

κ∑

d−=j

κ∑

d+=k

Nd−,d+ (n)

(
d−

d− − j

)(
d+

d+ − k

)
×

πj+k (1− π)d
−+d+−j−k

(
1 +O

(
ln2(n)

n1/3

))
.

Combining the upper and lower bounds together proves convergence of the limit for j, k > 0:

lim
n→∞

E

[
Nπ

j,k (n)
]

n
= π

∞∑

d−=j

∞∑

d+=k

pd−,d+

(
d−

j

)(
d+

k

)
πj+k (1− π)d

−−j+d+−k = psitej,k . (72)

For (j, k) = (0, 0), we need to use equation (64) instead of equation (65). Since Nπ,r
d−,d+

(n) ≤
Nd−,d+ (n) and (dn)n∈N is proper implies that for all ǫ > 0 there exist κ (ǫ) and N (ǫ) such that
for all n > N

(dmax ,dmax)∑

(d−,d+)=(0,0)
d−≥κ+1or d+≥κ+1

(
Nd−,d+ (n)−Nπ,r

d−,d+
(n)
)
≤

(dmax,dmax)∑

(d−,d+)=(0,0)
d−≥κ+1or d+≥κ+1

Nd−,d+ (n) ≤ ǫn.

Thus the equivalent of (71) for (j, k) = (0, 0) becomes

κ∑

d−=0

κ∑

d+=0

[(
Nd−,d+ (n)−Nπ,r

d−,d+
(n)
)
+ P0,0

(
d−, d+

)
Nπ,r

d−,d+
(n)
]
≤ E

[
Nπ

0,0 (n)
]
≤

κ∑

d−=0

κ∑

d+=0

[(
Nd−,d+ (n)−Nπ,r

d−,d+
(n)
)
+ P0,0

(
d−, d+

)
Nπ,r

d−,d+
(n)
]
+ 2ǫn,

and the analogous argument as for (j, k) 6= (0, 0) is applied to obtain:

lim
n→∞

E

[
Nπ

0,0 (n)
]

n
= (1− π) + π

∞∑

d−=j

∞∑

d+=k

pd−,d+

(
d−

j

)(
d+

k

)
πj+k (1− π)d

−−j+d+−k = psite0,0 .

(73)
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Comparing equations (72) and (73) with equation (37) we find:

psitej,k =

{
πpbondj,k , (j, k) 6= (0, 0),

πpbond0,0 + 1− π, (j, k) = (0, 0).
(74)

To guarantee that psitej,k must be normalized, we exploit the connection between psitej,k and pbondj,k :

∞∑

j=0

∞∑

k=0

psitej,k = 1− π + π

∞∑

j=0

∞∑

k=0

pbondj,k = 1.

Using equation (74), we find that

µπ,site = πµπ,bond = π2µ and µπ,site11 = πµπ,bond11 = π3µ11. (75)

This link between the two distribution also implies that psitej,k satisfies equation (12).

It is left to determine π̂site. As we expect the percolated graph to obey the degree distribution
psitej,k , from Theorem 4.10 we expect that the percolation threshold is the value of π such that

∞∑

j,k=0

jkpsitej,k =

∞∑

j,k=0

jpsitej,k . (76)

Denote this value by π̂site. Combing equations (76) and (75) we find π̂site
2
µ = π̂site

3
µ11, which

implies that

π̂site =
µ

µ11
= π̂bond.

Hence, we expect that the percolation thresholds for site and bond percolation are equal. This
can be explained by remarking that the expected degree distribution after site percolation is
a rescaled version the degree distribution after bond percolation, expect for (0, 0). Hence one
expects a GSCC to appear under the same conditions. However the GSCC after site percolation
is expected to contain fewer vertices, because the probability to find an isolated vertex is larger.
Note that, as in the case of bond percolation, see equation (41), we have a positive fraction of
dead ends for 0 < π < 1, which fulfils one of the prerequisites for Theorem 4.10.

5.3.3 Determining πsitec and csite

To finalise the proofs of Theorems 2.2 and 2.3 for site percolation, it remains to show that
πsitec = π̂site and to determine csite. This is done analogously to the proof of Theorem 2.2 for
bond percolation in Section 5.2.3. Because of the similarity between these proofs, we only explain
the changes that are made in Section 5.2.3 to convert it into the proof for site percolation.

First of all, we need to replace pbondj,k with psitej,k . Lemma 5.7 proves exactly the same statement
for site percolation as Lemma 5.5 for bond percolation, therefore substituting this lemma in
Section 5.2.3 will suffice. However, equation (49) requires a different proof. Conditional on a
certain realisation of (W−,r,W+,r) and the values s−, s+ ∈ I ′, r−, r+ ∈ I, the value of Nπ

j,k (n) is

determined by the random choice of (W−,m,W+,m). By changing one element of (W−,m,W+,m)
the value of Nπ

j,k (n) changes by at most 2. Thus Corollary 5.3 can be applied to obtain

P

[
|Nπ

j,k (n)− E

[
Nπ

j,k (n)
]
| > √

n ln2(n) | s−, s+, r−, r+,
(
W−,r,W+,r

)]

≤ 2 exp

(
n ln2(n)(

m(1− π)π + n2/3 ln2(n)
)
)

= e−Ω(ln2(n)).
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Using Lemma 5.8 and equation (67) there follows

P

[
|Nπ

j,k (n)− E

[
Nπ

j,k (n)
]
| > √

n ln2(n)
]
= o

(
1

n3

)
,

and, as κ is bounded, this completes the proof of equation (49).
The last change we need, is related to the fact that Theorem 4.10 is now applied to a proper

degree progression with psitej,k as degree distribution instead of pbondj,k . Hence π̂bond and cbond

must be replaced by π̂site and csite. In Section 5.3.2 we already found that π̂site = µ
µ11

. Thus it

remains to determine csite. This value is derived analogously to the derivation of cbond, expect
for replacing pbondj,k by psitej,k . This implies that we first need to determine the probability that a
uniformly random out-stub (respectively in-stub) is attached to a vertex with in-degree j (out-
degree k) in the configuration after applying site percolation. In analogy to equations (54) and
(53) these probabilities are given by

p−,site
j =

∞∑

k=0

k

µπ,site
psitej,k =

∞∑

d−=j

p−
d−

(
d−

j

)
πj (1− π)d

−−j

and

p+,site
k =

∞∑

d+=k

p+
d+

(
d+

k

)
πk (1− π)d

+−k .

Note that p−,site
j = p−,bond

j and p+,site
k = p+,bond

k . While this might seem surprising, there is a
logical explanation. A vertex of degree (0, 0) does not play any role in this distribution, as it will
never be encountered by following a uniformly random in-stub or out-stub. Equation (74) implies
that for all other degrees there holds psitej,k = πpbondj,k . Hence, after normalization the value of

p−,site
j (respectively p+,site

k ) equals p−,bond
j (or p+,bond

k ) for all j (or k). Since these distributions
are equal, they have the same fixed points, x∗ and y∗, as in equation (55). Therefore, the
difference between the two types of percolation is only in the definitions of ζ−,site, ζ+,site and
ψsite:

ζ−,site := 1−
∞∑

j,k=0

psitej,k (x∗)j = π
(
1− ζ−,bond

)
+ 1− π, (77)

ζ+,site := 1−
∞∑

j,k=0

psitej,k (y∗)k = π
(
1− ζ+,bond

)
+ 1− π, (78)

and

ψsite :=
∞∑

j,k=0

psitej,k (x∗)j (y∗)k = πψbond + 1− π. (79)

Applying Theorem 4.10 and elementary transformations to the above equations, we obtain

csite = ζ−,site + ζ+,site + ψsite − 1 = π
(
ζ−,bond + ζ+,bond + ψbond − 1

)
= πcbond. (80)

This simple relation between csite and cbond also can be intuitively explained using equation
(74). The main difference in the distributions is in vertices with degree (0, 0). A vertex of
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degree (0, 0) forms its own strongly connected component. Hence these vertices are not in the
GSCC. As psitej,k = πpbondj,k and psite0,0 = πpbondj,k +1−π, hence we could already have predicted that

csite = πcbond. This is the last change that needs to be made to Section 5.2.3 to complete the
proofs of Theorems 2.2 and 2.3 for site percolation. This completes the proofs of Theorems 2.2
and 2.3.
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