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Abstract
Students in secondary school often struggle with symbol sense, that is, the general ability
to deal with symbols and to recognize the structure of algebraic formulas. Fostering
symbol sense is an educational challenge. In graphing formulas by hand, defined as
graphing using recognition and reasoning without technology, many aspects of symbol
sense come to play. In a previous study, we showed how graphing formulas by hand
could be learned. The aim of the study we present here is to explore the relationship
between students’ graphing abilities and their symbol sense abilities while solving non-
routine algebra tasks. A symbol sense test was administered to a group of 114 grade 12
students. The test consisted of eight graphing tasks and twelve non-routine algebra tasks,
which could be solved by graphing and reasoning. Six students were asked to think aloud
during the test. The findings show a strong positive correlation between the scores on the
graphing tasks and the scores on the algebra tasks and the symbol sense used while
solving these tasks. The thinking-aloud protocols suggest that the students who scored
high on the graphing tasks used similar aspects of symbol sense in both the graphing and
algebra tasks, that is, using combinations of recognizing function families and key
features, and qualitative reasoning. As an implication for teaching practice, learning to
graph formulas by hand might be an approach to promote students’ symbol sense.
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1 Introduction

Many students have serious cognitive problems with algebra, in particular with seeing
structure and making sense of algebraic formulas with their abstract symbols (Arcavi,
Drijvers, & Stacey, 2017; Drijvers, Goddijn, & Kindt, 2011; Kieran, 2006). The teaching of
algebra often focuses on basic skills through practicing algebraic calculation in similar tasks
(Arcavi et al., 2017). However, many students experience problems with when to use these
basic skills and finding strategies to solve algebra problems: they lack symbol sense (Arcavi
et al., 2017; Hoch & Dreyfus, 2005, 2010; Oehrtman, Carlson, & Thompson, 2008;
Thompson, 2013). Symbol sense concerns a very general notion of “when and how” to use
symbols (Arcavi, 1994), and it functions as a compass when using basic skills (Drijvers et al.,
2011). A lack of symbol sense leads to an overreliance on basic skills, just learned methods,
and on the symbolic representations, leading to poor achievements (Kieran, 2006; Knuth,
2000; Eisenberg & Dreyfus, 1994; Pierce & Stacey, 2007). However, it is not clear how to
teach symbol sense appropriately (Arcavi, 2005; Hoch & Dreyfus, 2005). In a previous study,
we showed how teaching graphing formulas by hand, defined as graphing using recognition
and reasoning, without technology, to grade 11 students improved their insight into algebraic
formulas (Kop, Janssen, Drijvers, & Van Driel, 2020). Insight into algebraic formulas is an
aspect of symbol sense and involves recognizing structure and key features of a formula and
qualitative reasoning with and about a formula. In the study presented here, we investigated
whether graphing formulas by hand abilities is related to students’ symbol sense in a broader
sense, that is, symbol sense while solving non-routine algebra tasks. Doing so, the study aims
to contribute to our theoretical knowledge of students’ symbol sense abilities and to inform
teaching practice.

2 Theoretical background

The most important theoretical notion that guides this study is symbol sense. Fey (1990) was
the first to mention symbol sense and described it as an informal skill required to deal
effectively with symbolic expressions and algebraic operations. According to Fey, goals for
teaching symbol sense would include at least the following basic themes: the ability to scan an
algebraic expression to make rough estimates of the patterns that would emerge in numerical
or graphical representation, to make comparisons of orders of magnitude for functions, and to
inspect algebraic operations and predict the form of the result and judge the likelihood that it
has been performed correctly. Arcavi (1994) elaborated on this idea and broadened the concept
to all phases in the problem-solving cycle (Pierce & Stacey, 2004). According to Arcavi
(ibid.), symbol sense would include:

& An understanding and a feel for the power of symbols, that is, understanding how and
when symbols can be used to display relationships, generalizations, and proofs and when
to abandon symbols in favor of other approaches in order to make progress with a problem

& An ability to manipulate and to “read” symbolic expressions as two complementary
aspects of solving algebra problems

& The awareness that one can successfully engineer symbolic relationships which express
the verbal or graphical information needed to make progress in a problem, and the ability
to engineer those expressions
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Drijvers et al. (2011) described symbol sense in relation to basic skills: symbol sense and basic
skills are complementary. Basic skills involve procedural work with a local focus and an
emphasis on algebraic calculations, whereas symbol sense involves strategic work, taking a
global view on algebraic expressions/formulas and algebraic reasoning. A global view, or a
Gestalt view, has to do with the ability to see an algebraic formula as a whole, to “read
through” it, and to recognize its structure and global characteristics.

Related to the notion of symbol sense, Pierce and Stacey (2004) used the term algebraic
insight to capture the symbol sense in transformational activities in the “solving” phase of the
problem-solving cycle (from mathematical problem to mathematical solution) when using
Computer Algebra Systems (CAS). Algebraic insight has to do with the recognition and
identification of structure, objects, key features, dominant terms, and meanings of symbols
and the ability to link representations (Kenney, 2008; Pierce & Stacey, 2004). Kenney (2008)
used this framework of Pierce and Stacey for her research and added “know how and when to
use symbols” and “know when to abandon a representation.”

To develop symbol sense, graphing formulas by hand might be useful because it involves
many aspects of symbol sense. First, graphing formulas is about linking the symbolic and
graphical representation. Second, to efficiently graph formulas by hand, one has to recognize
the structure and key features of a formula and to reason with and about formulas. Third,
graphing a formula can be considered a visualization of a formula, and using such a
visualization in problem solving requires knowing about what is represented and where to
look for it. We will now elaborate on these aspects.

Linking representations, such as formulas and graphs, is important in learning about
functions (Janvier, 1987; Leinhardt, Zavlavsky, & Stein, 1990) and might be used to give
meaning to algebraic formulas (Kieran, 2006). Duval (1999) used the term registers of
representations to indicate that each representation (formula or graph) has its own specific
means and processing for mathematical thinking. He distinguished two types of transforma-
tion: treatments, transformations in the same representation, and conversions, transformations
from one representation to another, like from formulas into Cartesian graphs. Conversions are
at the core of understanding mathematics, but many students have problems learning these
conversions, as it requires a change of register and the recognition of the same represented
object in different representations (Duval, 1999, 2006).

In efficiently graphing formulas by hand, many aspects of symbol sense are involved.
Research in expertise in graphing formulas by hand shows that experts’ strategies could be
described with combinations of different levels of recognition and qualitative reasoning (Kop,
Janssen, Drijvers, Veenman, & Van Driel, 2015). For recognition, experts use a repertoire of
function families with their characteristics and key graph features like zeroes and turning
points. In qualitative reasoning, the focus is on the global shape of the graph, ignoring what is
not relevant in the situation, and using global descriptions. Qualitative reasoning is often used
by experts in complex problem situations that are difficult to look through in detail, like in
physical models (Bredeweg & Forbus, 2003). In the domain of graphing formulas, experts
tend to use qualitative reasoning to explore (parts of) the graph, for instance, infinity behavior,
increasing/decreasing of functions, stronger/weaker components of a function, and in the
composition of two subgraphs, after decomposing a formula in two sub-functions. Graphing
formulas by hand is related to covariational reasoning, which is about coordinating two
covarying quantities while attending to how they change in relation to each other
(Thompson, 2013; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). This covariational reasoning
is critical in supporting student learning of functions in secondary and undergraduate
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mathematics (Carlson et al., 2002; Oehrtman et al., 2008). Carlson, Madison, and West (2015)
showed that students were not able to reason “as the value of x gets larger the value of y
decreases, and as the value of x approaches 2, the value of y increases” when they had to link
the formula of f(x) = 1/(x − 2)2 to its graph.

Visualizing formulas through graphs is used in problem solving for understanding
the problem situation, recording information, exploring, and monitoring and evaluating
results (Polya, 1945; Stylianou & Silver, 2004). Stylianou and Silver (2004) compared
experts and novices in solving algebra problems and showed that experts know how
to use graphs in solving algebra problems. Experts “see” relevant relations visualized
in the graph and can use the graph for visual and qualitative explorations. Although
novices have some declarative knowledge, they lack the necessary procedural knowl-
edge to construct visual representations of general functions and to explore the graphs
they have constructed. Such exploration requires a global view of the whole graph
and not just a local apprehension (Duval, 1999) and is only possible when one is very
familiar with the function (Stylianou & Silver, 2004). This matched Eisenberg and
Dreyfus’ (1994) ideas about the need for a repertoire of basic functions that one
should simultaneously “see” in a graph as one thinks of the algebraic formula.

In sum, graphing formulas involves many essential aspects of symbol sense to
solve algebra problems, like visualizing a formula through a Cartesian graph, taking a
global view to read through a formula and enable recognition of the structure of a
formula and/or its key features, and qualitative reasoning. In the current study,
therefore, we focus on the relation between symbol sense involved in graphing
formulas by hand and the symbol sense to solve non-routine algebra tasks. Aspects
of symbol sense, learned and used in the context of graphing formulas, might be used
in a broader domain of algebra tasks. In this study, this broader domain is restricted
to algebra tasks that can be solved with graphs and reasoning, so without the use of
algebraic calculations.

2.1 Research questions

The theoretical perspective described in the previous section led to the following main research
question:

How do grade 12 students’ abilities to graph formulas by hand relate to their use of symbol
sense while solving non-routine algebra tasks?

We formulated two sub-questions. We expected a relation between students’ abilities to
graph formulas by hand and their abilities to solve algebra tasks with symbol sense, because
graphing formulas can be seen as a subset of algebra tasks, and in graphing formulas by hand,
many aspects of symbol sense are involved. This led to the first sub-question:

To what extent are students’ graphing formulas by hand abilities positively correlated to
their abilities to solve algebra tasks with symbol sense?

In graphing formulas by hand, several symbol sense aspects are involved, and we expected
that students would be able to use these symbol sense aspects also in the context of solving
algebra tasks. In addition, we expected that when one is able to graph formulas by hand, one
would see more possibilities to use this strategy (making a graph). This led to the second sub-
question:
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How is students’ symbol sense use in graphing formulas similar or different from their
symbol sense use in solving non-routine algebra tasks?

3 Method

We first describe the context of the study, that is, the position of this study in a larger research
project; next, we address the participants, the symbol sense test, the data, and the way the data
were analyzed.

3.1 Context of the study

This study is part of a larger PhD research project about studying how symbol sense might be
taught. In two previous studies, we analyzed expertise in graphing formulas by hand and
identified main components of symbol sense used by experts, that is, recognition of function
families and key features from the structure of formulas and qualitative reasoning. In a third
study, a group of 21 students from the first author’s school were taught how to graph formulas
by hand, using recognition and reasoning, in a series of five lessons of 90 min. The series of
lessons started with the recognition of basic function families with their characteristics.
Students learned about transformations and about using qualitative reasoning by focusing on
the global shape of the graphs and using global descriptions (e.g., “it is a root-graph reversed”).
Then, these basic function families were used as building blocks when graphing more complex

functions, like in y = 2x + 4/x and y ¼ 2x
ffiffiffiffiffiffiffiffi

5−x
p

. Complex functions could be decomposed in
two basic functions, which could both be graphed. Explicit attention was paid to the compo-
sition of the two subgraphs through qualitative reasoning. In a subsequent task, the focus was
on recognizing graph features, like zeroes and turning points. When recognition falls short, one
can do strategic explorations of parts of the graphs. In a subsequent task, students learned how
to use qualitative reasoning for determining, e.g., infinity behavior of a function and increas-
ing/decreasing. In Appendix 3, more details are given about this intervention. Pre-test results
of this third study showed that the students had a lot of trouble with graphing formulas by
hand; post-test results showed an improvement of their abilities. The current study is the fourth
study, which focused on the relation between symbol sense involved in graphing formulas by
hand and in solving algebra tasks.

3.2 Instruments

The main instrument developed for this study was a test on students’ competencies and symbol
sense use when graphing formulas by hand and when solving non-routine algebra tasks. Two
types of tasks were used: type A tasks, in which the link between formula and graph was
explicitly indicated, and type B tasks with no reference to graphs in the text. Students were
asked to explain their answers.

The test was constructed in three steps. First, we looked for tasks that were used in other
studies and adjusted them to our situation. Second, a first draft of the test was discussed with a
professor in mathematics education and an experienced teacher. They were asked whether the
tasks fit the grade 12 curriculum and whether they thought the students should be able to solve
these tasks. Third, using their feedback, the test was constructed with eight type A tasks and
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twelve type B tasks. All teachers of the students involved in the study indicated that they
thought that these tasks were challenging but, according to the curriculum, should be doable.

In the type A tasks, we explicitly used the word “graph” and addressed different aspects of
linking formulas to graphs. Some of these kinds of tasks have been used more often in
research: working with parameters (Drijvers et al., 2011; Heid, Thomas, & Zbiek, 2013),
reverse thinking (finding a formula with a graph) (Keller, 1994; Drijvers et al., 2011; Duval,
2006), and evaluating a (part of the) graph made with a graphic calculator. The test started with
type B tasks, because type A tasks might suggest using graphs in the type B tasks.

Type B tasks could be solved with only graphs and reasoning, but no explicit links to
graphs were given in the text. These tasks should give information about the students’ symbol
sense use while solving algebra tasks. Some tasks have been used by others in assessing
students’ algebraic competences: number of solutions (Heid et al., 2013), inequalities (Kenney,
2008; Tsamir & Bazzini, 2004), and reasoning about the function (Kenney, 2008; Pierce &
Stacey, 2007). In Appendix 1, we give the symbol sense test. The internal consistency and
reliability of both types of tasks was deemed acceptable, based on Cronbach’s alpha on the
type A tasks being 0.70 and on the type B tasks 0.72. Deleting any task hardly changed
Cronbach’s alpha.

3.3 Participants

In this study, 114 grade 12 students from six different schools throughout the Netherlands were
involved. The students had 45 min to finish the pen-and-paper test. All students were enrolled
in the Dutch mathematics B course that prepares for university studies in mathematics,
physics, and engineering. In regular education in the Netherlands, students learn about linear,
quadratic, and exponential functions in grade 8 and 9. In grade 10, the graphic calculator is
introduced, and power, rational, logarithmic functions are studied. In grade 11 and 12, calculus
topics such as derivatives and integrals are taught. Graphing formulas by hand, without
technology, is not a specific subject in the Dutch curriculum: graphs are normally made with
the graphic calculator. Therefore, we expected that many students would have difficulties to
graph formulas by hand and that they would score low on the graphing tasks in the symbol
sense test. To investigate the relation between graphing formulas abilities and the abilities to
solve algebra tasks, a broad range of scores on the graphing tasks was needed. To ensure this
range of graphing abilities and to investigate how the teaching of graphing formulas by hand
would affect students' symbol sense abilities, 21 students from the third study (who were
taught how to graph formulas by hand) were involved in the current study. The teachers of the
five schools that were involved in the study volunteered to participate, and differed with
respect to years of teaching experience.

3.4 Procedure

In February 2017, the symbol sense test was administered to the 114 students. For each
student, all answers on the tasks were scored as correct (score = 1), partly correct (score
between 0 and 1), or incorrect (score = 0). For each student, the sum of the scores on the type
A tasks resulted in a TA score and the sum on type B tasks in a TB score. In addition, for both
type A and type B tasks, the students’ strategies were encoded, as far as these could be
recognized from the written material. We looked for symbol sense strategies, like recognition
of key features, decomposition in sub-formulas, and reasoning and for other strategies, like
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making calculations (derivatives, and/or points). In the type B tasks, we also registered
whether making a graph or a relevant part of the graph was used, as these were considered
symbol sense strategies. When, in these type B tasks, symbol sense strategies were used, a
strategy score of 1 was given. However, when calculations were made, the strategy score was
0. The sum of these scores resulted in a StratTB score for each student. Besides the StratTB
score, an effective strategy score (EffStratTB score) was also calculated, because using a
symbol sense strategy did not guarantee a correct solution. When the symbol sense strategy
resulted in a score of 0.5 or higher on a task, the effective strategy score was 1. The sum
resulted in an EffStratTB score for each student.

The scores on the written test, TA, TB, StratTB, and EffStratTB scores, are considered to be
related to the general mathematics ability of the students, and the general mathematics ability
of each of the 114 students was rated by their own teacher on a scale from 1 to 10 (called Math
rating). In a one-way independent Anova on the students’ Math ratings, no significant
differences between the six schools were found.

In addition to the strategy scores from the written tests, we wanted a more detailed picture
of the relation between the symbol sense use in the graphing tasks and in the algebra tasks
(sub-question 2). As we expected that symbol sense involved in graphing formulas might be
used in solving algebra tasks, we asked six students who belonged to the group of 25% highest
scoring students on the graphing tasks (scores of 3 to 7.5 out of max 8) to think aloud during
the test. Two of these students had very high Math ratings (T and K), two had more than
average Math ratings (A and M), and two had average Math ratings (Y and I). As our aim is to
teach symbol sense to all students, these six students were also involved in the teaching
of graphing formulas by hand. Thinking aloud is not expected to disturb thinking processes
and should give reliable information about problem-solving activities (Ericsson, 2006). The
thinking-aloud protocols were transcribed.

3.5 Data analysis

The first sub-question was about the relation between the TA scores and the three scores on
type B tasks (TB scores, StratTB scores, EffStratTB scores). The assumptions of regression,
independent errors, homoscedasticity, normally distributed errors, and multicollinearity were
met (Field, 2012). Because of the small number of items, the scores on the type B tasks were
not normally distributed; therefore, bias corrected and accelerated bootstrap 95% CIs are
reported.

The Math ratings were related to the scores on the type B tasks. To explore the relation
between TA scores and scores on type B tasks, we first used regression with the type B scores
as dependent variables and the TA scores as independent variable. Then, the Math rating was
added also as an independent variable, to explore the influence of the Math rating on the scores
of the type B tasks.

To get a more detailed picture of the relation between the TA scores and the scores on the
type B tasks, the group of 114 students were divided into four quartile groups, based on their
TA score. The 25% students with the highest TA score formed the quartile group Q4, the
second 25% students the Q3 group, etc. The Q4 group included 16 of the 21 students involved
in the teaching graphing formulas. All written type A tasks were analyzed on the main
strategies, that is, the use of recognition/reasoning, making calculations, and “no answer at
all” (blank). The written type B tasks were analyzed on the main strategies recognition/
reasoning, making a graph, making calculations, and blank. For each task and each group
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(Q4, Q3, Q2, Q1), the relative frequencies of the main strategies and also the mean scores of
the four groups on the tasks were calculated.

The thinking-aloud protocols could detail the main strategies that were used to
analyze the written tasks. To analyze the thinking-aloud protocols, these were tran-
scribed, and the transcripts were cut into idea units, fragments that contained crucial
steps of explanations (Schwarz & Hershkowitz, 1999). These idea units were encoded
using Drijvers et al.’s (2011) framework and descriptions of experts’ strategies in
graphing formulas (Kop et al., 2015). Drijvers et al.’s framework uses the following
categories: taking global view, reasoning, and strategic work. To detail the symbol
sense in the category global view, strategies involved in graphing formulas were used:
recognition of function families, using knowledge of prototypical graphs and other
characteristics of the function family, and recognition of key features, without
(instantly) knowing other characteristics. The category strategic work was split up:
considering one’s strategy and monitoring and abandoning a representation (e.g.,
making a graph). Also, signs of lack of symbol sense were encoded; e.g., when
time-consuming and error-prone algebraic calculations were used, while the problem
could be solved with recognition and reasoning. This led to the following codebook
for the type A and type B tasks that is explained in Table 1:

We give three examples to illustrate the encoding.
As a first example, we consider student T working on task 14 (type B); they

considered their strategy (S1), recognized the zeroes from the structure of the formula
(R2), made a graph (S2), and used qualitative reasoning when y values are described
in terms of positive/negative (Q):

Hmm, not nice to expand the brackets and to differentiate the function; but can
it be done smarter? (S1); we can say that there will be a zero at 0, and when
14 − 2x = 0, so, at 7 and at 4 (R2); what shape do we have? (S2); for large x it
is positive multiply negative multiply negative, so positive; for a very negative
number we get a negative outcome (Q) (followed by a correct graph; score 1;
encoding R2,Q,S1,S2).

As a second example, student A was working on task 4 (task B); they started with
calculations (C), monitored their strategy (S1), recognized a key feature (asymptote)
(R2), and used qualitative reasoning about function behavior in the neighborhood of
x = 3 (Q).

First expand the brackets x2 − 13x + 30 + 40/(x − 3) (C); can this be larger than
70?; I’m going to try to find the turning point (S1); then see whether it is a
parabola with a max or something like that, but there is also a broken function;
let us see whether it is a parabola (R1) and see whether turning point is beneath
or above 70 and then 40…..?(S1) (tries to calculate (C)) No, this will not work
(S1); I think I calculate some points (S1); there is a vertical asymptote at x = 3
(R2); so, when x-3 is very small then this part becomes very large and dominate
the rest of the function (Q); …x-3 can be infinity small and then the fraction
will be very large and easily above 70 (Q) (score 1; encoding: R2,Q,S1,C)
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In example 3, student Y was working on task 3 (task B); they used graphs (S2) and
prototypical graphs (R1) and described a “reversed” prototypical graph (Q).

2x is equation of ex (R1), so goes above (sketches a graph (S2); 2−x goes the other direction
(Q), so, they have 1 point of intersection (two correct graphs; score 1; encoding R1,Q,S2)

The categories to describe symbol sense in the codebook show some similarities with the Pierce and
Stacey (2004) algebraic expectation framework. However, because our focus is on reading through
formulas and making sense of them, the manipulation of formulas and equivalence of formulas
plays a minor role compared with the Pierce and Stacey framework. The encoding was used to
qualitatively study similarities and differences between the symbol sense use in the graphing and
algebra tasks of each student.

4 Results

First, Table 2 shows the correlation between the variablesMath rating, TA scores, TB, StratTB, and
EffStratTB scores. The TA scores were strong correlated with the type B scores.

Next, the Math rating was added as an independent variable in the regression model with
TB score as dependent variable and TA score as independent variable and later also with the
StratTB score and the EffStratTB score as dependent variables. Table 3 shows that this resulted
in slightly higher correlation coefficients, .694, .543, and .639, respectively, than were found in
Table 2.

Table 2 Pearson’s correlation coefficients between variables, with 95% bias corrected and accelerated confi-
dence intervals

TA score TB score StratTB score EffStratTB score

Math rating .324 [.147, .493] .479 [.318, .623] .305 [.115, .470] .424 [.245, .574]
TA score .630 [.492, .756] .514 [.372, .646] .590 [.438, .719]
TB score .689 [.598, .767] .921 [.888, .945]
StratTB score .708 [.619, .781]

All correlations are significant (p < .001)

Table 1 Encoding the thinking-aloud protocols

Code category Code Description

Recognition R1 Recognizing a function family (families) and using prototypical
graphs and/or other characteristics of the function family

R2 Recognizing and using key graph feature(s) (e.g. a vertical asymptote,
zeroes, etc.)

Reasoning Q (Qualitative) reasoning about e.g. parts of graph (infinity behavior,
in/decreasing, positive/negative, etc.), that is, using global
descriptions (e.g., “a square root translated to the right”), ignoring
what is not relevant in the situation

Strategic work S1 Considering one’s strategy and/or monitoring
S2 Abandoning a representation (making a graph), or changing a formula

Calculation (as an indication of
lack of symbol sense)

C Calculating points, derivatives, manipulation(s) of formulas, while the
problem could be solved with recognition and reasoning
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4.1 Students’ symbol sense in type A and type B tasks

Tables 4 and 5 show a more detailed picture of strategies of the Q4 and Q3 groups on the
selection of type A and B tasks. The students in the groups Q1 and Q2 scored much
lower on the use of symbol sense strategies than the Q3 and Q4 groups. Therefore, we
only report on the Q3 and Q4 groups for a representative set of tasks. For type A tasks,
we choose task 9 and 11 (working with parameters), task 15 (finding a formula), task 16
(graphing a formula), and task 19 (checking features of a graph). For type B tasks, we
choose task 2 and 3 (number of solutions), task 4 (y > 70), task 5 (inequality), task 7 (y
values), task 14 (about maximum), and task 18 (reasoning from formula). Tables 4 and 5
show that students of group Q4, as expected, used more symbol sense strategies than
those in group Q3. See Tables 4 and 5.

In the other tasks that are not included in Table 5, also, the Q4 students used more
symbol sense than the Q3 students, who at their turn did much better than the groups
Q1 and Q2. The Q4 students also had higher mean scores than the Q3 group.
Sometimes the differences in mean scores were very large, e.g., on task 1 (.57 vs
.18), task 2 (.47 vs .13), task 3 (.49 vs .17), task 4 (.33 vs .16), task 7 (.84 vs .50),
task 13 (.45 vs .22), and task 14 (.30 vs .00). However, we found exceptions, namely,
the tasks about inequalities (task 5 and 6). In these tasks, the Q3 students used
symbol sense strategies more often than the Q4 students, and in task 5, the inequality
x(x − 1) > 4x, the Q3 students scored higher than the Q4 students (mean scores 0.70
versus 0.57). In the discussion, we discuss these findings about the inequalities.

Table 3 Linear model of predictors of type B scores, with 95% bias corrected and accelerated confidence
intervals

Dependent variable b SE B Partial correlations β p

TB scores Constant − 1.40 [− 3.00, .08] .72 .054
TA score .68 [.48, .90] .09 .57 .53 .000***

Math rating .49 [.24, .75] .11 .38 .31 .000***

StartTB scores Constant 1.52 [− .53, 4.08] 1.12 .180
TA score .79 [.49, 1.14] .15 .46 .46 .000***

Math rating .32 [− .10, .66] .18 .17 .15 .071
EffStratTB scores Constant − 1.40 [− 2.65, .07] .68 .041*

TA score .57 [.37, .80] .09 .53 .51 .000***

Math rating .36 [.13, .57] .11 .31 .26 .001**

* p < .05, ** p < .01, *** p < .001

Table 4 Strategy use (in percentages) of group Q3 and group Q4 on a selection of type A tasks

Strategy Task 9 Task 11 Task 15 Task 16 Task 19

Q3 Q4 Q3 Q4 Q3 Q4 Q3 Q4 Q3 Q4

Blank 36 12 25 8 71 35 68 35 57 15
Calculation 14 19 18 4 7 8 11 4 0 0
Recognition reasoning 50 69 57 89 18 58 21 61 43 85
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To qualitatively back up the quantitative findings, the thinking-aloud protocols were
analyzed according to the codebook of Table 1. Results of these analyses are presented in
Table 6. In the columns “symbol sense on graphing tasks” and “symbol sense in algebra
tasks,” the strategies that were predominantly used by a student are reported, that is,
strategies used in more than 30% of the tasks. In Table 6, we used the following codes:
R1, recognition of function families; R2, recognition of key graph features; Q, qualitative
reasoning; S1, considering a strategy and monitoring; S2, abandoning a representation
(e.g., making a graph); and C, calculation.

The results in Table 6 seem to confirm the findings of the quantitative analyses of
Tables 2 and 3, showing a relation between the scores on the graphing and algebra
tasks. Table 6 shows that students often used recognition and qualitative reasoning
when working on both kinds of tasks. As expected, the S2 strategy (abandoning a
representation) was used more often in the algebra tasks than in the graphing tasks.
Apart from the S2 strategy, there was some relation between the strategies used in
both types of tasks; only students A and M showed a larger difference in strategy use
between both kinds of tasks, as they often started with calculations working on the
algebra tasks. In Appendix 2, for each student, illustrative transcripts with encodings
plus samples of their written work are given. It shows that, in both tasks, the students
often needed combinations of recognition, reasoning, and strategic work to solve the
tasks. However, using more strategies was not always an indication of proficiency.
For instance, the high achieving student K was short in their reasoning, using function
families and qualitative reasoning.

Table 5 Strategy use (in percentages) of group Q3 and group Q4 on a selection of type B tasks

Strategy Task 2 Task 3 Task 4 Task 5 Task 8 Task 14 Task 18

Q3 Q4 Q3 Q4 Q3 Q4 Q3 Q4 Q3 Q4 Q3 Q4 Q3 Q4

Blank 25 12 39 31 14 12 7 0 14 8 46 23 79 31
Calculation 36 27 18 19 36 15 14 50 4 0 39 27 4 4
Making graph 25 46 25 46 0 0 11 12 0 0 4 27 0 0
Recognition reasoning 14 15 18 4 50 73 68 39 82 92 11 23 18 65

Table 6 Scores and strategy use of the six thinking-aloud students

Student Total score on
graphing tasks (max 8)

Symbol sense on
graphing tasks (type A)

Total score on algebra
tasks (max 12)

Symbol sense on
algebra tasks (type B)

T 7.5 R1, R2, Q 7.7 R1, R2, Q, S1, S2
A 6.2 R1, R2, Q 7.0 R1, Q, C
Y 4.7 R1, R2, Q 3.5 R1, Q, S2
I 3.0 R2, Q, C 4.5 Q, C
K 5.0 R1, Q 8.0 R1, Q, S2
M 3.7 R1, R2, Q 4.5 Q, C
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5 Discussion and conclusion

In this study, we investigated how students’ graphing by hand abilities might be related to
symbol sense abilities to solve non-routine algebra tasks. We designed a symbol sense test
with graphing problems (type A tasks) and other algebra tasks that could be solved with graphs
and reasoning, without algebraic calculation (type B tasks).

With respect to the first sub-question about the relation between the graphing formulas
abilities and the abilities to solve the algebra problems with symbol sense, we found that the
students who scored better on the graphing tasks also scored higher on the algebra tasks.
General mathematics abilities might explain this relation. However, when Math rating was
added as an independent variable, the explained variance of the scores on the algebra tasks
hardly increased. This suggested a positive relationship between students’ graphing abilities
and their abilities to solve algebra tasks. A similar positive relationship was found between the
scores on the graphing tasks and the symbol sense scores on the algebra tasks (StratTB and
EffStratTB scores), indicating that students who scored higher on the graphing tasks used more
and more effectively symbol sense strategies while solving the algebra tasks. This relation was
confirmed by the analyses between the Q3 and Q4 groups in Tables 4 and 5, which showed
that the Q4 students used more symbol sense strategies than the Q3 students.

The second sub-question was about similarities and differences between symbol sense use
in the graphing and algebra tasks. In the analyses of the thinking-aloud protocols, we found
that the six students often used similar symbol sense strategies in both the graphing and algebra
tasks. Students’ approaches to solve the graphing tasks could be described through combina-
tions of recognition of function families and using prototypical graphs and characteristics,
recognition of key features of the function, and qualitative reasoning. To these combinations,
the strategy “abandoning a representation” (making a graph) was added, when working on the
algebra tasks. The high-scoring students more often used “making a graph” and had a larger
repertoire of symbol sense strategies than the other students, who more often tried to use
calculations, and had trouble to use combinations of strategies. The findings suggest that,
besides “make a graph,” students often used similar strategies in the graphing and algebra
tasks.

The study aimed to contribute to the knowledge of symbol sense and to the students’
symbol sense abilities in graphing formulas and in non-routine algebra tasks. With respect to
the main research question on how students’ graphing by hand abilities might be related to
their symbol sense use while solving non-routine algebra tasks, our findings suggest that
students could use their symbol sense involved in graphing formulas, that is, a combination of
recognition of function families and graph features from the structure of the function,
qualitative reasoning, and strategic work, to solve algebra tasks.

5.1 Limitations

Before discussing these results in more detail, we acknowledge that the study, of course, also
came with limitations. The algebra tasks in our test were restricted to problems, predominantly
using the variables x and y, that could be solved with graphs and reasoning, without algebraic
calculation. Another issue is the combination of graphing and algebra tasks in one test which
might have given suggestions to use graphs in the type B tasks. In a future study, these issues
could be addressed by omitting explicit graphing tasks, by also using other variables than x and
y, and by adding some tasks that need some algebraic calculation. In this article, the focus was
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on the relation between graphing abilities and the symbol sense abilities to solve algebra tasks.
A next step would be to set up a quasi-experimental study, in which a group of students were
taught to graph formulas by hand, using a control group and a pre-test and post-test.

In discussing the findings, we note that the results of this study seem to confirm earlier
research about the problems Dutch students have with algebra: students have problems
graphing formulas by hand (Kop et al., 2020) and with identifying and using the structure
of algebraic expressions (Van Stiphout, Drijvers, & Gravemeijer, 2013). Regular teaching of
algebra does not seem to develop these aspects of symbol sense. Although only Dutch students
were involved in this study, literature about symbol sense (Arcavi et al., 2017; Drijvers et al.,
2011; Kieran, 2006; Arcavi, 1994; Ayalon, Watson, & Lerman, 2015; Hoch & Dreyfus, 2005,
2010; Oehrtman et al., 2008) and personal conversations with teachers and scholars from other
countries suggest that grade 12 students abroad have similar problems with symbol sense.

A remarkable finding, described in the “Results” section, was that in task 5, the inequality,
the Q3 students scored higher and did use more symbol sense strategies than the Q4 students,
who more often tried calculations to solve this task. We wonder why the Q4 students did not
use their graphing skills in this task, as we expect that they could easily graph both formulas.
Although we know from literature that students may over rely on the symbolic representation
even when graphs are more appropriate (Knuth, 2000; Eisenberg & Dreyfus, 1994; Kenney,
2008; Slavit, 1997), we assume that the inequality triggered previously learned associations
that hinder later learned symbol sense, as was suggested by student Y (see Appendix 2).

5.2 Implications

The findings of the current study suggest a positive relationship between the ability to graph
formulas by hand and to solve non-routine algebra tasks and showed similarities in the symbol
sense used in both kinds of tasks. The contribution of this study is that it describes this symbol
sense through combinations of recognition of function families and key graph features from
the structure of the formulas, qualitative reasoning, and strategic work and that it suggests how
this symbol sense might be taught to students.

Graphing formulas and covariational reasoning, in the context of formulas, are related as
both have a focus on global (qualitative) graphs. In this study, it is explicitly shown how and
what qualitative reasoning was used by students. The importance of qualitative reasoning and
its omission in regular mathematics education have been stressed by Goldenberg, Lewis, and
O’Keefe (1992), Yerushalmy (1997), and Duval (2006). In their elaborations about
covariational reasoning, Moore and Thompson (2015) have problematized what they called
static shape thinking that is seeing a graph-as-a-wire. However, our findings show that the
students successfully used prototypical graphs of function families as building blocks in their
reasoning, when working on the graphing tasks and using the strategy “making a graph” in the
algebra tasks. The need for such repertoire of functions that can be instantly visualized by a
graph has been stressed by many, for example, by Eisenberg and Dreyfus (1994), Stylianou
and Silver (2004), and Duval (2006). In combination with qualitative reasoning, such reper-
toire might provide a knowledge base that is needed to enable students using visualizations to
solve algebra problems (“making a graph” strategy). Visualization is more than just making or
perceiving graphs, it is about noticing and understanding the whole that is represented with its
features, for which a solid knowledge base is needed (Duval, 2006).

Teaching symbol sense is not easy (Arcavi et al., 2017; Hoch & Dreyfus, 2005). Before we
describe our suggestions about teaching symbol sense, we discuss extant approaches. Pierce
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and Stacey (2007) suggested highlighting the formula’s structure and key features in classroom
discussions when working with graphs. Friedlander and Arcavi (2012) focused on meaningful
reading of algebraic formulas and formulated small tasks that focused on, e.g., qualitative
thinking and global comprehension. Kindt (2011) gave many examples of productive practice
in algebra. These activities are valuable and can be easily added to existing lessons, but often
manipulations of formulas play a central role in these activities, and they lack a systematic and
a step-by-step development. Our approach to teaching symbol sense focuses on enabling
students to make sense of formulas and to read through formulas. In literature, it has been
suggested that giving meaning to formulas can be done via linking representations of functions
and/or via realistic contexts (Kieran, 2006). However, except for linear and exponential
functions, formulas often cannot be directly linked to realistic contexts. Therefore, we choose
to link formulas to graphs through graphing formulas. To learn about functions, many have
recommended to use technology to link representations (Kieran, 2006; Kieran & Drijvers,
2006; Heid, Thomas, & Zbiek, 2013). However, Goldenberg (1988) found that students
established the connection between formula and graph more effectively when they drew
graphs by hand than when they only performed computer graphing. Others have recognized
the need for pen-and-paper activities when working with technology (Arcavi et al., 2017;
Kieran & Drijvers, 2006). Therefore, we tried to promote students’ symbol sense through
graphing formulas by hand.

In this study, we found strong correlations between students’ graphing by hand
abilities and their abilities to solve algebra tasks and their use of symbol sense while
solving non-routine algebra tasks. These correlations could not be accounted for by
students’ general mathematics abilities. Symbol sense involved in graphing formulas
includes combinations of recognition of function families and key features from the
structure of formulas and (qualitative) reasoning, and it is a subset of symbol sense
involved in solving non-routine algebra tasks. In the current study, 16 of the 21
students who were involved in the teaching of graphing formulas by hand belonged to
the 25% highest scoring students on the graphing tasks (Q4 group), who used more
symbol sense when solving algebra tasks than the other students. The six thinking-
aloud students, all involved in the teaching and belonging to the Q4 group, showed
that they were able to use their symbol sense and graphing formulas abilities to solve
the non-routine algebra tasks, that is, combinations of recognition, qualitative reason-
ing, and strategic work. This suggests that teaching symbol sense in the domain of
graphing formulas by hand might be an effective means to teach essential aspects of
symbol sense involved in solving non-routine algebra tasks. In a previous study, we
showed how to teach graphing formulas by hand, using these essential aspects of
symbol sense (Kop et al., 2020).

The current study provides more insight in the relation between symbol sense
involved in graphing formulas by hand and in solving non-routine algebra tasks, in
what aspects of symbol sense students can use while solving non-routine algebra
tasks, and how this symbol sense might be taught. However, more research is needed
to investigate how educational practices might benefit from these insights. Also, lower
grades of secondary school could be included in such research, investigating
Ruthven’s suggestion to start algebra with graphing activities, instead of algebraic
calculations (Ruthven, 1990), and our suggestion to learn about functions through a
combination of graphing tools to explore functions and graphing by hand activities to
foster students’ symbol sense.
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Appendix 1: Symbol sense test

Tasks 9, 10, 11, 15, 16, 17, 19, and 20 are the graphing tasks (type A tasks).

1)  Give the number of zeroes of the function ( ) = ( + 2) − 12

A. no zeroes   B. one zero   C. two zeroes    D. three zeroes    E. more than three zeroes

2) Give the number of solutions of the equation: 5 ln( ) = − 10

3) Give the number of solutions of the equation: 2 = 2 + 3

4) Can the y-value of = − 0.1( − 3)( − 10) + 40/( − 3) become larger than 70?

5) Solve the inequality: ( − 1) > 4

6) Solve the inequality: < 0

7) What outcome(s) can y have when = 24 − 0,01( + 5) ?

8) When x is very large, the function ( ) = (3e + ) + can be approximated by: 

Choose the best alternative out of:  A. = ;  B. = ;  C. = 70 ;  D. = 27e ;  

E. none of these

9) Here is a graph of  ( ) = −
for p=1.  

Make a sketch of the graph of for a 

value p >1.

Explain your answer.

10) Here is a graph of ( ) = for 

p =1. 

Make a sketch of the graph of for a 

value p >1.

Explain your answer.

11) Here is a graph of  ( ) = ( − ) + 2

for p =1. 

Make a sketch of the graph of for a value p 

>1.

Explain your answer.
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12) Consider for each value of p the equation 2 = + 1.

How many solutions can this equation have? 

13) The number of different species of animals A in a domain can be modeled with the 

function =
∙ .

; t=0 is the year 2000. What does this formula tell about the number of 

different species in the domain?

14) Choose the correct alternative: A maximum of the function = (14 − 2 )(8 − 2 ) is 

situated in A. [–4;0]; B: [0;4]; C: [4;7]; D: [7;14]    

15) Find a formula that fits the 

graph.

16) Make a sketch of the graph of = 4 √ + 5

17) Make a sketch of the graph of = 3 + 5

18) The formula = 0,13(1,92 − 1,92 ) gives information about the concentration of 

medicine in mg/cm
3
; t is the time in hours. What does this formula tell about the concentration 

C?

19) This is a part of the graph of  ( ) = ( − 1)( − ).

Do you miss some characteristic features of this 

function? 

If yes, graph the whole graph.

20) This is a part of the graph of ( ) =
Do you miss some characteristic features of this 

function? 

If yes, graph the whole graph.

Kop P.M.G.M. et al.152



Appendix 2: Transcript of thinking-aloud protocols with encodings plus
samples from student work

To portray the students’ symbol sense (or lack of symbol sense), we selected for each student

representative fragments of their thinking-aloud protocols about a certain task, combined with

samples of their written work of that task. 

Student T is a high-achieving student who used a broad repertoire of symbol sense strategies,

including scanning and monitoring (S1); see example of task 14 in “Data analysis” section), and

hardly used calculations.

Student T working on task 1:

Hmmm, + 2 is just a normal parabola, with a 

minimum, 2 above (R1); multiplied by x; if we would take 

irrational numbers (complex numbers?), then we have 3 ; 

but when you multiply it (the parabola) with x, then right 

positive and left negative; then you would have only 1 

zero (Q); it goes like this (gestured a prototypical x3
graph 

(S2)), and that − 12; I think there is only 1 zero (correct 

graph; score 1; encoding: R1,Q,S2) 

Student T working on task 3:

2 goes like this (S2, R1); 2 goes like 

this, and 3 higher (R1); so, 1 solution 

(score 1; encoding R1, S2)

Student T working on task 9:

So, x− 1.5; we have a zero, a zero at x=1.5 (R2); and zeroes at x2
give zero at x=1; and

..; probably, this zero is at 1 and –1 (R2); then it goes further and is there a zero at 1.5,

I guess; let’s check what is happening at large x-values? y becomes positive (Q); so, 

(zero at) x=1.5 has to be added (sketches a correct graph; score 1; encoding R2,Q)

Student T working on task 12:

has this shape (sketches graph) (S2,R1); equals 

+ 1, which goes like this, or like this, or 

…(R1,Q); it can have 3 solutions, because it goes 

through (0,1); I think it can have up to 3 solutions

(score 0.7; encoding R1,Q,S2)
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Student T working on task 15:

A degree 3 and 2, and at x=0, it has to 

be 0; we have a x3
(R1), but it has to be 

translated to the left (Q); this is the 

midpoint of x3
, and then it has to be 

negative: –x3 (R2); then add a linear   

function, so that at x=0 it is 0 (checks at 

x=2 and considers a translation +8, but 

then focuses on the zeroes and 

calculates the zeroes, and translates the 

graph 1 to the left) (C) (score 1; 

encoding R1,R2,Q,C)

Student T working on task 18:

When t is increasing then this (1,92 ) is becoming small (R2), and the other 

(1,92 ) even becomes faster small (R2, Q), because it is a negative number (in the 

power),…, does not matter, it just becomes very small and is decreasing (Q) (they 

does not pay attention to increasing part at the start; score 0.5; encoding: R2,Q)

Student A often started with calculation in the algebra tasks, but monitored their progress, and 

then used recognition and reasoning (see also example of task 4 in data analysis section)

Student A working on task 2:

How can I find zeroes? (S1)I try to solve it. I think because it is not quadratic 

…; 5 ln( ) − + 10 (S2)…; first calculate the derivative: − (C) and searching for

turning point; equals 0, so, x=10; there is a turning point at x=10 and when we 

substitute 10 then we get left 5…; we get two zeroes (writes x=10 1 turning 

point, so two zeroes; score 0.7; encoding: S1,S2,C)
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Student A working on task 5:

I think I first divide by x (C) 

because then it becomes 

much easier; so, − 1 > 4; 

then it is very easy; so, > 5

(score 0.3; encoding C)

Student A working on task 15:

I see two turning points and three zeroes; zero at x=0, and let’s say, at x=−2 and 

x=−4; so, something like ( + 2)( + 4) (R2); yes, then the turning points should be 

there; then taking care that when x is positive the formula-outcomes become negative; 

then we need −x (R2); checks at x=−5 that y-value is positive) (S1) (correct formula 

= − ( + 2)( + 4); score 1; encoding R2,Q,S1)

Student Y is a hard-working student who thinks mathematics is difficult. They used often the  

strategy “make a graph” when solving algebra tasks (see example of task 3 in “Data analysis”

section. Their work on inequalities suggested that previous learned procedures can give gave 

trouble (see task 5).

Student Y working on task 5:

I have to think about inequality-sign; when dividing or multiplying by – or + it turns; 

but I don’t remember this (S1); I think when dividing; but I’m not sure; I divide by x, 

so, − 1 < 4, that means it is true for x=5; to check: substitute 5 gives 20 (S1); > then 

larger or equal is not correct; when substituting, I get 20, but I do not know how to 

proceed (S1); I think the inequality sign reverses, but I’m not sure. (writes 20>20, not 

possible?; score 0; encoding: S1)

Student Y working on task 8:

When is very large then 70/ fades because it becomes very small, approaches 0 

(Q); therefore alternative C is not correct; when x is very large then it becomes =

; e becomes almost 0, so, when substituting something very large in it 

approaches to 0 (Q); then only ( ) is left; I doubt 5 or 6, but it is multiplying, so 

answer A (score 1; encoding: Q)
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Student Y working on task 11:

(x−1) therefore a translation 1 to the right (R2); 

turning point is (1,2); when p is changing then it 

translates further; so, when we take p=2, then 

turning point is about here (R2) (sketches a correct 

parabola and give the coordinates of the turning 

point: (2,4); score 1; encoding: R2) 

Student I thinks mathematics is very hard, but after the lessons about graphing formulas,

student I developed more confidence in their mathematical thinking. 

Student I working on task 2: 

So, this is a long time ago. How do I do 

this?(S1) I transform this equation: log ( ) =

− 10 (C)… Can I solve this equation? (S1) I 

can transform it into = e (C) but do I 

make any progress? … 5x can only be positive 

or negative (R1). No, I do not know (score 0; 

encoding: R1,C,S1)

Student I working on task 7:

y cannot be larger than 24 because it is ‘to the power 4’ function (R1); then it is always 

positive, that is 0.01( + 5) is always positive (Q), so y cannot be larger than 24; so, 

≤ 24 (score 1; encoding R1,Q)

Student I working on task 14:

What happens when I make x very large: 14 − 2 negative, 8 − 2 negative, so, 

positive times negative is negative (Q); that you don’t want; when x very negative, 

14 − 2 very positive, times very positive, then ….;no; I expand brackets (of 

(8 − 2 )) (C), dividing by x; dividing by 4; (solves the equation 

finds x=4 and x=7)(C); so, turning point between 4 and 7

(14 − 2 )

(score 0; encoding Q, C) 

− 11 + 28 = 0,
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Student I working on task 16:

4 goes like this (R1); √ like this (R1); x+5 means that it 

starts at = − 5 (sketches √ + 5 ) (R1); here it is 0 (points at 

x=0); here negative; I multiply these graphs; here it is positive 

(Q); I’m not sure

(score 1; encoding R1, Q)

Student I working on task 19:

( − 1)( − 1.5) gives − 1.5 − + 1.5 (C); … turning point in view; no, 

when x is larger then x3
larger but − x2

larger, finally it will be negative (Q); so, all 

features in view: zeroes and y-values become negative when x is larger (score 0) 

(score 0; encoding: C)

Student K is a high-achieving student who often used their repertoire of function families

and qualitative reasoning and hardly used any calculations.

Student K working on task 2:

ln( ), so, e in the power something (gestures a correct graph) (R1,S2); − 10 runs 

like this (gesture) (R1); so, 2 solutions (two correct graphs, score 1; encoding R1,S2)

Student K working on task 10:

When p larger then….it is ∙ (S2), so it is multiplied by larger factor (Q), 

multiplying relative to x-axis (R1) (sketches a correct graph; score 1; encoding 

R1,Q,S2)

Student M did not use their abilities to graph formulas to solve the algebra tasks; instead, they

often started with calculations.

Student M working on 3:

A “x” in the power; the +3 makes 2 has to be larger than the 2 ; …; it makes a 

difference whether x is positive or negative; look to the rules, with logarithm one gets 
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…; if you use both 2 and 2 ;….;dividing them; you get 2 = 3(C), so one solution 

(not correct; score 0; encoding: C)

Student M working on task 8:

this (70/ ) becomes very small so it faints (Q); so, only consider the first part; 

very large; − very negative, so, 1/e becomes very small because e very large 

(Q) so, it will be in the power 3; it will be in the power 6  (score 1; encoding: Q).

Student M working on task 17:

(writes 5/ + 3 ) (S2); division, so x cannot be 0 

(R2); …3 ever increasing (R1); the other (5/ ) 

decreases to an asymptote (R2) and has only positive 

outcomes (Q)(sketches both sub-graphs); here, it is 

about 0+0 (Q) and then it becomes very large towards 

the y-axis; on the other side of y-axis, the closer to 

x=0 the larger y (Q)(sketches a correct graph; score 1; 

encoding R1,R2,Q,S2)

Appendix 3: Description of intervention

The intervention of five lessons of 90 min focused on learning to graph formulas, using
recognition and reasoning. The teaching was based on design principles for learning complex
skills (Kirschner & Van Merriënboer, 2008), which were using a whole-task-first approach
instead of a part-task approach, supporting students by providing help through modeling
expert thinking, examples, sub-questions, and reflection questions, and the meta-heuristic
“questioning the formula”. This “Questioning the formula” reflects the levels of recognition
used in expertise research in graphing formulas (Kop et al., 2015) and is about the habit of
asking oneself questions like: “Do I instantly know the graph?”, “Do I recognize a function
family?”, “Can I decompose the formula?”, “Do I recognize graph features?”, and “Can I do
some strategic search for, for instance, infinity behavior?”. Its importance has been stressed by,
e.g., Pierce and Stacey (2007) and Landa (1983). Each day, there was a short plenary
discussion (max 10 min) with some general feedback and reflection on the students’ work
and modeling of expert thinking processes. After the plenary, the students worked in pairs or
groups of three, studied their personal feedback, and discussed strategies and solutions for the
whole tasks. At the end of a lesson, all pairs and groups handed in their work for personal
feedback. The tasks used in the teaching, formulated as whole tasks, reflected the “questioning
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the formula”: task 1 and 2 concerned recognition of basic functions and aimed to develop a
knowledge base of function families with their characteristic features and to deal with simple
transformations; task 3 concerned the decomposition of formulas and the composition of
subgraphs using qualitative reasoning; task 4 concerned the instant recognition of key graph
features; and task 5 was about strategic exploration of parts of a graph, using qualitative
reasoning. We now give more detailed information about the tasks.

Task 1 required students to match formulas of basic function y ¼ ffiffiffi

x
p

; y ¼ x3, y = 0, 5x,
y = ln(x), and y = ∣ x∣ to their graphs. Task 2 was based on Swan (2005): Describe the
differences and similarities between the graphs of the pairs of functions like y ¼ 2

ffiffiffi

x
p

−4 and

y ¼ 2
ffiffiffiffiffiffiffiffi

x−4
p

and y = − 3x and y = 3−x. In task 3, the function y ¼ ffiffiffi

x
p

3x−6ð Þ had to be graphed
by multiplying the graphs of the sub-functions y ¼ ffiffiffiffi

x
p

and y = 3x − 6. Task 4 was inspired by
Burkhardt and Swan (2013) and Swan (2005) and concerned the recognition of graph features:
What features of the given graph can be instantly read from the given two equivalent formulas
y = (x − 4)2 − 1 and y = (x − 5)(x − 3)?

Task 5 concerned part-graph reasoning, using qualitative reasoning. For instance, what happens
to the y values of the functions y= 52.7/(1 + 62, 9 · 0, 692x), y= 0, 6x · x60 when x→+∞? Choose
y→+∞; y→ a ≠ 0; y→0; y→−∞

For each task, help was provided, and a reflection question was added. For instance, in task
2 (about recognizing transformations of basic functions), students could choose to use
GeoGebra and/or to study worked-out examples for help. After each whole task, a reflection
question was posed, in which students were asked to construct three new examples to
demonstrate the principles of the whole task.
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