,') Available online at www.sciencedirect.com

etk o ScienceDirect indagationes
mathematicae

ELSEVIER Indagationes Mathematicae 32 (2021) 961-967 —_——
www.elsevier.com/locate/indag

Special issue to the memory of T.A. Springer
Reductivity properties over an affine base
Wilberd van der Kallen

Mathematisch Instituut, Universiteit Utrecht, P.O. Box 80010, 3508 TA Utrecht, The Netherlands

Dedicated to the memory of T.A. Springer

Abstract

When the base ring is not a field, power reductivity of a group scheme is a basic notion, intimately
tied with finite generation of subrings of invariants. Geometric reductivity is weaker and less pertinent
in this context. We give a survey of these properties and their connections.
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This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Power reductivity as a basic notion

1.1. Invariants

Throughout let k be a commutative ring and let G be a flat affine group scheme over k.
We simply refer to G as a group. Flatness of G is always needed, because one wants taking
invariants to be left exact [8, 1.2.10(4)]. The present paper is an addendum to our joint paper
with Franjou [5]. In that paper we had a specific situation in mind, but now we care about
the proper generality. For instance, we no longer assume that G is algebraic, i.e. that K[G]
is a finitely generated k-algebra. We view the ground ring k also as a G-module with trivial
action. If M is a G-module [8, 1.2.7, 1.2.8] then its submodule of invariants M is isomorphic
to Homg (k, M).

1.2. Conventions

Rings and algebras are unitary. A ring A is called a k-algebra if one is given a ring map
k — A. Commutative algebras need not be finitely generated. They may have nilpotent
elements and other zero-divisors. We say that G acts on the k-algebra A (through algebra
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automorphisms) if the multiplication map A ®x A — A is a map of G-modules. If A is a
commutative ring and N is an A-module, then S%(N) denotes the symmetric algebra over A
on the module N. Thus SZ(N ) is the dth symmetric power of N over A. If A = k then we
drop the subscript from the notation. We write Homy (M, k) as MY. If M is a G-module which
is finitely generated and projective as a k-module, then M" is also a G-module. Any map
induced by evaluation at an element v is denoted eval@v.

Definition 1. The group G is power reductive over Kk if the following property holds.

Property (Power Reductivity). Let ¢ : M — K be a surjective map of G-modules. Then there is
a positive integer d such that the dth symmetric power of ¢ is a split surjection of G-modules

Sip:siM 5 sik.
In other words, one requires that the kernel of S°¢ has a G-stable complement in S*M.

Note that S*k is better known as the polynomial ring k[x]. And the G-module S%k is
isomorphic to K, so a splitting of S¢¢ gives an invariant in S M.

1.3. Mumford

Mumford conjectured in the introduction to the first edition of his GIT book [9] that a
semisimple algebraic group defined over a field of positive characteristic p is power reductive.
We have adapted his phrasing and introduced the terminology power reductive in [5] (with
Vincent Franjou) in order to have a clear concept that also makes sense and is worth having
over arbitrary commutative base rings. Mumford further required d to be a power of p, but it
turns out that this makes no difference (Lemma 15).

1.4. Haboush

When Haboush proved the Mumford conjecture [7] he also used the dual concept known
nowadays as geometric reductivity.

Definition 2 (Geometric Reductivity Over a Field). Let k be field. The group G is called
geometrically reductive if the following holds. Given an injective map ¢ : k < M of finite
dimensional G-modules, there is a positive integer d such that some invariant homogeneous
polynomial f of degree d on M restricts to a nonzero function on k. In other words, such that
the restriction map S%(MV)¢ — §(k") is nonzero.

1.5. Geometric reductivity over arbitrary base ring

When k is not a field the definition of geometric reductivity gets more technical. Following
Seshadri [14] we then say that G is geometrically reductive if the following holds. Let us be
given a G-module M that is finitely generated and free as a k-module. Let F be a field and also
a k-algebra. We let G act trivially on F. Let v € (F ® M)® be a nonzero invariant vector. (A
geometer may consider a nonzero invariant vector at a geometric point Spec(F) of Spec(k).)
Then geometric reductivity stipulates that there is a positive integer d such that some invariant
homogeneous polynomial f of degree d on M does not vanish at v. In other words, such that
the evaluation map eval@v : S4(MY)Y — F is nonzero.
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1.6. Contrast

Notice that power reductivity is much cleaner. It does not require any discussion of M as
a k-module. While geometric reductivity needs free k-modules, power reductivity allows all
comodules [8, 1.2.8] that support a ¢ as in the definition. This important difference makes
power reductivity more powerful and easier to work with. Working only with free modules (or
only with flat k-modules) gives an obstructed view of representation theory. We do not know
of any example where geometric reductivity is easier to prove than power reductivity, so one
may as well prove the latter. It is stronger (Lemma 12).

1.7. Locally finite

Recall that if the coordinate algebra k[G] is a projective k-module, then any G-module
M 1is a union of submodules that are finitely generated over k [14, Proposition 3]. Also, the
intersection of G-submodules is then a G-submodule, even if one intersects infinitely many
submodules.

Similarly, suppose k is noetherian. Again any G-module M is a union of submodules
that are finitely generated over k [13, Proposition 2]. In the definition of power reductivity
it would now suffice to consider M that are finitely generated over k. On the other hand, an
infinite intersection of G-submodules need not be a G-submodule [3, Exposé VI, Edition 201 1,
Remarque 11.10.1], despite the claim in [8, 1.2.13] that we know this.

We do not know if local finiteness holds in general.

1.8.  Our present definition of power reductivity is consistent with the one in [5]. Indeed if
k = L in the following Lemma then the splitting of S%¢ : SYM — S?L is of course equivalent
to the surjectivity of (S¢M)¢ — S?L.

Lemma 3. Let L be a cyclic k-module with trivial G-action. Let M be a G-module, and let
@ be a G-module map from M onto L. If G is power reductive, then there is a positive integer
d such that the dth symmetric power of ¢ induces a surjection:

(S‘M)° — SL.

Proof. Choose a surjective map ¢ : kK — L. Let P — Kk be the pullback of ¢ along i and
choose a positive integer d such that S¢P — Sk splits. [

Definition 4. A morphism of k-algebras ¢ : S — R is power surjective if for every element
r of R there is a positive integer n such that the power r" lies in the image of ¢.

Definition 5. Let p be a prime number. A morphism of k-algebras ¢ : S — R is p-power
surjective if for every element r in R there is a non-negative integer n such that the power "
lies in the image of ¢.

Lemma 6 (/5, Prop 41]). A morphism of commutative I ,-algebras ¢ : S — R is p-power
surjective if and only if the induced map S[x] — R[x] between polynomial rings is power
surjective. [
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1.9.  As is common for a basic notion, there are several equivalent formulations of power
reductivity.

Proposition 7. Let G be a flat affine group scheme over K. The following are equivalent

(i) G is power reductive,
(ii) For every power surjective G-homomorphism of commutative k-algebras f : A — B
the map A° — BC is power surjective,
(iii) For every surjective G-homomorphism of commutative K-algebras f : A — B the ring
BC is integral over the image of AC.

Proof. The assumption that G is algebraic is not used in the proofs of [5, Proposition 10],
[18, Proposition 4]. [

1.10. The main consequence of power reductivity is finite generation of subrings of invariants.

Theorem 8 (Hilbert’s Fourteenth Problem [5], cf. [1]). Let k be a noetherian ring and let G
be a flat affine group scheme over K. Let A be a finitely generated commutative K-algebra on
which G acts through algebra automorphisms. If G is power reductive, then the subring of
invariants AC is a finitely generated k-algebra.

The proof follows Nagata [11] or rather the exposition of Springer [15, Theorem 2.4.9,
Exercise 2.4.12]. See also Remark 9, Lemma 11 below. The proof does not need to touch
upon the nontrivial topic of equivariant resolution by vector bundles [17]. It does not require
further knowledge of G or k. This is where power reductivity is more pertinent than geometric
reductivity.

Remark 9. In the proof of finite generation of A® by Nagata [11] the base ring k was a
field. Nagata used at one point that a domain which is finitely generated over k has finite
normalization. But that need no longer hold over our arbitrary commutative noetherian base
ring k. With the more elementary [15, Exercise 2.4.12] Springer avoided this step in the proof.
His base ring was still a field but his audience did not know about normalizations. It is a happy
accident that the modified proof goes through verbatim in our setting.

1.11. Necessary

The theorem has a converse showing that power reductivity is necessary if one seeks finite
generation of invariants in the present setting, where algebras need not be domains. (In ancient
Invariant Theory one considered invariants in a polynomial ring over C with a G-action that
preserves the grading.)

Proposition 10. Let k be a noetherian ring and let G be a flat affine group scheme over K.
Assume that the K-algebra A€ is finitely generated for every finitely generated commutative
k-algebra A on which G acts through algebra automorphisms. Then G is power reductive.

Proof. Let f : A — B be a surjective G-homomorphism of commutative k-algebras, as
in Proposition 7(iii). Let b € B®. We have to show b is integral over the image of A®. As
representations are locally finite, we may replace A with a finitely generated k-subalgebra C
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whose image D contains b. The symmetric algebra Si(D) is a finitely generated k-algebra
(a quotient of the polynomial ring C[x]), so S&(D) is finitely generated. We choose as our
generators of S%(D)¢ the homogeneous components of the elements of a finite generating set.
The chosen generators in degree zero generate CY and those in degree one generate DY as a
C%-module. O

1.12. Graded

As a solution to [15, Exercise 2.4.12] we offer the following Lemma. It shows that in
Theorem 8 one may assume that A is graded and generated over k by its degree one part.

Lemma 11. Let A be a commutative K-algebra on which G acts through algebra auto-
morphisms. Let V be a G-submodule of A that is finitely generated as a k-module and that
generates A as a K-algebra. Assume 1 € V. Let R be the graded K-subalgebra generated by
xV in the polynomial ring A[x). Substituting x — 1 defines a surjection R® — AC.

Proof. The component R; of homogeneous degree d maps injectively into A, so RdG hits all
invariants in the image of R;. The union of the images of the R; is A. [

Lemma 12. Power reductivity implies geometric reductivity.

Proof. If k is a field this is clear, when using Definition 2. In the situation of 1.5, factor
k — F ask - D — F, where D is the image of k in F. Observe that D — F is flat, so that
SLUF@xMY)’ = (DR SY(MV))° ®p F (exercise, cf. [8, 1.2.10(3)]). Recall that we denote by
eval@v any map defined by evaluation at v. Now eval@v : Si(F ®x MY)¢ — SiF is power
surjective. First take a positive integer d such that eval@v : S4(F ® MV)¢ — SLF ~ F is
nonzero. Then eval@v : (D®ySY(M"))® — F must also be nonzero. Say f € (D®S*(M"))¢
satisfies f(v) # 0. Now S*(MY) — (D®S*(M")) is surjective. So by part (ii) of Proposition 7
some power of f lifts to S¢(M¥)°. O

Lemma 13. If Kk is a discrete valuation ring, then geometric reductivity implies power
reductivity.

Proof. Let F be the residue field of k. Given ¢ : M — k as in Definition 1 choose m € M
with ¢(m) = 1. Use [13, Proposition 2, Proposition 3] to find a G-module map  : N - M
with m € ¢(N) and N finitely generated and free as a k-module. Take for v € (N ® F)¢
the composite N — M — k — F. We find a positive integer d and f € S¢(N)° with f(v)
nonzero. That means that £ maps to a unit times the standard generator of S’k (Exercise). So
SIN — S splits. [

Remark 14. More generally, if one has equivariant resolution [17] (and local finiteness 1.7),
one may reason as in [5, 3.1] to show that geometric reductivity implies power reductivity.

Lemma 15. Let k be an IF,-algebra and G a power reductive flat affine group scheme over
k. If ¢ : M — K is a surjective map of G-modules, then there is a non-negative integer n so
that SP" ¢ is split surjective.
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Proof. In view of Lemma 6 it suffices to show that S*(M)® — S*k is p-power surjective.
Indeed S*(M)°[x] — S*k[x] is power surjective because S*(M)[x] — S*k[x] is (power)
surjective. [

1.13. Restriction

Let S be a commutative k-algebra. We get by base change a group G over S. Let M be a
Gs-module. So M is in particular an S-module. Modules should not be confused with schemes.
Nevertheless there is something similar to Weil restriction. Indeed M is also a k-module, by
restriction of scalars. Now the coaction A : M — M ®g S[G] has a target that may be
identified with M ®x K[G]. Thus, our Gs-module M may be viewed as a G-module (exercise)
and H*(Gs, M) = H*(G, M), because the Hochschild complexes [8, 1.4.14] are isomorphic.
In particular, M%s = MY and we usually write MC.

1.14. Base change
Proposition 7 implies that power reductivity has marvelous base change properties.

Proposition 16. Let k — S be a map of commutative rings.

() If G is power reductive, then so is Gg.
(i) If k — S is faithfully flat and G is power reductive, then so is G.
(iii) If Gy, is power reductive for every maximal ideal m of K, then G is power reductive.

Proof. For the first part recall 1.13 that any G g-module M may be viewed as a G-module with
MCYs = M. For the second part use that the integrality property in Proposition 7(iii) descends
([6, Proposition 2.7.1] or exercise). The last part holds for similar reasons [5, 3.1]. [

1.15. Reductive

An affine group scheme G over Kk is reductive in the sense of SGA3 [3] if G is smooth over
k with geometric fibers that are connected reductive. Smooth implies algebraic.

Theorem 17 (cf. [5, Theorem 12]). Reductive group schemes (in the sense of SGA3) are power
reductive.

One exploits Proposition 16 and SGA3 [3], [2, §3, §5] to reduce to the case where the group
is split and k is a local ring Z,). Then we are in the situation of [5, Theorem 12]. Or we may
apply Lemma 13 and refer to Seshadri [14, Theorem 1].

Remark 18. Actually the proof of [5, Theorem 12] is overly complicated if k = Z,). Let
k = Zp). As in the proof of Lemma 13 we may restrict attention to finitely generated free
k-modules in Definition 1. Then we need fewer arguments from section 3.4 of [5] (Exercise).

1.16. Finite

Recall that G is called a finite group scheme over k if the coordinate algebra K[G] is a
finitely generated projective k-module.
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Theorem 19. Finite group schemes are power reductive.

In view of Proposition 7 this is an easy consequence of

Theorem 20 (cf. [12]). If a finite group scheme G over a local ring k acts on a commutative
k-algebra A, then A is integral over A°.

Proof. Presumably the proofs in [4], [10, IIT 12, Thm 1] can be adapted to the present
context. Theorem 20 is a special case of a more general result in the setting of groupoid
schemes [3, Exposé V, Théoreme 4.1]. That Theorem 20 fits in the setting of groupoid
schemes is also explained at [16, Tag 03LK]. The proof of the theorem can then be found at
[16, Tag 03BJ]. O

1.17. Reductive algebraic groups

Reductive algebraic groups defined over a field k are not assumed connected. They are
of course power reductive. Indeed if G° is the identity component of a reductive G over
a field, then both G° and G/G° are power reductive. Now see Proposition 7(ii). Or recall
that Waterhouse [19] has shown that an algebraic affine group scheme G over a field is
geometrically reductive if and only if the identity component G?ed of its reduced subgroup
G eq 1s reductive.
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