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Summary
Background In countries with declining numbers of confirmed cases of COVID-19, lockdown measures are gradually 
being lifted. However, even if most physical distancing measures are continued, other public health measures will be 
needed to control the epidemic. Contact tracing via conventional methods or mobile app technology is central to 
control strategies during de-escalation of physical distancing. We aimed to identify key factors for a contact tracing 
strategy to be successful.

Methods We evaluated the impact of timeliness and completeness in various steps of a contact tracing strategy using 
a stochastic mathematical model with explicit time delays between time of infection and symptom onset, and between 
symptom onset, diagnosis by testing, and isolation (testing delay). The model also includes tracing of close contacts 
(eg, household members) and casual contacts, followed by testing regardless of symptoms and isolation if testing 
positive, with different tracing delays and coverages. We computed effective reproduction numbers of a contact 
tracing strategy (RCTS) for a population with physical distancing measures and various scenarios for isolation of index 
cases and tracing and quarantine of their contacts.

Findings For the most optimistic scenario (testing and tracing delays of 0 days and tracing coverage of 100%), and 
assuming that around 40% of transmissions occur before symptom onset, the model predicts that the estimated 
effective reproduction number of 1·2 (with physical distancing only) will be reduced to 0·8 (95% CI 0·7–0·9) by 
adding contact tracing. The model also shows that a similar reduction can be achieved when testing and tracing 
coverage is reduced to 80% (RCTS 0·8, 95% CI 0·7–1·0). A testing delay of more than 1 day requires the tracing delay 
to be at most 1 day or tracing coverage to be at least 80% to keep RCTS below 1. With a testing delay of 3 days or longer, 
even the most efficient strategy cannot reach RCTS values below 1. The effect of minimising tracing delay (eg, with app-
based technology) declines with decreasing coverage of app use, but app-based tracing alone remains more effective 
than conventional tracing alone even with 20% coverage, reducing the reproduction number by 17·6% compared 
with 2·5%. The proportion of onward transmissions per index case that can be prevented depends on testing and 
tracing delays, and given a 0-day tracing delay, ranges from up to 79·9% with a 0-day testing delay to 41·8% with a 
3-day testing delay and 4·9% with a 7-day testing delay.

Interpretation In our model, minimising testing delay had the largest impact on reducing onward transmissions. 
Optimising testing and tracing coverage and minimising tracing delays, for instance with app-based technology, 
further enhanced contact tracing effectiveness, with the potential to prevent up to 80% of all transmissions. Access to 
testing should therefore be optimised, and mobile app technology might reduce delays in the contact tracing process 
and optimise contact tracing coverage.
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Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
Many countries are preparing so-called exit strategies 
from the COVID-19 lockdown while attempting to 
successfully control transmission. Contact tracing, in 
combination with the quarantine and potential testing of 
contacts, is considered a key component in a phase when 
lockdown measures are gradually lifted.1–8 Contact tracing 
is an intervention where an index case with confirmed 
infection is asked to provide information about contact 
people who were at risk of acquiring infection from the 
index case within a given time period before the positive 
test result. These contacts are then traced and informed 

about their risk, quarantined, and tested if eligible for 
testing according to national testing guidelines. This 
requires upscaling of conventional contact tracing 
capacity. The potential of mobile device apps to support 
contact tracing is widely discussed and such technology 
has been used in several countries such as South Korea 
and Taiwan. Although these countries have successfully 
reduced case numbers, no causal relationship between 
use of app technology and epidemic control has yet been 
shown.9–14 Many uncertainties remain on the optimal 
process of contact tracing with conventional methods or 
mobile apps, on the timing of testing for current or past 
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infection, and on the required coverage of contact tracing 
needed.

Modelling studies have shown how mobile apps can 
increase effectiveness of contact tracing compared with 
conventional approaches, but effectiveness depends on 
what proportion of the population will use the app 
consistently for a sufficiently long period of time.9 
Modelling studies have predicted that contact tracing 
alone cannot control an outbreak if tracing coverage is 
too low.2,15 The tracing coverage needed depends on how 
much transmission occurs before symptom onset, and 
on the details of the tracing process.

In previous work, we have investigated the impact of 
timeliness and completeness of case reporting on the 
effectiveness of surveillance and interventions,16,17 and we 
quantified the timeliness of contact tracing of infected 
passengers during an airline flight for the 2009 influenza 
pandemic.18 In all of these studies, the timing of various 
steps in the monitoring and intervention chain emerged 
as a key factor for effectiveness of a public health 
response. Usually, there are identifiable delays in the 
response chain that might be crucial to the overall 
effectiveness of a strategy.

Here, we analyse in detail the process chain of iden
tifying index cases by symptom reporting, testing of 
index cases, and subsequent contact tracing, with the 
aim to inform policy makers on the relative importance 
of key steps in the process. We use a mathematical 
model that reflects the various steps and delays in 

the contact tracing process to quantify how delays 
affect the effective reproduction number and the frac
tion of onward transmission prevented per diagnosed 
index case.5,19

Methods
Time delays in contact tracing
Our starting point is an assumed effective reproduction 
number (Re) for COVID-19 of around 1, describing a 
situation with physical distancing but measures lifted to 
some extent. We then quantify the relative contribution 
of the individual components of a contact tracing strategy 
required to bring and maintain the effective reproduction 
number with contact tracing (RCTS) to a value below 1. For 
simplicity, we do not include transmission in health-care 
settings, because in settings such as nursing homes, 
which can be viewed as closed populations, other 
interventions might be more appropriate.

We break down the process of contact tracing into 
two steps (figure 1; appendix p 6). In the first step, an index 
case acquires the infection (at time T0), then after a short 
latent period becomes infectious (at time T1) and then 
possibly symptomatic (at time T2), which here is defined as 
being eligible for testing. Subsequently, a proportion of 
these symptomatic individuals, determined by the testing 
coverage, gets tested and diagnosed (at time T3). The time 
between T2 and T3 is called the testing delay (D1 = T3 − T2) 
and can vary between 0 and 7 days, and in this period 
individuals might self-quarantine. We define testing 

See Online for appendix

Research in context

Evidence before this study
We searched PubMed, bioRxiv, and medRxiv for articles 
published in English from Jan 1 to June 20, 2020, with the 
following keywords: (“2019-nCoV” OR “novel coronavirus” OR 
“COVID-19” OR “SARS-CoV-2”) AND “contact tracing” AND 
“model*”. Population-level modelling studies of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) have 
suggested that isolation and tracing alone might not be 
sufficient to control outbreaks and additional measures might 
be required. However, few studies have focused on the effects 
of lifting individual measures once the first wave of the 
epidemic has been controlled. Lifting measures must be 
accompanied by effective contact tracing strategies to keep the 
effective reproduction number below 1. A detailed analysis, 
with special emphasis on the effects of time delays in testing of 
index patients and tracing of contacts, has not been done.

Added value of this study
We did a systematic analysis of the various steps required in the 
process of testing and diagnosing an index case as well as tracing 
and isolating possible secondary cases of the index case. We then 
used a stochastic transmission model that distinguishes between 
close contacts (eg, household members) and casual contacts to 
assess which steps and (possible) delays are crucial in determining 
the effectiveness of a contact tracing strategy. We evaluated how 

delays and the level of contact tracing coverage influence the 
effective reproduction number, and how fast contact tracing 
needs to be to keep the reproduction number below 1. We also 
analysed what proportion of onward transmission can be 
prevented with short testing and tracing delays and high contact 
tracing coverage. Assuming that around 40% of transmission 
occurs before symptom onset, we estimate that keeping the time 
between symptom onset and testing and isolation of an index 
case short (<3 days) is imperative for successful contact tracing. 
This implies that the process leading from symptom onset to 
receiving a positive test should be minimised by providing a 
sufficient number of easily accessible testing facilities. In addition, 
reducing contact tracing delays also helps to keep the 
reproduction number below 1.

Implications of all the available evidence
Our analyses highlight that a contact tracing strategy will only 
contribute to containment of COVID-19 if it can be organised 
such that delays in the process from symptom onset to 
isolation of the index case and their contacts are very short. 
The process of conventional contact tracing should be 
reviewed and streamlined, while mobile app technology might 
offer a tool for speeding up the process. Reducing delay in 
testing individuals for SARS-CoV-2 should be a key objective of 
a contact tracing strategy.
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coverage as the proportion of all symptomatic cases that 
are tested. After being diagnosed, we assume index cases 
are isolated with no further transmission.

The second step is tracing contacts of the index case, 
which occurs at time T4. A fraction of those contacts, 
determined by the tracing coverage, will be found and 
tested. We assumed that all traced contacts do not 
transmit any further, either because they are tested and 
isolated if infected or because they are effectively 
quarantined. The effectiveness of these measures are 
therefore subsumed in the tracing coverage. The time 
between T3 and T4 is the tracing delay (D2=T4 – T3), which 
can range from 0 days (eg, with app technology) to 3 days 
(with conventional approaches); this range was obtained 
through personal communications with public health 
professionals who are working with contact tracing in 
practice, as well as existing estimates for influenza.18 In 
this step, tracing coverage is defined as the proportion of 
contacts detected, which either depends on the capacity 
of conventional approaches or on the fraction of the 
population using suitable app technology for screening.

Strategies considered
We considered two particular contact tracing strategies: 
conventional contact tracing and mobile app technology 
contact tracing (reproduction number RCTS). We did not 
consider hybrid approaches of combined conventional 
and mobile app-based strategies. We compared these 
strategies with a physical distancing strategy (reproduction 
number Re) and an isolation strategy where symptomatic 
individuals get tested and isolated without subsequent 
contact tracing (reproduction number Riso).

As 100% testing and tracing coverages are difficult 
to achieve, we defined a best-case scenario with 80% 
testing and tracing coverage, where people eligible 
for testing are immediately tested with a very fast test 
result (testing delay 0 days) and immediate isolation 
when testing positive. In contact tracing strategies, this is 
followed by immediate tracing of contacts (tracing delay 
0 days), who immediately adhere to isolation measures. 
In our analyses, this best-case scenario can only be 
achieved by mobile app use. We consider more realistic 
scenarios where testing and tracing are suboptimal—
eg, a conventional contact tracing strategy—and we vary 
these parameters separately in a sensitivity analysis 
(appendix pp 9–12).

Effectiveness of contact tracing at the population level
To analyse the impact of delays in testing and tracing on 
the effectiveness of contact tracing strategies at the popu
lation level, we use a model introduced by Kretzschmar 
and colleagues,19 which was adapted for severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2).5 The 
stochastic model describes an epidemic as a branching 
process with progression through latent infection and an 
infectious period in time steps of 1 day. Infectivity and 
probability of symptom onset per day of the infectious 

period and numbers of contacts per day were fitted to 
distributions taken from published data.20–24 With these 
distributions, around 40% of transmissions take place 
before symptom onset. We distinguish between close 
contacts (eg, household contacts) and casual contacts, 
which differ in the risk of acquiring infection from the 
index case. Contact definitions were based on those used 
in the Polymod study,23 where a contact is defined as 
having a two-way conversation of three or more words in 
physical presence or having physical contact with another 
person. A high-risk contact is one that includes physical 
contact, lasts more than 15 min, or occurs on a regular 
basis. Additionally, the time required for tracing and 
isolating infected contacts and the coverage of tracing 
can differ between these types of contacts and between 
different types of contact tracing (eg, conventional vs 
mobile app supported). We assume that isolation is 
perfect—ie, that isolated people do not transmit any 
longer—and that all traced infected contacts are isolated, 
regardless of whether they develop symptoms or not. The 
model allows for explicit computation of the basic 
reproduction number R0, Re, Riso, and RCTS. Reproduction 
numbers were calculated as expectations, and distri
butions of individual reproduction numbers were simu
lated. The model was coded in Mathematica 12.1. Further 
details are presented in the appendix (pp 3–9).

Parameter settings
We assumed that without physical distancing, individuals 
have on average four close contacts and nine casual 
contacts per day, with stochastic variability. The distri
butions were fitted to data from the Polymod study for 
the Netherlands.23 Transmission probability per contact 
for close contacts was taken to be four times higher than 
for casual contacts. We assumed that 80% of all infected 
people develop symptoms at some time during their 
infectious period and 20% remain asymptomatic. 
Symptomatic and asymptomatic cases were assumed to 
be equally infectious. Overall, the transmission prob
ability was calibrated to R0=2·5. For physical distancing, 
we assumed that close contacts were reduced by 40% 
and casual contacts by 70%. The resulting effective 

Figure 1: Schematic of the contact tracing process and its time delays
T0=time of infection of index case. T1=onset of infectiousness. T2=symptom onset. T3=time of positive diagnosis. 
T4=time of tracing and quarantining of contacts.
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reproduction number was Re=1·2. More details on the 
parameters are given in the appendix (pp 2–4).

Uncertainty of model outcomes
We considered uncertainty due to stochastic variability and 
uncertainty due to possible variation in parameter esti
mates. We dealt with stochastic variability by computing 
individual reproduction numbers for 1000 individuals 
for all scenarios and plotted their distributions as box
plots. Parameter uncertainty was explored by performing 
simulations using hypercube sampling for transmission 
probabilities and probabilities of symptom onset per day of 
the infectious period (appendix pp 9–10).

Scenarios modelled
For conventional contact tracing, we assumed baseline 
values of 80% testing coverage and higher tracing 
coverage for close contacts than for casual contacts, set at 
80% and 50%, respectively. We analysed the effect of 
various testing and tracing delays and tracing coverage 
on RCTS while keeping the testing coverage at 80%. For 
comparison, we also considered the isolation strategy 
(Riso), again with testing coverage at 80%. In sensitivity 
analyses, we varied the testing delay D1 between 
0 and 7 days and the tracing delay D2 between 0 and 3 days; 
furthermore, we varied both testing coverage and tracing 
coverages separately between 20% and 80% in increments 
of 20 percentage points. 

We then compared the effectiveness of conventional 
contact tracing alone with a scenario in which mobile 
app technology is used for alerting people to be tested 
and for tracing contacts; exact parameter values for this 
comparison are shown in table 1. Differences between 
these strategies were taken as follows. The testing 
delay (D1) is reduced by 4 days with mobile app 
technology. We assumed a conventional contact tracing 
setting in which symptomatic individuals need to 
decide to seek health care to get tested, and we assumed 
that with app technology, individuals reporting 
symptoms to the app are automatically offered a test 
without having to seek health care. For conventional 
contact tracing, we assumed suboptimal coverage in 
identifying contacts from the week before diagnosis 
due to recall bias, especially for casual contacts. For 
contact tracing with mobile app technology, we assume 
80% tracing coverage of the contacts of symptomatic 
people using mobile app technology as a best-case 
scenario, but also consider other coverages as detailed 
below and in table 1. We show also results for 100% 
coverage, although realistically more than 80% is not 
feasible because not all contacts will be correctly 
identified and compliance with isolation of those tested 
positive might not be perfect. We assume that tracing 
goes back for 7 days before the positive test result for 
both strategies.

Next, we quantified the impact of coverage of testing 
and mobile app use on the effectiveness of different 
strategies. We varied the percentage of app users in the 
population between 20% and 100% in increments of 
20 percentage points. We first considered the situation 
where testing is provided for 80% of people with 
symptoms independently of app use, and app use only 
influences the fraction of contacts that are traced (ie, 
tracing coverage varies between 20% and 100%). Alter
natively, we assumed that only app users are tested 
(ie, testing coverage varies between 20% and 100%), and 
coverage of tracing also depends on fraction of app use. 
In all cases, a contact could only be traced if both the 
index case and the contact were app users—ie, the 
probability of a contact being traced is given by the 
square of the proportion of app users.

Isolation Conventional 
contact tracing

Mobile app 
contact tracing

Testing coverage 80% 80% 20%, 40%, 60%, 
80%, 100%

Testing delay (D1), assuming immediate 
isolation when testing positive

4 days 4 days 0 days

Time to trace close contacts (D2) ·· 3 days 0 days

Time to trace other contacts, assuming testing 
and isolation of those who test positive

·· 3 days 0 days

Tracing coverage of close contacts ·· 80% 20%, 40%, 60%, 
80%, 100%

Tracing coverage of casual contacts ·· 50% 20%, 40%, 60%, 
80%, 100%

Time traced back ·· 7 days 7 days

For isolation-only and conventional contact tracing strategies, we assumed a baseline testing coverage of 80% 
(see appendix pp 11–12 for sensitivity analyses). For mobile app contact tracing strategies, we varied the testing 
coverage between 20% and 100%, and assumed 80% as a best-case scenario. For conventional contact tracing, 
delays and coverages were chosen to reflect current practice, whereas for mobile app contact tracing, we varied 
coverages to reflect different levels of app use.

Table 1: Comparison of isolation, conventional contact tracing, and mobile app contact tracing strategies

Figure 2: Comparison of conventional and mobile app contact tracing strategies
For parameter values, see table 1. The isolation only strategy is shown in green 
for comparison. We assumed that testing coverage is 80% for the conventional 
contact tracing strategy and 60%, 80%, and 100% for the mobile app contact 
tracing strategy. For the mobile app strategy, it is assumed that the tracing 
coverage equals the testing coverage—ie, it is 60%, 80%, and 100%, respectively. 
Expected reproduction numbers are shown as a function of testing delay D1. 
Re=effective reproduction number.
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Finally, we quantified the fraction of transmissions of 
an index case that can be prevented, and the contri
bution to the fraction prevented from isolation and from 
tracing contacts with decreasing delays. The number of 
onward transmissions of an index case is, by definition, 
described by the effective reproduction number Re of 
the realised scenario. Therefore, the difference of 
reproduction numbers between two intervention 
scenarios under the condition that an index case is 
diagnosed will describe the fraction of onward 
transmissions prevented. For contacts, this is the 
fraction of the total infectivity that lies after the time of 
isolation—ie, the part of infectiousness that is prevented 
by contact tracing. In other words, a contact person who 
is detected and isolated before the start of their 
infectious period is counted as a fully prevented 
transmission, whereas a contact person who is only 
traced and identified after 70% of their infectivity has 
passed is counted as 0·3 of a prevented onward 
transmission.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, writing 
of the manuscript, or the decision to submit for publi
cation. All authors had full access to all the data in the 
study and were responsible for the decision to submit the 
manuscript for publication.

Results
If 80% of infectious people who develop symptoms are 
tested and isolated within 1 day after symptom onset, the 
effective reproduction number Re is expected to decline 
from 1·2 to an Riso of 1·0 (95% CI 0·9–1·1), using an 
isolation strategy without contact tracing (figure 2). 
Contact tracing has the potential to further decrease the 
reproduction number to 0·8 (95% CI 0·7–0·9), as shown 
by the mobile app contact tracing scenario with 100% 
testing and tracing (figure 2). In our predefined best-case 
scenario, with 80% testing coverage, testing and tracing 
delays of 0 days, and a tracing coverage of 80%, the model 
predicts a 30% reduction of Re, down to an RCTS of 0·8 
(0·7–1·0). However, once the testing delay approaches 
2 days, tracing delay needs to be at most 1 day or tracing 
coverage needs to be at least 80% to keep RCTS below 1 
(appendix p 10). From these scenarios, the reduction of 
RCTS achieved by implementing the best-case scenario is 
estimated at 17% (appendix p 10). Once testing delay 
becomes 3 days or longer, even perfect contact tracing (ie, 
100% testing and tracing coverage with no tracing delay) 
cannot bring RCTS values below 1.

Our assumption that conventional contact tracing has 
a longer tracing delay and lower tracing coverage than a 
strategy based on mobile app technology resulted in 
marked differences in RCTS for the whole range of testing 
delay (figure 2). With conventional contact tracing, RCTS 
would remain above 1 if the testing delay exceeds 0 days, 

whereas contact tracing based on mobile app technology 
could still keep RCTS below 1 with a delay of up to 2 days, 
as long as testing and tracing coverage are at least 80%, 
or with a testing delay of 1 day if tracing coverage is at 
least 60%. If the testing delay reaches 5 days or more, 
app technology adds little effectiveness to conventional 
contact tracing or just isolation of symptomatic cases.

The reductions of Re (based on physical distancing) 
achieved by isolation of symptomatic cases only, conven
tional contact tracing, and mobile app-based contact 
tracing are shown in figure 3A. For isolation only and for 
conventional contact tracing, we assumed a delay of 4 days 
between symptom onset and isolation of the index case. 

Figure 3: Estimated reduction of the effective reproduction number for 
various contact tracing strategies
(A) RCTS is shown as a percentage of Re , where only physical distancing is 
implemented. For the isolation scenario and conventional contact tracing 
scenario, we assumed a 4-day delay between symptom onset and isolation of 
the index case. For mobile app contact tracing, testing delay was assumed to be 
0 days. Testing coverage was assumed to be 80% in the isolation and 
conventional contact tracing scenarios; app use prevalence was assumed to be 
60%, 80%, and 100% in the mobile app contact tracing scenario. 
(B) Distributions of individual reproduction numbers for 1000 individuals in the 
same scenarios as in described in panel A. Each boxplot shows the mean 
(diamond, where the height of the diamond indicates the CI of the mean) 
IQR, and upper fence (75% quartile + 1·5 × IQR) of the distribution. The dots are 
outliers, where darker dots contain more datapoints than lighter dots. All 
datapoints are integers. Re=effective reproduction number. RCTS=effective 
reproduction number with contact tracing.
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The relative reductions are independent of the level of Re, 
with similar percentage reductions seen when starting 
from R0—ie, in a situation without physical distancing 
(appendix p 14). At 80% testing coverage, conventional 
contact tracing, even if applied for all infected individuals 
with symptoms, is less effective than mobile app-based 

contact tracing (difference 27·9 percentage points), due to 
longer tracing delays and lower tracing coverage (figure 3; 
table 1). When considering the distributions of individual 
reproduction numbers for the assumed testing delays—
ie, 4 days for isolation and conventional contact tracing 
and 0 days for app-based contact tracing—we found that 
the mean reproduction number was less than 1 only for 
mobile app-based contact tracing (figure 3).

The effectiveness of mobile app-based technology 
declines with lower fractions of the population using it 
(figure 4). Yet, app-based tracing on its own remains 
more effective than conventional tracing alone, even with 
20% coverage, due to its inherent speed. Even with low 
coverage, there is a reduction of Re, due to fast tracing of 
a small part of the population. Depending on Re, such an 
approach might be sufficient to reduce RCTS to levels 
below 1. This can be seen in the distributions of RCTS: 
when the app is used only for contact tracing (ie, all 
symptomatic individuals can be tested, regardless of 
whether they use the app), the means of the RCTS 
distributions are below 1 when at least 40% of the 
population are using the app, whereas when the app is 
used for contact tracing and testing (ie, only app users 
can be tested), this is the case when at least 60% of the 
population are using the app (figure 4).

We quantified proportions of transmissions per index 
case that can be prevented depending on testing delay, 
stratified by isolation of index cases and tracing delays 
(table 2). In the best-case scenario, with testing and tracing 
delays of 0 days, 79·9% of transmissions can be prevented 
if the tracing coverage is 80%. When testing delay is 
increased to 3 days with a tracing delay of 0 days, the 
percentage of transmission prevented is almost halved to 
41·8%. If tracing delay is also increased to 3 days, only 
21·0% of onward transmissions can still be prevented.

Discussion
Using a mathematical model that describes the different 
steps of a contact tracing strategy for COVID-19, we have 
quantified the relevance of delays and coverage pro
portions for controlling SARS-CoV-2 transmission. We 
conclude that reducing the testing delay—ie, shortening 
the time between symptom onset and a positive test 
result, assuming immediate isolation—is the most 
important factor for improving contact tracing effective
ness. Reducing the tracing delay—ie, shortening the time 
to trace contacts, assuming immediate testing and isola
tion if found positive—might further enhance contact 
tracing effectiveness. Yet this additional effect rapidly 
declines with increasing testing delay. The effectiveness 
of mobile app-based contact tracing declines with lower 
app use coverage, but it remains more effective than 
conventional contact tracing even with lower coverage, 
due to its inherent speed. If an index case is tested positive 
and enters this information into the app, other users who 
have been in contact can be warned immediately, because 
the app will have recorded these contacts via Bluetooth. 

Figure 4: Impact of varying levels of mobile app use on RCTS

In panels A and B, we assume that there is also testing (at 80% coverage) of those who do not use the mobile app, 
so app use only is used for tracing contacts. In panels C and D, only app users, who develop symptoms, are tested. 
Panels A and C show percentage reductions of Re achieved by the mobile app contact tracing strategy; 
panels B and D show the impact of various contact tracing strategies on distributions of individual reproduction 
numbers, RCTS. Each boxplot shows the mean (diamond, where the height of the diamond indicates the CI of the 
mean) IQR, and upper fence (75% quartile + 1·5 × IQR) of the distribution. The dots are outliers, where darker dots 
contain more datapoints than lighter dots. All datapoints are integers. Re=effective reproduction number. 
RCTS=effective reproduction number with contact tracing.
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Isolation only Isolation plus contact tracing

D2=3 D2=2 D2=1 D2=0

D1=0 50·4% 62·4% 67·8% 73·9% 79·9%

D1=1 35·7% 47·3% 53·4% 60·7% 68·5%

D1=2 23·4% 33·0% 38·9% 46·5% 55·4%

D1=3 14·2% 21·0% 26·0% 32·9% 41·8%

D1=4 7·8% 11·9% 15·7% 21·4% 29·1%

D1=5 3·8% 5·9% 8·4% 12·5% 18·4%

D1=6 1·6% 2·4% 3·8% 6·4% 10·4%

D1=7 0·5% 0·7% 1·3% 2·8% 4·9%

Interventions explored are isolation of only the index case or isolation of the index 
case with tracing and isolation of 80% of infected contacts, according to tracing 
delay D2, ranging from 0 to 3 days. All interventions are varied by testing delay D1, 

ranging from 0 to 7 days.

Table 2: Percentage of onward transmissions prevented per diagnosed 
index case for various interventions
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A contact tracing strategy therefore has the potential to 
control virus transmission, and to enable alleviation of 
other control measures, but only if all delays are maxi
mally reduced. It should be noted that we simulated 
two contact tracing systems—conventional contact 
tracing with testing and tracing delays and app-based 
contact tracing without delays—and ignored hybrid 
approaches. At present, most European countries are 
using conventional contact tracing strategies, but are 
attempting to reduce delays (eg, by improving testing and 
tracing capacity and by removing testing barriers), and 
are piloting or planning the addition of app-based contact 
tracing. Such hybrid contact tracing systems would fall 
somewhere between the fully conventional and app-based 
scenarios described in this Article.

Several factors can reduce the effectiveness of contact 
tracing, such as large proportions of cases who remain 
asymptomatic or are otherwise not diagnosed and large 
proportions of contacts who cannot be traced. Mobile app-
based technology could increase the proportion of 
traceable contacts because it does not rely on recall of 
names and contact details, but this would require the 
participation of a substantial proportion of the population. 
App use acceptance might be hampered by privacy 
concerns and other ethical considerations. Also, app use 
needs to continue over a long time period, requiring 
sustained adherence by app users. Low participation does 
not render contact tracing useless, however, because it 
could help to locally extinguish clusters before they grow 
larger. In addition, every measure that lowers the effective 
reproduction number, even if it is already below 1, will 
lower the cumulative case number and speed up the time 
until elimination of the virus from the population.

A strength of our approach is that it explicitly takes 
many details of the contact tracing process into account, 
such that the key factors can be identified. A limitation of 
our approach is that it does not take population age 
structure into account, which might influence the 
proportion of asymptomatic cases and mobile app use 
coverage. Also, the willingness of a case to self-isolate 
depends on age and social norms, might be influenced by 
socioeconomic status, and is affected by perceived benefit 
of isolation in relation to perceived risk of the infection to 
others.25 We also excluded other heterogeneities while 
assuming homogeneous mixing,26,27 and assumed homo
geneously distributed use of app technology for different 
coverage levels. Clustering of non-users could have 
consequences for the overall effectiveness of contact 
tracing, similar to clustering of non-vaccinated people. 
Furthermore, we ignored that a sizeable portion of 
transmissions might be acquired nosocomially when 
population prevalence is still low.28 The model also 
ignores that some contacts of the index case might have 
self-quarantined with symptoms before they are traced, 
which lowers the benefits of a contact tracing strategy.

Our study adds to results from other modelling studies, 
which have shown that contact tracing can be an effective 

intervention if tracing coverage is high and if the process 
is fast.2,15 A determining factor is the proportion of 
transmissions occurring before symptom onset, which 
determines the urgency of tracing and isolating contacts 
as fast as possible. Our study showed in detail what the 
role is of each step in the contact tracing process in 
making it successful. Our model differs from other 
published models in that it makes a distinction between 
close and casual contacts and we consider scenarios for 
conventional contact tracing and mobile app-based 
contact tracing characterised by specific delays and 
coverages.

Our finding of the crucial importance of the first step 
of contact tracing—establishing a diagnosis in cases with 
symptoms—has important consequences. It requires an 
infrastructure for testing that allows people with symp
toms to be quickly tested and alerted to their results, 
preferably within 1 day of symptom onset. For example, 
walk-in or drive-in testing facilities could be set up on a 
large scale and test results immediately communicated 
via the tracing app. Studies have shown that the 
sensitivity of current PCR tests is low during the first 
3 days after infection due to low but steadily increasing 
viral load in the respiratory tract;29,30 testing on the fourth 
day after infection, regardless of symptoms, might 
therefore be optimal. However, when more sensitive 
PCR tests become available, earlier testing might further 
enhance effectiveness. As the clinical symptoms of 
COVID-19 are mostly mild and heterogeneous, many 
people should be eligible for testing, resulting in a large 
proportion of negative test results. Future work should 
determine the optimal balance between the proportion of 
negative tests and the effectiveness of contact tracing.

Our findings also provide strong support to optimise 
contact tracing. In the Netherlands, the contact tracing 
strategy was based on establishing contact between an 
index case and a public health officer, followed by an 
interview after which contacts are traced. This procedure 
is labour intensive, time consuming, prone to recall bias, 
incomplete (anonymous contacts cannot be traced), and 
usually takes several days. Optimising this process by 
improving testing and tracing capacity, removing testing 
barriers, and by adding app-based or other digital tech
nologies to minimise tracing delay is needed to establish 
optimal control of transmission. These improvements 
are currently being implemented or considered. Overall, 
our findings suggest that an optimised contact tracing 
strategy, with short delays and high coverage for testing 
and tracing, could substantially reduce the reproduction 
number, which would allow alleviation of more stringent 
control measures.
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