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Abstract
Physiologically structured population models are typically formulated as a partial differen-
tial equation of transport type for the density, with a boundary condition describing the birth
of new individuals. Here we develop numerical bifurcation methods by combining pseu-
dospectral approximate reduction to a finite dimensional system with the use of established
tools for ODE. A key preparatory step is to view the density as the derivative of the cumu-
lative distribution. To demonstrate the potential of the approach, we consider two classes
of models: a size-structured model for waterfleas (Daphnia) and a maturity-structured
model for cell proliferation. Using the package MatCont, we compute numerical bifurca-
tion diagrams, like steady-state stability regions in a two-parameter plane and parametrized
branches of equilibria and periodic solutions. Our rather positive conclusion is that a rather
low dimension may yield a rather accurate diagram! In addition we show numerically that,
for the two models considered here, equilibria of the approximating system converge to the
true equilibrium as the dimension of the approximating system increases; this last result is
also proved theoretically under some regularity conditions on the model ingredients.
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1 Introduction

Not only the birth and death of individuals drive population dynamics, but also their devel-
opment [12]. Physiologically structured models take this into account by representing the
population via a distribution over the individual state space. Straightforward bookkeeping
principles then lead to partial differential equations (PDE) governing the dynamics [32, 33].
Alternatively one can formulate a renewal equation for the birth rate and define a dynami-
cal system as for delay differential equations, cf. [17]. The relationship between these two
formulations is described in a manuscript in preparation by OD with Barril, Calsina and
Farkas.

But whichever way, one has to deal with an infinite dimensional dynamical system for
which no standard tools for numerical bifurcation analysis are available. Recently it was
found [4, 5, 26] that for delay equations pseudospectral approximation leads to systems
of ordinary differential equations (ODE) that can be analyzed by tools like, e.g., MatCont
[13]. In [24] this approach was used to study a rather complicated structured cell population
model formulated as a state-dependent delay equation.

In the delay formulation, the relationship between the age and the current state of an indi-
vidual figures prominently. To compute this relationship again and again, as time evolves
or parameters vary, is expensive. In the present paper we show, by way of two models from
applications (a size-structured model for waterfleas, or Daphnia, and a maturity-structured
model for cell proliferation), that also the PDE formulation leads, via pseudospectral
approximation, to systems of ODE that can be analyzed by readily available tools. For
the pseudospectral methods applied to PDE see for instance [3, 8, 22, 23]. Working with
functions of the individual state variable, rather than with functions of age, makes the
“convection” term in the approximation a bit more complicated (with consequences for con-
vergence), but saves a lot of computational effort, as there is no need to keep track of the
relation between age and individual state.

A special feature of the approach of this paper is that we approximate the cumulative
distribution rather than the density. This idea arose while thinking about pseudospectral
approximation for renewal equations (in preparation by OD, FS and RV) and was triggered
by both sun-star calculus [19] and the more recent theory of twin semigroups [20], where
a “bigger” space is introduced in order to handle the boundary condition as a bounded
perturbation. Note that in the context of interpolation this is anyhow a natural idea, as the
distribution has well-defined point values, while the density has not.

In Section 2 we introduce the classical transport equation for physiologically structured
models and derive the approximating system of ODE. We consider two special cases: the
so-called Daphnia model and a model for cell maturation and proliferation.

In Section 3 we demonstrate what a numerical bifurcation study of the ODE sys-
tem can tell us about the dynamics and we present a comparison of computation times,
showing the efficiency of the approach proposed here with respect to the one proposed
in [4].

In Section 4 we concentrate on equilibria. By means of numerical tests on the two models
considered here, we experimentally show that the numerical error vanishes as the dimen-
sion of the approximating system increases, highlighting also the role of the regularity of
the individual rates on the convergence rate. We conclude with a theoretical proof of con-
vergence under special (and, for the sake of simplicity, rather restrictive) assumptions on the
individual rates. Some of the authors plan to improve and extend the convergence analysis
to more realistic individual rates and weaker regularity assumptions.
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2 Pseudospectral Discretization of Physiologically Structured
PopulationModels

Consider a population of individuals characterized by size x > 0 and living in an environ-
ment described by a vector E(t) ∈ R

d , d ∈ N, which we initially assume given for all t ≥ 0.
We assume that newborn individuals have size-at-birth xb, and their size changes deter-
ministically with time according to the positive growth rate g(x,E), where E denotes the
current environment. We denote by μ(x,E) the per capita death rate, which also depends
on the current size and environment. We assume that there exists a maximal size xm, so that
x ∈ [xb, xm]. This assumption can be justified either by taking μ/g → ∞ as x → xm, or
by assuming that the survival probability until x = xm is rather low, so that we can declare
that death strikes upon reaching it, without affecting the dynamics very much.

Let n(t, x) denote the density of individuals that have size x ∈ [xb, xm] at time t ≥ 0,
with n(t, ·) ∈ L1([xb, xm]). Under the given environment E(t), the population dynamics is
described by the transport equation

∂

∂t
n(t, x) + ∂

∂x
(g(x, E(t))n(t, x)) = −μ(x, E(t))n(t, x), x ∈ [xb, xm], (1)

g(xb, E(t))n(t, xb) = b(t), (2)

for t ≥ 0, where b(t) ∈ R+ is the total population birth rate at time t and g,μ : [xb, xm] ×
R

d → R+.
We shall interpret L1 as AC0, the subspace of absolutely continuous functions in NBV

(where the normalization includes that the value in xb equals zero). In this perspective, we
denote by

m(t, x) :=
∫ x

xb

n(t, y)dy, x ∈ [xb, xm],

the size distribution, i.e., the cumulative number of individuals having size in the interval
[xb, x] at time t . Then m(t, ·) ∈ AC0([xb, xm]) and it defines a measure on the interval
[xb, xm] such that, for each Lebesgue measurable set ω ⊂ [xb, xm], the measure of ω is
defined by ∫

ω

m(t, dy) =
∫

ω

n(t, y)dy.

Integrating both sides of (1) and using (2) we obtain

∂

∂t
m(t, x) + g(x,E(t))

∂

∂x
m(t, x) − b(t) = −

∫ x

xb

μ(y, E(t))m(t, dy), x ∈ [xb, xm],
(3)

for t ≥ 0, with m(t, xb) = 0. The population birth rate b(t) can be prescribed as a function
of the current population distribution and the current environment via

b(t) = B(m(t, ·), E(t)), t ≥ 0, (4)

where B : AC0([xb, xm]) × R
d → R is linear (possibly inhomogeneous) in m.

We want to obtain an approximation of (3) using classical pseudospectral techniques. In
order to do this, we fix M ∈ N, called discretization index, and let �M = {xj }j=0,...,M be a
set of nodes in [xb, xm] with

xb = x0 < x1 < · · · < xM = xm,

39Numerical Bifurcation Analysis of Physiologically Structured...



and �j (x) the corresponding Lagrange polynomials

�j (x) :=
M∏

k=0
k �=j

x − xk

xj − xk

, j = 0, . . . , M .

Recall that �j (xk) = δjk , where δjk denotes the Kronecker symbol. We choose the set of
Chebyshev extremal nodes, which are defined on any interval [a, b] ⊂ R as

xj := a + b

2
+ a − b

2
cos

(
jπ

M

)
, j = 0, . . . , M . (5)

With this choice of nodes, polynomial interpolation converges in supremum norm as
M → ∞ for functions that are at least absolutely continuous, and the order of convergence
depends on the regularity of the interpolated function [29, 31, 35].

Let P : RM → NBV ([xb, xm]) be the interpolation operator on �M associating to a
vector v ∈ R

M the M-degree polynomial

Pv :=
M∑

j=1

vj �j ,

having value 0 in xb. By construction, Pv(xj ) = vj for j = 1, . . . , M .
With the aim of approximating m(t, ·) with an M-degree polynomial, we consider, for

all t ≥ 0, a vector c(t) ∈ R
M , so that each component cj (t) represents an approximation

of m(t, xj ). The state m(t, ·) is then approximated by the interpolating polynomial Pc(t),
which also takes into account the fact that m(t, xb) = 0 (recall that xb = x0). Then, the
density n(t, ·) = ∂

∂x
m(t, ·) is approximated by

∂

∂x
(P c) =

M∑
j=1

cj �
′
j . (6)

Define D = (Djk)j,k=1,...,M to be the part of the differentiation matrix with entries

Djk := �′
k(xj ), j, k = 0, . . . , M,

obtained by removing the first row and the first column. We recall that the differentia-
tion matrix in a generic interval [a, b] ⊂ R is related with the differentiation matrix D1
associated with the interval [−1, 1] via the simple scaling

D = 2

b − a
D1. (7)

From (6) we see that each entry [Dc]k coincides with ∂
∂x

(P c)(xk), for k = 1, . . . , M .
We refer to [34, 35] for further details about pseudospectral differentiation and to [18] for a
recent review of the properties of the matrix D.

By collocating (3) in x1, . . . , xM (i.e., by imposing that Pc satisfies (3) for x = xj ,
j = 1, . . . , M) we get the ODE

c′
k + g(xk, E)(Dc)k = b −

M∑
j=1

cj

∫ xk

xb

μ(y, E)�′
j (y)dy, k = 1, . . . , M . (8)

Next we replace b by b̃ obtained by replacing m in (4) by Pc, i.e.,

b̃ := B(Pc,E).
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To write the approximating ODE system in compact form, for given E ∈ R
d we define

the matrix �(E) ∈ R
M×M by

�kj (E) :=
∫ xk

xb

μ(y, E)�′
j (y)dy, j, k = 1, . . . , M, (9)

and the diagonal matrix G(E) ∈ R
M×M with diagonal entries equal to

Gkk(E) = g(xk, E).

Note that, for constant mortality rate μ(x,E) = μ, the matrix � = μI is also diagonal.
Moreover, we let 1 denote the vector in R

M with entries equal to 1.
The system of M equation (8) can now be written as

c′ = −G(E)Dc + b̃ 1 − �(E)c (10)

for c(t) ∈ R
M , t ≥ 0, which represents the discrete counterpart of (3).

In many cases the environment E(t) is not known a priori, but is itself affected by
feedback from the population. In this case, E(t) might be given as solution of the equation

E′(t) = F(m(t, ·), E(t)), t ≥ 0, (11)

where F : AC0([xb, xm]) × R
d → R

d is linear, but in general inhomogeneous, in the first
component.

In the pseudospectral approximation, (11) is replaced by

E′ = F(Pc,E), (12)

which should be coupled to (10).
A remark on notation: although for clarity we omitted the explicit dependence on M , we

stress that the solution (c, E) of (10) &(12) and the dimension of the matrices D, G,� vary
with M . Later on we will introduce the subscript M when it will be important to stress the
dependence on M (for instance when studying the behavior as M → ∞, Section 4).

From a computational point of view, given a continuous function φ, each integral∫ xk

xb
φ(y)dy for k = 1, . . . , M , can be approximated by, e.g., the k-th entry of D−1
, where


j = φ(xj ), j = 1, . . . , M , see for instance [18]. This can be used to compute the entries

of the matrix � defined in (9) (and, in the next subsections, of the vectors β̂, γ̂ , and the
matrix �).

In the rest of this section we present two models that fall into the framework described
above. In each case we specify the environmental condition, describe the individual rates,
and present the approximating equations.

2.1 AModel for Daphnia

We first consider a classical model for Daphnia, a planktonic filter-feeder which feeds on
algae. Individuals are characterized by their length x, and the environment is determined by
the concentration of algae at time t , which is denoted by S(t), see [11].

Individuals have a per capita fertility rate β(x, S) and a per capita consumption rate
γ (x, S), both of which depend on the individual size x and the current resource availability
S. The population dynamics are described by (3) where the population birth rate is given by

b(t) =
∫ xm

xb

β(x, S(t))m(t, dx). (13)
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The resource concentration satisfies the equation

S′(t) = f (S(t)) −
∫ xm

xb

γ (x, S(t))m(t, dx), (14)

where the function f : R+ → R is the growth rate of algae in the absence of the consumer.
If the individual rates are continuous in [xb, xm], system (3) with (13) & (14) can be

discretized with the pseudospectral approach described above. To write the approximating
ODE system, for given S ∈ R+ we introduce the vectors β̂(S), γ̂ (S) ∈ R

M , where, for
j = 1, . . . , M ,

β̂j (S) :=
∫ xm

xb

β(y, S)�′
j (y)dy, γ̂j (S) :=

∫ xm

xb

γ (y, S)�′
j (y)dy.

Note that the vectors β̂ and γ̂ can be computed efficiently using quadrature rules, see, e.g.,
[34, Chapter 12]. With the previous specifications, the approximating system (10) & (12)
reads

c′ = −G(S)Dc + (β̂(S)c) 1 − �(S)c (15)

S′ = f (S) − γ̂ (S)c (16)

for t ≥ 0, where the product between two vectors should be interpreted as the standard
scalar product in R

M .

2.2 Discontinuous Rates: A Piecewise Approach

During their lifetime, individuals may enter different phases in the life cycle, with sudden
transitions and changes in the vital rates. Here we consider the same model (3) with (13)
and (14) and we allow the individual rates β and γ to have a discontinuity at x = xA,
which represents the transition from juvenile to adult (i.e., reproductive) phase. To handle
the discontinuity, it is convenient to use a piecewise approach and split the approximation
of the state m using two different polynomials (which in general may have different degree)
in [xb, xA] and [xA, xm]. For simplicity, here we use polynomials with the same degree M ,
and introduce two meshes �

(1)
M = {x(1)

j : j = 0, . . . , M} and �
(2)
M = {x(2)

j : j = 0, . . . , M}
such that

xb = x
(1)
0 < x

(1)
1 < · · · < x

(1)
M = xA = x

(2)
0 < x

(2)
1 < · · · < x

(2)
M = xm.

Both meshes can be chosen as the Chebyshev extremal points (5) in the corresponding
interval. The corresponding Lagrange polynomial bases are denoted by {�(r)

j }j=0,...,M , for
r = 1, 2.

Given a vector c ∈ R
2M , we write c = (c(1), c(2)) with c(r) ∈ R

M , r = 1, 2, and define
the piecewise interpolation operator

Pc(x) :=
{∑M

j=1 c
(1)
j �

(1)
j (x), x ∈ [xb, xA],

c
(1)
M �

(2)
0 (x) + ∑M

j=1 c
(2)
j �

(2)
j (x), x ∈ [xA, xm]. (17)

Note that, with the above definition, Pc(xb) = 0 and Pc is continuous.
We define the entries of the differentiation matrices as

D
(r)
kj := �

(r)′
j

(
x

(r)
k

)
, j, k = 0, . . . , M, r = 1, 2.
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We recall that they can be computed efficiently via the scaling (7). By collocating (3) on
�

(1)
M and �

(2)
M , we obtain the equations

c
(1)′
k + g

(
x

(1)
k

) M∑
j=1

c
(1)
j D

(1)
kj = b −

M∑
j=1

c
(1)
j

∫ x
(1)
k

xb

μ(x, S)�
(1)′
j (x)dx, k = 1, . . . , M,

and

c
(2)′
k + g

(
x

(2)
k

)⎡
⎣c

(1)
M D

(2)
k0 +

M∑
j=1

c
(2)
j D

(2)
kj

⎤
⎦ = b −

M∑
j=1

c
(1)
j

∫ xA

xb

μ(x, S)�
(1)′
j (x)dx

−
∫ x

(2)
k

xA

μ(x, S)

⎡
⎣c

(1)
M �

(2)′
0 (x) +

M∑
j=1

c
(2)
j �

(2)′
j (x)

⎤
⎦ dx, k = 1, . . . , M .

We introduce the block matrices

G(S) =
(

G(1)(S) 0
0 G(2)(S)

)
, �(S) =

(
�(1)(S) 0
�(21)(S) �(2)(S)

)
,

where, for r = 1, 2, the matrix G(r) ∈ R
M×M is diagonal and, for j, k = 1, . . . , M ,

G
(r)
kk (S) = g

(
x

(r)
k , S

)

and

�
(1)
kj (S) :=

∫ x
(1)
k

xb

μ(x, S)�
(1)′
j (x)dx,

�
(2)
kj (S) :=

∫ x
(2)
k

xA

μ(x, S)�
(2)′
j (x)dx,

�
(21)
kj (S) :=

∫ xA

xb

μ(x, S)�
(1)′
j (x)dx, j = 1, . . . , M − 1,

�
(21)
kM (S) :=

∫ xA

xb

μ(x, S)�
(1)′
M (x)dx +

∫ x
(2)
k

xA

μ(x, S)�
(2)′
0 (x)dx.

As before, for constant mortality rate μ(x, S) = μ, the matrix � = μI is diagonal. We also
define Dpw ∈ R

2M×2M as

with D
(r)
kj := (�

(r)
j )′(x(r)

k ) for r = 1, 2 and k, j = 1, . . . , M . Then the approximating

equations can be written in compact form for c ∈ R
2M as

c′ = −G(S)Dpwc + b 1 − �(S)c (18)

43Numerical Bifurcation Analysis of Physiologically Structured...



with 1 ∈ R
2M . The birth rate b is approximated by substituting Pc defined in (17) into (13),

hence obtaining b̃ = β̂(S)c, where the vector β̂ := (β̂(1), β̂(2)) ∈ R
2M is defined by

β̂(1)
j (S) :=

∫ xA

xb

β(x, S)�
(1)′
j (x)dx, j = 1, . . . , M − 1,

β̂(1)
M (S) :=

∫ xA

xb

β(x, S)�
(1)′
M (x)dx +

∫ xm

xA

β(x, S)�
(2)′
0 (x)dx,

β̂(2)
j (S) :=

∫ xm

xA

β(x, S)�
(2)′
j (x)dx, j = 1, . . . , M .

Finally, by substituting Pc in place of m into (14), we obtain the approximating equation

S′ = f (S) − γ̂ (S)c, (19)

with γ̂ := (γ̂ (1), γ̂ (2)) ∈ R
2M , where the vectors γ̂ (r) are defined analogously as β̂(r), with

the rate β substituted by γ . Note that the approximating system (18) & (19) has dimension
2M + 1. For clarity, we presented the piecewise approach in the special case of two stages
and polynomials of equal degree M , but we stress that the approach can be generalized to
more stages and different polynomial degrees in a straightforward, yet technical way.

2.3 AModel for Cell Maturation

As a second example we consider a model for cell maturation, originally proposed in [21]
and recently studied numerically in [24] using the pseudospectral discretization method
applied to the state-dependent delay differential formulation of the model [25]. Cells are
divided into stem cells, progenitor cells, which are structured by a maturity indicator
x ∈ [xb, xm], and fully mature cells. Stem cells can die, self-renew or differentiate into
progenitor cells of initial maturity xb. Progenitor cells undergo death, self-renewal and mat-
uration with a deterministic maturation rate g. When a progenitor cell reaches the maximal
maturity xm, it instantly enters the mature compartment. All the processes are regulated by
the amount of mature cells.

In this case, n(t, x) denotes the density of progenitor cells with maturity level x ∈
[xb, xm]. The density of unstructured stem and adult cells, denoted by w(t) and v(t),
respectively, can be interpreted together as environmental condition, so that, in this case,
E(t) = (w(t), v(t)) ∈ R

2+.
The transport equation for n(t, x) reads

∂

∂t
n(t, x) + ∂

∂x
(g(x, v(t))n(t, x)) = δ(x, v(t))n(t, x), x ∈ [xb, xm],
g(xb, v(t))n(t, xb) = b(t),

where δ(x, v) denotes the per capita net production of progenitor cells, including self-
renewal and death. The total population birth rate is given by

b(t) = r(v(t))w(t), (20)

where r denotes the per capita inflow rate of stem cells into the progenitor compartment,
and is regulated by the amount of mature cells. The environmental condition satisfies the
equations

w′ = q(v)w (21)

v′ = g(xm, v)n(·, xm) − μvv, (22)
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where q is the per capita net growth rate of stem cells (including the processes of self-
renewal, death and differentiation), and μv ∈ R+ is the per capita death rate of mature
cells.

Remark 1 Since here we consider w as part of the environmental condition, we inter-
pret r(v)w as an inhomogeneous term in (20). Alternatively, one could view w as a Dirac
delta component in the maturity distribution, and interpret (20), for given v(t), as a linear
functional on the population state space of measures.

The cumulative number of progenitors m(t, x) := ∫ x

xb
n(t, y)dy satisfies the equation

∂

∂t
m(t, x) + g(x, v(t))

∂

∂x
m(t, x) = b(t) +

∫ x

xb

δ(y, v(t)) m(t, dy), x ∈ [xb, xm], (23)

which is coupled with the ODE (21) and (22) for w and v.
The pseudospectral discretization returns the ODE

c′ = −G(v)Dc + b̃ 1 + �(v)c, (24)

w′ = q(v)w, (25)

v′ = g(xm, v) [Dc]M − μvv (26)

with b̃ := r(v)w and, for given v ∈ R+, �(v) ∈ R
M×M with

�kj (v) :=
∫ xk

xb

δ(y, v)�′
j (y)d y, k, j = 1, . . . , M .

3 Numerical Bifurcation Analyses with Software for ODE

This section aims at illustrating the flexibility of the approximation for performing numer-
ical bifurcation analyses of physiologically structured population models. We consider the
two models introduced in the previous section and study their approximating ODE systems
with the numerical continuation package MatCont for Matlab [13]. Matlab codes for the
implementation of the approximating systems are available from the authors.

We stress that often a satisfactory accuracy in the output can be obtained for low dis-
cretization indices: in the following diagrams this is illustrated by showing some outputs for
M = 3, 5, 10, and by observing that they soon become indistinguishable.

Later on, in Section 4, we will study more deeply the issue of convergence of equilibrium
solutions forM → ∞. The numerical simulations in this section and in Section 4 do not aim
at providing a precise guideline for the best choice of the index M , but rather at presenting
some examples of reasonable choices of M for serious models.

3.1 Daphnia Model

For the numerical tests we consider the individual rates specified in Table 1, with a
consumer-free resource growth rate

f (S) = a1S

(
1 − S

K

)

45Numerical Bifurcation Analysis of Physiologically Structured...



Table 1 Specification of the individual rates of the Daphnia model as in [11, 28]

Description Function

Functional response f0(S) = ξS
1+ξS

Growth rate g(x, S) = max{0, γg (xmf0(S) − x)}
Mortality rate μ(x, S) = μ

Consumption rate γ (x, S) = νsf0(S)x2

Reproduction rate β(x, S) =
{
0 if xb ≤ x ≤ xA,

rmf0(S)x2 if xA < x < xm

and parameters specified in Table 2, which are taken from [11, 28]. Note that the per capita
fertility rate β is smooth in [xb, xA) and (xA, xm], but is discontinuous at xA. For this reason
the system is approximated using the piecewise approach described in Section 2.2.

Figure 1 shows the output of the continuation of the existence and stability boundaries of
the nontrivial equilibrium in the plane (μ,K), for different values of the discretization index
M . The stability boundaries agree with those obtained in [6, 10] using specific numerical
continuation algorithms.

The pseudospectral approximation together with bifurcation software for ODE allows us
to investigate the periodic solutions arising from Hopf bifurcation points. Figure 2 shows an
example of a numerically computed bifurcation diagram with respect to the parameter K .
For illustration we plot two diagrams, one showing the total number of consumers m(·, xm)

and the other the resource density S. (Note that for periodic orbits we plot both the minimum
and the maximum of these quantities, thus distinguishing them from steady states.)

For μ = 0.3 and increasing K , one can observe the emergence of the nontrivial equi-
librium through a transcritical bifurcation at K ≈ 0.60 (estimated with M = 10). The
nontrivial equilibrium undergoes a Hopf bifurcation at K ≈ 1.37, and a stable branch of
periodic solutions arises. The numerical continuation of the branch of periodic orbits did not
return any interesting bifurcation beyond the Hopf point. Figures 3 and 4 show the profiles
of the periodic solutions in two periods, for fixed K = 1.5 and K = 2.

As a final remark on the Daphnia model we stress the importance of the piecewise
approach introduced in Section 2.2 for discontinuous rates. For this, we compare the out-
put of the continuation of existence and stability boundaries obtained with the piecewise

Table 2 Specification of the parameter values of the Daphnia model as in [11, 28]

Description Symbol Value

Length at birth xb 0.8

Length at maturation xA 2.5

Maximum attainable length xm 6.0

Time constant of growth γg 0.15

Shape parameter of functional response ξ 7.0

Maximum feeding rate νs 1.8

Maximum reproduction rate rm 0.1

Flow-through rate a1 0.5

Mortality rate parameter μ varying

Carrying capacity of the environment K varying
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Fig. 1 Daphniamodel. Existence (lower curve) and stability (upper curve) boundaries of the nontrivial equi-
librium in the parameter plane (μ,K), for M = 3 (blue, dotted), M = 5 (magenta, dashed) and M = 10
(green, solid)

Fig. 2 Daphnia model. Bifurcation diagram with respect to K for fixed μ = 0.3 and M = 3 (blue, dotted),
M = 5 (magenta, dashed) and M = 10 (green, solid). The diagram shows the equilibria and min/max of the
periodic orbits, with transcritical (T) and Hopf (H) bifurcations
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Fig. 3 Daphnia model. Two upper panels: profile of the periodic orbit in two periods, for K = 1.5 and
M = 3, 5, 10, with period T ≈ 44.18. The gray dotted line is the equilibrium value. The bottom panel shows
the total number of juveniles and adults, for M = 10

Fig. 4 Same as Fig. 3, with K = 2 and period T ≈ 78.84
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Fig. 5 Stability boundaries of the Daphnia model: comparison between the piecewise approach with M = 3
(blue, dotted) and the non-piecewise approach with M = 6 (magenta, dashed). The reference diagram is
obtained with a piecewise approach and M = 20 (green, solid)

approach for M = 3 with the non-piecewise approach for M = 6. Both approximating
systems have dimension 7. In the non-piecewise approach, the population birth rate is com-
puted by interpolating the vector c on a mesh of M + 1 points in the adult interval [xA, xm]
and using quadrature formulas, thus introducing additional numerical errors. The outputs
are shown in Fig. 5, together with the reference curve obtained with the piecewise approach
and M = 20. Observe that the piecewise approach allows to reach a much more accurate
description compared to the non-piecewise approach (especially at lower values of μ).

3.2 Stem Cell Model

For the numerical simulations we use the rates specified in Table 3 with parameters spec-
ified in Table 4. For simplicity we restrict to the case δ ≡ 0, which corresponds to zero
net production of progenitors inside the compartment (i.e., self-renewal of progenitor cells
equals their mortality). Figure 6 shows the numerically computed stability boundaries of the
nontrivial equilibrium in the parameter plane (μv, p) for the maturation rate

g(x, v) = 2p

(
1 − a

1 + v

)
, (27)

which is independent of x. The two plots differ in the type of regulation of stem cell
processes by means of mature cells: the left panel corresponds to regulated division and
unregulated self-renewal, i.e., ka = 0 and kp = 1, whereas the right panel corresponds to
unregulated division and regulated self-renewal, i.e., ka = 1, kp = 0. The boundaries are in

Table 3 Specification of the individual rates for the stem cell model as in [30]

Description Function

Net growth rate q(v) = [2s(v) − 1]dw(v) − μw

Rate of inflow into progenitors r(v) = 2[1 − s(v)]dw(v)

Division rate dw(v) = p
1+kpv

Fraction of self-renewal s(v) = a
1+kav
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Table 4 Specification of the parameter values for stem cell model

Description Symbol Value

Minimum progenitor maturity xb 0

Maximal progenitor maturity xm 1

Stem cell mortality μw 1

Maximal fraction of self-renewal a 0.9

Maximal division rate p varying

Mature cell mortality μv varying

Coefficients for density regulation ka , kp varying

agreement with the results presented in [24]. In addition, a generalized Hopf point (GH) is
detected on the Hopf bifurcation curve in the right panel of Fig. 6. This point separates the
branch of supercritical (below GH) and subcritical (above GH) Hopf bifurcations. The crit-
icality of the Hopf bifurcation determines the (in)stability of the periodic orbit originating
from the Hopf point. This behavior can be observed in Fig. 7, where the continuation with
respect to the parameter p is shown, for fixed μv = 1.75 (left panel) and μv = 2 (right
panel). The left panel illustrates both a supercritical and a subcritical Hopf bifurcation. From
the latter, a branch of unstable periodic orbits emerges and then regains stability through
a fold bifurcation of cycles. In particular, there exists an interval of values of p for which
we observe bistability, where a stable nontrivial equilibrium coexists with a stable periodic
solution. Figure 8 shows the coexisting periodic orbits (stable and unstable) together with
the stable equilibrium corresponding to p = 3.9.

We conclude this section by providing empirical evidence of the computational effi-
ciency of the approach. We compared the current approach with the pseudospectral
discretization of the delay formulation proposed in [4]. We performed the continuation of
three different objects: equilibria, periodic solutions, and Hopf bifurcation curves. We con-
sidered as test example the stem cell model with maturation rate (27) and parameters as in

Fig. 6 Stem cell model. Stability boundary of the positive equilibrium in the parameter plane (μv, p), for
rates and parameters specified in Tables 3 and 4, with (left) ka = 0, kp = 1, and (right) ka = 1, kp = 0. In the
right panel, the gray dash-dotted line is the curve of fold bifurcation of cycles starting from the generalized
Hopf point (GH), detected at (μv, p) ≈ (1.90, 3.59)
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Fig. 7 Stem cell model. Bifurcation diagram of the variable v with respect to p, with stable (solid line) and
unstable (dashed line) equilibria and periodic orbits (min/max value), for M = 10, rate specifications as in
the right panel of Fig. 6, and: (left) μv = 1.75, (right) μv = 2. Note super- and sub-critical Hopf bifurcations

Fig. 6 (right). We refer to [4, 24] for the details of the pseudospectral approach applied to
the delay formulation of the model. For the purposes of this analysis, we only recall that
the stem cell model (23) can be reformulated as a state-dependent delay differential equa-
tion for the variable v, coupled with the differential equation (21). Computationally, a first
advantage is the dimension of the approximating system, which is 2(M+1) for the approach
presented in [4, 24], whereas it is M + 2 for the approach proposed here. But even more

Fig. 8 Stem cell model. Stable equilibrium (dotted line), and stable (solid) and unstable (dashed) periodic
orbits corresponding to the rate specifications as in the right panel of Fig. 6, p = 3.9, and M = 10
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important is the fact that, in the delay formulation, the maturity of a cell that entered the
progenitor compartment at time t − a is defined via the IVP

x′(α) = g(x, v(t − a + α)), α ∈ [0, a], (28)

x(0) = xb, (29)

and, at each time t , the (state-dependent) delay τ is defined via the condition x(τ) = xm,
so that τ depends itself on the values v(s) for s ≤ t . The solution of (28) & (29) and
of the implicit condition for τ (which can be implemented, with a slight modification of
the IVP, using an event locator for the numerical ODE solver) should be incorporated in
the definition of the approximating ODE system and therefore solved numerically at every
continuation step. The effect is a drastic increase in the computation time whenM increases,
as shown in Table 5. The discretization approach proposed here reduces the computation
time by at least one but may be even two orders of magnitude: the computations above can
be performed in a few seconds, while the computations with the discretized version of the
delay formulation take several minutes.

4 Convergence of Equilibria

In this section we focus on equilibria. An equilibrium (m,E) of (3) & (11) satisfies

g(x, E)m′(x) = b −
∫ x

xb

μ(y,E)m′(y)dy, x ∈ [xb, xm], (30)

m(xb) = 0, (31)

F(m, E) = 0, (32)

b = B(m,E). (33)

Table 5 Computation time (seconds) for a 50-step continuation of: equilibrium, periodic solution, Hopf
bifurcation curve of the stem cell model

Equilibrium Periodic Hopf

M Size Delay Speed-up Size Delay Speed-up Size Delay Speed-up

2 0.32 – – 4.82 – – 1.85 – –

3 0.24 – – 7.79 – – 1.96 – –

4 0.25 7.18 28.72 7.14 204.53 28.64 2.54 110.47 43.49

5 0.27 5.66 20.96 8.29 254.46 30.69 2.79 152.33 54.59

6 0.29 7.25 25.00 8.19 318.91 38.93 3.51 224.15 63.86

7 0.28 7.24 25.85 9.03 259.59 28.74 4.26 247.30 58.05

8 0.36 8.71 24.19 10.58 417.03 39.41 6.69 425.11 63.54

9 0.39 9.66 24.77 11.70 448.95 38.37 6.07 517.63 85.27

10 0.46 10.75 23.37 12.19 499.52 40.97 7.46 626.31 83.95

Comparison between the pseudospectral discretization of size proposed here and the pseudospectral dis-
cretization of the delay equation formulation proposed in [4, 24]. We also included an estimate of the
observed speed-up, computed as the ratio between the computation times for discretization of the delay and
size formulation
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On the other hand, an equilibrium (ĉM, ÊM) of (10) & (12) satisfies

G(ÊM)DĉM = b̂M − �(ÊM)ĉM, (34)

F(P ĉM, ÊM) = 0, (35)

b̂M = B(P ĉM, ÊM). (36)

We first study empirically the convergence of the approximating equilibrium vectors for
the models considered in Sections 2 and 3. Later on, in Section 4.2, we will present a prelim-
inary theoretical study of convergence under special assumptions on the model ingredients,
which are neither realistic nor necessary, but allow us to keep the analysis simple while
highlighting some of the key features of the convergence result. In particular we will assume
that

(h1) g, μ : [xb, xm] × R
d → R+ are continuously differentiable;

(h2) g < g < g for some g, g > 0.

Assumption (h1) is motivated by [17], where the principle of linearized stability for models
of Daphnia type is proved in the case when β is smooth as well. Assumption (h2) precludes
shrinking of individuals, but is not realistic in the sense that often g → 0 as x → xm, or, as
in the case of the rate g defined in Table 1, g(x,E) = 0 for x ≥ x̂(E) (where the end point
depends on the environment). We make this assumption in order to simplify the theoretical
analysis and be able to define the reciprocal 1/g on the whole interval [xb, xm].

4.1 Numerical Convergence of Equilibria

Consider the model for Daphnia. We study numerically the approximation of the equilib-
rium (m, S) for the rates and parameter values specified in Tables 1 and 2. Note that the
numerical tests are obtained by using the piecewise approach: M denotes the degree of
the approximating piecewise polynomial, whereas the approximating system has dimension
2M +1. In view of a correct interpretation of the numerical results and in order to relate the
numerical convergence to the theoretical analysis in Section 4.2, we stress that the piecewise
approach takes care of the discontinuities of the rate β, but is not related with the regularity
of g: the maturation rate g as defined in Table 1 is continuous in [xb, xm], but its derivative
is discontinuous at x̂(S) := xmf0(S), which may be in (xb, xm) and cannot be fixed a priori.
Moreover, g(x, S) = 0 for x ≥ x̂(S). Hence g does not satisfy (h1) and (h2). Note how-
ever that the rate g defined in Table 1 is absolutely continuous with derivative of bounded
variation, and the same holds for g−1. This fact, together with Theorem 1 below, will be
important for explaining the convergence rates emerging from the following numerical tests.

The approximating equilibria (ĉM, ŜM) ∈ R
2M × R are obtained with MatCont, setting

the software tolerance at 10−10. Some examples for μ = 0.3 and K = 1, 2 are represented
in Fig. 9, where the reference equilibrium distribution (gray) is plotted together with the
approximating vectors ĉM for some values of M . Note that the components of the vector
ĉM in Fig. 9 are non-decreasing, as expected.

For the same parameter values we study the convergence of the errors

εm(M) := max
j=1,...,2M

|m(xj ) − ĉM,j |, εS(M) := |S − ŜM |,

see Fig. 10. The figures show that the convergence order of the error is polynomial in M

like O(M−2).
The reference equilibrium (m, S) of (3) & (14) can be computed numerically (to machine

precision) from the analytic formulas by taking a small ε > 0 and working with g̃ defined
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Fig. 9 Daphnia model. Stationary distributions m(x) (gray) and approximating vectors ĉM ∈ R
2M for M =

3, 5, 10, μ = 0.3, and K = 1 (left) and K = 2 (right)

as g̃ = max{g, ε} (we took ε equal to the machine precision). Indeed, under the positivity
assumption (h2), system (3) & (14) admits a nontrivial equilibrium (m, S) if and only if the
condition R0(S) = 1 is satisfied, where

R0(S) :=
∫ xm

xb

β(x, S)

g(x, S)
e
− ∫ x

xb
μ(y,S)
g(y,S)

dy
dx (37)

is the basic reproduction number associated with (3). Under the assumption that R′
0(S) > 0

for all S > 0, the positive equilibrium S is unique when it exists. Under this condition, the
equilibrium is given explicitly by

m(x) = b(S)

∫ x

xb

1

g(ξ, S)
e
− ∫ ξ

xb
μ(y,S)

g(y,S)
dy
dξ, (38)

with

b(S) = f (S)

(∫ xm

xb

γ (x, S)

g(x, S)
e
− ∫ x

xb
μ(y,S)
g(y,S)

dy
dx

)−1

. (39)

Fig. 10 Daphnia model. Log-log plot of the errors εm(M) and εS(M), for fixed μ = 0.3 and K = 1 (left),
K = 2 (right). The gray dashed line is M−2
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For the numerical tests, (37), (38) and (39) were solved numerically to machine precision
to obtain the reference equilibrium solution. The numerical error was then computed for
each M by comparing the equilibria obtained with MatCont with the reference equilibrium
solution.

We remark that, for the specific rates used in this section (Tables 1, 2 and μ = 0.3), the
nontrivial equilibrium can be explicitly computed as

m(x) =

⎧⎪⎨
⎪⎩

b(S)
γg

[
1 −

(
x̂(S)−x

x̂(S)−xb

) μ
γg

]
if x ≤ x̂(S),

b(S)
γg

if x > x̂(S),

where μ
γg

= 2. Hence, for this choice of parameters, m is continuously differentiable with

m′′ of bounded variation.
We consider now the model for stem cells, for the rates in Table 3 and parameters in

Table 4, with δ ≡ 0. This implies, in the pseudospectral approximation, that � ≡ 0 ∈
R

M×M . We analyze the approximating equilibrium (ĉM, ŵM, v̂M) obtained with MatCont,
setting the software tolerance at 10−10. As done for Daphnia, we study the approximation
of the maturity distribution at equilibrium and the convergence of the approximation error
when increasing M . The reference equilibrium values (m, w, v) are obtained by solving
numerically (to machine precision) the equation q(v) = 0, then calculating w = μvv/r(v).
Under assumption (h2), the maturity distribution is then given by

m(x) = b

∫ x

xb

1

g(y, v)
dy,

for b = μvv.
For the maturation rate (27), which is positive and independent of x, the equilibrium

distribution m is a linear function of x. Numerical simulations (not included here) show
that, for fixed parameter values, the equilibrium values m, w and v are approximated to the
tolerance imposed to the software already for M = 1.

To illustrate how the convergence rate is affected by g, we consider the following positive
maturation rates with different regularity properties:

g(x, v) =
⎧⎨
⎩
0.6 − p

√
0.25−x2

2(1+v)
, x ∈ [0, 0.5),

0.6 − p
√

0.25−(x−1)2

2(1+v)
, x ∈ [0.5, 1],

(40)

g(x, v) =
{
0.1 + px

1+v
, x ∈ [0, 0.5),

0.1 + p(1−x)
1+v

, x ∈ [0.5, 1], (41)

g(x, v) = −1.4 + 2p(1 − (x − 0.5)2)

1 + v
. (42)

Figure 11 illustrates the shape of the maturation rates, for fixed v = 1 and p = 2. Note that
(40) is non-Lipschitz, having unbounded derivative in x = 0.5. The rate (41) is continuous
and piecewise linear, hence Lipschitz, but with discontinuous derivative at x = 0.5. Finally,
(42) is smooth.

The left panels of Figs. 12, 13 and 14 show the reference equilibrium distribution m and
the corresponding approximating vectors ĉM obtained by MatCont continuation for M =
3, 5, 10, for the maturation rates (40)–(42). The right panels show the log-log plot of the
errors

εm(M) := max
j=1,...,M

|m(xj ) − ĉM,j |, εw(M) := |w − ŵM |, εv(M) := |v − v̂M |.
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Fig. 11 Plot of the maturation rates for fixed p = 2 and v = 1: non-Lipschitz (40) (green, solid), piecewise
linear (41) (magenta, dashed), quadratic (42) (blue, dotted)

Note that, for all functions, the error in the approximation of v reaches the accuracy 10−10

already for M = 1, whereas the convergence to the equilibrium distribution depends on the
regularity of the maturation rate g. In particular, Fig. 12 shows that the error is converging
with a rate between O(M−1) and O(M−2) for the non-Lipschitz maturation rate (40). The
convergence order is improved to O(M−2) for the maturation rate (41), which is Lipschitz
but with discontinuous derivative, see Fig. 13. Finally, for the smooth maturation rate (42),
Fig. 14 shows spectral convergence [34], i.e., of order O(M−k) for all k ∈ N, until the
barrier 10−6 is reached. As a side remark, we mention that the loss of accuracy in the
approximation of m and w is probably connected with the condition number of the matrix
G(v)D.

Fig. 12 Stem cell model. Left: stationary distribution m (gray) and approximating vectors ĉM for M =
3, 5, 10; right: log-log plot of the error, with parameters μv = 8, p = 2, and the non-Lipschitz maturation
rate (40). The gray dashed lines are M−1 and M−2
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Fig. 13 Same as Fig. 12, for the maturation rate (41). The gray dashed line is M−2

4.2 Theoretical Convergence of Equilibria

We conclude this work with a preliminary study of the convergence of the equilibria. For
the sake of simplicity we work under assumptions (h1) and (h2). We demonstrate how
the regularity of the rates g and μ influences the order of convergence of the equilibria,
thus providing a first (although not exhaustive) explanation to the behavior observed in the
numerical simulations.

To study whether and how the equilibria (ĉM, ÊM) satisfying (34)–(36) converge to
an equilibrium (m,E) satisfying (30)–(33), we proceed in different steps with a standard
strategy for structured models with environmental condition [15].

In equilibrium E is necessarily constant, but unknown. For given fixed E, the population
problem is linear, autonomous and positivity-preserving, so has, as a rule, a dominant eigen-
value. The requirement that this dominant eigenvalue equals zero is then a condition on E,
and the equilibrium size distribution is a scalar multiple of the corresponding normalized
eigenfunction.

Fig. 14 Same as Fig. 12, for the maturation rate (42)
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In equilibrium the birth rate b is constant too. The idea is now to first consider b as a
parameter and solve the linear problem, and this yields an equilibrium m as a function of
x, b and E. The linearity guarantees that b occurs as a multiplicative constant. So if we
substitute this expression into (4), the scalar b drops out and we obtain the equation for E

that guarantees that the dominant eigenvalue equals zero. (Note that we obtain it in the form
R0 = 1, with R0 the generation-bookkeeping equivalent of the dominant eigenvalue.) When
E is one-dimensional, this is one equation in one unknown.

For the ODE system obtained by pseudospectral approximation, the exact same proce-
dure applies. Therefore we can:

(i) first, compare m as a function of x, with parameters b and E, to the interpolation
polynomial corresponding to the equilibrium solution of the ODE with parameters b

and E (as both have b as a multiplicative parameter, we can restrict to b = 1 without
loss of generality);

(ii) next, compare the equations for E obtained, respectively, via the PDE and via the
ODE;

(iii) finally, examine the respective conditions for the multiplicative constant b obtained
by requiring that E determined in the last step is indeed a constant solution of (11).

The first step is studied in the general framework: we prove that, if the environmental
conditions and the birth rates converge, then also the size distributions converge to the true
one. The convergence of the environmental conditions and the birth rates is then at the core
of the next two steps, and these are treated separately in the two special cases of theDaphnia
model and the stem cell model. The Daphnia model is prototypical for problems with one-
dimensional E and exactly one state-at-birth, whereas in the stem cell model there is one
state-at-birth, too, but the environmental condition is, strictly speaking, two-dimensional.
But since the dependence on E has special structure, the analysis is actually rather simple.

Following step (i) above, we first assume that the environment is fixed and constant,
E(t) = E ∈ R

d , and we take the population birth rate as a given parameter, b(t) = b ∈
R+. When no confusion arises we omit the dependence on E, writing for instance g, μ

instead of g(·, E), μ(·, E), and we use the short-hand notation g−1 := 1
g(·,E)

. Let V be the

integral operator V φ(x) := ∫ x

xb
φ(y)dy, and let Vμ be defined such that Vμφ := V (μφ).

An equilibrium m(x) of (3) satisfies

(gm′)(x) + (Vμm′)(x) = b, x ∈ [xb, xm], (43)

m(xb) = 0, (44)

which admits the explicit solution

m(x) = b

∫ x

xb

1

g(y,E)
e
− ∫ y

xb
μ(ξ,E)
g(ξ,E)

dξ
dy. (45)

From (h1) and (h2) we can state the following regularity result.

Lemma 1 For every given b > 0, E ∈ R
d , m is continuously differentiable.

The continuity of m′ allows us to interpret equation (43) as an equation for m′ in the
Banach space C = C([xb, xm]) of continuous functions provided with the supremum norm
‖ · ‖ (note that we skip the subscript ∞ for ease of notation). We first prove the following
preliminary result, which will be useful to prove Theorem 1.
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Lemma 2 If φ ∈ C, then g−1Vμφ is continuously differentiable with

‖(g−1Vμφ)′‖ ≤
(
(xm − xb)‖(g−1)′‖‖μ‖ + ‖g−1μ‖

)
‖φ‖.

Moreover (I + g−1Vμ) : C → C is invertible with

‖(I + g−1Vμ)−1‖ ≤ 1 + (xm − xb)‖g−1‖‖μ‖. (46)

Proof The first statement follows trivially from

(g−1Vμφ)′ = (g−1)′Vμφ + g−1μφ.

As for the second statement, for φ ∈ C the problem(
I + g−1Vμ

)
ψ = φ ⇔ gψ + Vμψ = gφ

admits the explicit solution

ψ(x) = φ(x) − 1

g(x,E)

∫ x

xb

e−∫ x
y

μ(ξ,E)
g(ξ,E)

dξ
μ(y, E)φ(y)dy

and, under the regularity assumption (h1), the solution is unique. Hence (I + g−1Vμ) is
invertible and satisfies (46).

Consider now system (10). For fixed b̃(t) = b and E(t) = E, an equilibrium ĉM of (10)
satisfies

(G(E)D + �(E)) ĉM = b 1. (47)

We want to study the relation between m defined by (45) and ĉM defined by (47).
For the next result, we introduce the interpolation operator LM−1 : C → C, associating

to a function φ ∈ C the (M − 1)-degree polynomial such that (LM−1φ)(xk) = φ(xk), for
k = 1, . . . , M .

Theorem 1 Let b > 0 and E ∈ R
d . For M large enough the matrix G(E)D + �(E) is

invertible in R
M and, for m and ĉM defined in (45) and (47), respectively, it holds∥∥∥∥m′ − d

dx
(P ĉM)

∥∥∥∥ ≤ 2b
(
1 + (xm − xb)‖g−1‖‖μ‖

)
‖rM‖,

‖m − P ĉM‖NBV ≤ 2b(xm − xb)
(
1 + (xm − xb)‖g−1‖

)
‖rM‖,

where

rM := (I − LM−1) m′.

Proof We use a proof technique similar to [7, Chapter 5]. Since b contributes only as a
multiplicative factor, without loss of generality we restrict to b = 1. Define p as the solution
of the collocation problem corresponding to (43) & (44) on xk , k = 1, . . . , M , i.e.,

(gp′)(x) + (Vμp′)(x) = 1, x = x1, . . . , xM, (48)

p(xb) = 0. (49)
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It is easy to verify that, when it exists, a solution of (48) & (49) can be written explicitly as

p = P(G(E)D + �(E))−11. (50)

Since p′ has degree M − 1, it can be expressed as interpolating polynomial on M nodes,
i.e., we can write

p′ = LM−1

(
g−1 − g−1Vμp′) . (51)

We write (43) as
m′ = g−1 − g−1Vμm′ (52)

and define z := m′ − p′. By subtracting (51) from (52), we obtain

z = −LM−1(g
−1Vμz) + rM,

with
rM := (LM−1 − I )(g−1Vμm′) − (LM−1 − I )g−1 = (I − LM−1)m

′,
where the last inequality follows from (43) using the linearity of LM−1. Then z satisfies[

I + LM−1(g
−1Vμ)

]
z = rM, (53)

which we interpret as equation in C.
We show that [I + LM−1(g

−1Vμ)] is a perturbation of the operator (I + g−1Vμ). For
φ ∈ C, using classical results on the interpolation errors [35] and Lemma 2, we can bound

‖(I − LM−1)(g
−1Vμφ)‖ ≤ k

M
‖(g−1Vμφ)′‖

≤ k

M

(
(xm − xb)‖(g−1)′‖‖μ‖ + ‖g−1μ‖

)
‖φ‖,

where k is a constant independent of M . Hence, taking M large enough so that

‖(I − LM−1)(g
−1Vμ)‖ <

1

2
,

Banach’s perturbation lemma ensures that [I + LM−1(g
−1Vμ)] is invertible in C with∥∥∥∥

[
I + LM−1(g

−1Vμ)
]−1

∥∥∥∥ ≤ 2

∥∥∥∥
(
I + g−1Vμ

)−1
∥∥∥∥ . (54)

This proves the existence of a solution of (48) & (49) for M large enough. In particular, the
matrix (G(E)D + �(E)) is invertible and p is given exactly by (50).

From (46), (53) and (54) we obtain

‖z‖ ≤ 2
(
1 + (xm − xb)‖g−1‖‖μ‖

)
‖rM‖.

Finally, we can bound

‖m − p‖NBV =
∫ xm

xb

|z(x)|dx ≤ (xm − xb)‖z‖.

Note that the order of convergence of ‖m′ − d
dx (P ĉM)‖ to zero depends on the interpola-

tion error of m′. Standard theory guarantees that the interpolation error in supremum norm
vanishes for functions that are at least absolutely continuous [29]. In particular, the con-
vergence rate depends on the regularity of the interpolated function, and it is O(M−1) for
functions that are either continuously differentiable or absolutely continuous with deriva-
tive of bounded variation [31, 35]. Convergence as O(M−ν) of higher order ν > 1
can be obtained for a function f that has continuous (absolutely continuous) derivatives
f (1), . . . , f (ν−1), and f (ν) is continuous (bounded variation) [35].
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Note that m′ inherits the regularity properties of μg−1, and, under (h2), g−1 is Lipschitz
continuous if and only if g itself is, indeed ‖(g−1)′‖ = ∥∥ g′

g2

∥∥. So assumption (h2) guarantees

that the convergence of equilibria is at least O(M−1). Figures 10 and 12–14 are consistent
with the error bounds given in Theorem 1 since they show the error (in supremum norm) in
the approximation of m, and hence it is not unreasonable to expect a gain of one order of
convergence compared to the approximation of the derivative m′.

We now study how the equilibria (ĉM,ÊM) of (10)&(12), satisfying equations (34)–(36),
approximate the equilibria (m,E) of the full system (3) & (11), satisfying (30)–(33).

Let 
, 
M : R+ × R
d → NBV be such that 
(b,E) = m is defined by (45), and


M(b,E) = P ĉM with ĉM defined by (47). 
 and 
M are linear in the first argument
and, from (h1), continuously differentiable. With the above definitions, m = 
(b, E) and
P ĉM = 
M(b̂M, ÊM).

From Theorem 1 and from the continuity of 
, 
M we can easily prove the conver-
gence of the approximating size distributions under the assumption of convergence of the
environmental condition and the population birth rates.

Corollary 1 For all M , let b̂M > 0 and ÊM ∈ R
d be such that ÊM → E and b̂M → b as

M → ∞. Then ‖
M(b̂M, ÊM) − 
(b,E)‖NBV → 0 as M → ∞.

Therefore we are left to prove the convergence ÊM → E and b̂M → b. This is done
separately for the two models introduced in Section 2, using Theorem 1 and following steps
(ii) and (iii) summarized at the beginning of this section. Corollary 1 then allows us to
conclude the convergence of the equilibria of the approximating systems to those of the
infinite dimensional system.

We first consider the Daphnia model and assume that f : R+ → R is continuously dif-
ferentiable, and the rates β and γ are continuously differentiable maps from [xb, xm] × R+
to R+. The assumption on the rates β and γ allows us to work with the non-piecewise dis-
cretization, so that the distributionm is approximated by one single polynomial of degreeM .
We stress that the results can be extended to the piecewise approach, under the assumption
that β and γ are continuously differentiable in each interval.

The regularity of the rates β, γ ensures that B and F defined by

B(m, S) :=
∫ xm

xb

β(y, S)m(dy), (55)

F(m, S) := f (S) −
∫ xm

xb

γ (y, S)m(dy) (56)

are continuously differentiable as maps from NBV × R+ to R.
System (3) & (14) admits a nontrivial equilibrium (m, S) if and only ifm = 
(b, S)with

b = B(
(b, S), S). (57)

By linearity of 
 and B with respect to the first argument, b drops in (57) and we obtain for
S the equation

R0(S) = 1,

with R0 defined in (37). R0 is continuously differentiable and, typically, an increasing
function of S, and hence the equilibrium S is unique when it exists.
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From S, the value b is obtained as a function of S by solving the equilibrium condition
for the environment, i.e.,

F(
(b, S), S) = 0.

For F defined by (56), this gives b = b(S) defined by (39). The equilibrium m = 
(b, S)

is then given explicitly by (38).
A nontrivial equilibrium (ĉM, ŜM) of the approximating system (15) & (16) satisfies the

condition R̂0(ŜM) = 1, where R̂0(S) := B(
M(1, S), S) is a quasi basic reproduction
number of the ODE. Explicitly, this reads

R̂0(S) := β̂(S)(G(S)D + �(S))−11.

Then b̂M is obtained from ŜM by solving F(
M(b̂M, ŜM), ŜM) = 0, which gives b̂M =
b̂(ŜM) with

b̂(S) := f (S)

γ̂ (S)(G(S)D + �(S))−11
.

Finally, the equilibrium ĉM is defined by

ĉM = b̂M(G(ŜM)D + �(ŜM))−11.

Using Theorem 1, we can prove the following result.

Theorem 2 Let R0(S) = 1 for S > 0, with R′
0(S) �= 0. Then there exists M such that, for

M ≥ M , there exists (ŜM)M such that R̂0(ŜM) = 1 and ŜM → S and b̂(ŜM) → b(S) as
M → ∞. Moreover, every accumulation point S of a sequence (ŜM)M satisfying R̂0(ŜM) =
1 is such that R0(S) = 1.

Proof For S > 0 and εM(S) := |R0(S) − R̂0(S)| we can estimate

|εM(S)| ≤ ‖β‖‖m − P ĉ‖NBV

for m = 
(1, S) and P ĉ = 
M(1, S), hence, from Theorem 1, |εM(S)| → 0 as M → ∞
for all S > 0.

Since R′
0(S) �= 0, let K ⊂ R+ be a compact neighborhood of S such that R′

0(S) does

not change sign in K . For some M = M(K) and M ≥ M , R̂0(S) − 1 changes sign at
the boundary of K , so from the intermediate value theorem we conclude that there exists
ŜM ∈ K such that R̂0(ŜM) = 1.

To estimate the convergence rate, by definition we have

εM(ŜM) = |R̂0(ŜM) − R0(ŜM)| = |R0(S) − R0(ŜM)|
and

R0(S) − R0(ŜM) = R′
0(ξM)(S − ŜM),

where ξM is a point between S and ŜM . Let η=minS∈K |R′
0(S)| and εM := minS∈K |εM(S)|.

For all M large enough we can bound

|S − ŜM | ≤ |R0(S) − R0(ŜM)|
|R′

0(ξM)| ≤ εM(ŜM)

η
≤ εM

η
.
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The convergence b̂(ŜM) → b(S) follows from the fact that 
, 
M and F defined in
(56) are continuously differentiable. Indeed f (ŜM) → f (S) and, by defining m = 
(1, S),
ψ̂M = 
(1, ŜM) and p̂M = 
M(1, ŜM), we can estimate∥∥∥∥

∫ xm

xb

γ (x, S)m′(x)dx −
∫ xm

xb

γ (x, ŜM)p̂′
M(x)dx

∥∥∥∥
≤

∫ xm

xb

|γ (x, S)|
(
|m′(x) − ψ̂ ′

M(x)| + |ψ̂ ′
M(x) − p̂′

M(x)|
)
dx

+
∫ xm

xb

|γ (x, S) − γ (x, ŜM)| |p̂′
M(x)|dx

≤ ‖γ (·; S)‖
(
‖
(1, S) − 
(1, ŜM)‖NBV + ‖
M(1, ŜM) − 
M(1, ŜM)‖NBV

)

+|γ (x, S) − γ (x, ŜM)| ‖
M(1, ŜM)‖NBV

which vanishes because 
, 
M , γ are continuously differentiable in their domain, and
ŜM ∈ K for M ≥ M .

The last statement follows from the continuity of R0 and R̂0.

We finally study the convergence of the environmental conditions in the stem cell model,
assuming that q, r : R+ → R and g, δ : [xb, xm] × R+ → R are continuously differen-
tiable. These assumptions are motivated by the derivation of the linear variational equation
associated to equilibria in [25]. In light of Remark 1, since w is considered as environmen-
tal condition and the birth rate as inhomogeneous in m, we cannot in principle simplify the
constant b from the equation for the birth rate. The next result shows that linearity is still
present, although slightly hidden in the equations, and convergence of the environmental
condition follows.

Theorem 3 Let (m,w, v) be a nontrivial equilibrium of (21)–(23). Then for all M , system
(24)–(26) admits an equilibrium (ĉM, ŵM, v̂M) such that v̂M = v and ŵM → w as
M → ∞. In particular, ŵM = w if δ ≡ 0.

Proof (m,w, v) satisfies

g(x, v) m′(x) = r(v)w +
∫ x

xb

δ(y, v) m′(y)dy, x ∈ [xb, xm], (58)

q(v) = 0, (59)

g(xm, v) m′(xm) = μvv. (60)

On the other hand, an equilibrium (ĉM, ŵM, v̂M) of (24)–(26) satisfies

G(v̂M)DĉM = r(v̂M)ŵM 1 + �(v̂M)ĉM, (61)

q(v̂M) = 0, (62)

g(xm, v̂M)[DĉM ]M = μvv̂M . (63)

It follows immediately from (59) and (62) that v̂M = v.
From (60) and (63) we can write

[DĉM ]M = μvv

g(xm, v)
= m′(xm)
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and, if δ ≡ 0, from the last component of (61) we obtain

ŵM = g(xm, v)[DĉM ]M
r(v)

= g(xm, v)m′(xm)

r(v)
= w.

If δ �= 0, note that w and ŵM contribute only as a multiplicative factor in the equilibrium
distributions m and P ĉM , hence they simplify in (58) and (61). Therefore we can write
m = wψ and P ĉM = ŵMp̂M , where ψ and p̂M are equilibria of, respectively, (23) and
(24) with v = v and w = 1. Theorem 1 ensures that ‖p̂′

M −ψ ′‖ → 0. We can then use (60)
and (63) to compare

w = μvv

g(xm, v)ψ ′(xm)
,

ŵM = μvv

g(xm, v)p̂′
M(xm)

,

from which we conclude ŵM → w.

Corollary 1, together with Theorems 2 and 3, which are specific to the Daphnia model
and the stem cell model, respectively, imply the existence of an equilibrium of the approx-
imating system for M large enough, and the convergence to the equilibrium of the full
infinite dimensional system as M → ∞.

5 Concluding Remarks

Despite the availability of the PSPManalysis package [9], the use of physiologically struc-
tured population models seems to be hampered by the lack of user-friendly and well-tested
numerical tools. And since the PSPM research community is rather small, it is very unlikely
that software tools specifically constructed for this class of models will be developed and
maintained in the near or far future. The aim of the present paper is to echo the main mes-
sage of [4] and to advocate an attractive alternative: use pseudospectral approximation to
reduce to a finite dimensional system and next use well established tools for ODE. Origi-
nally we had in mind to use the delay equation formulation of structured models as explained
in [17]. But while thinking about the Daphnia model, we realized that a direct attack of the
PDE formulation offers great computational advantages. In fact, the discretization approach
proposed here reduces the computation time by at least one but may be even two orders
of magnitude compared to what is required by the discretization in delay formulation, see
Table 5. We note, however, that the latter approach may be convenient when it is important
to keep track of the individual age.

As an alternative way to overcome the computational issues inherent with the approach
for delay equations [4], we mention the idea proposed in [1, 2], where the collocation solu-
tion of (28) & (29) is incorporated into the vector of variables for numerical continuation.
In this way, at every continuation step the size distribution is approximated by continuation
from the previous step, with no need of solving the IVP (28) & (29) from scratch.

Section 4 contains numerical tests showing the convergence of the approximating equi-
libria for the models considered in this paper, and a preliminary theoretical analysis under
rather restrictive assumptions on the individual rates. We believe that this preliminary anal-
ysis is useful to draw the attention to one of the main features emerging from the numerical
tests, i.e., that the approximation error is linked to the interpolation error of the rate g (which,
in turn, depends on its regularity). Figures 10–14 show that the influence of the regularity
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of g on the convergence rate is in fact observed in practice. However, convergence can be
reached also for rates that do not satisfy assumptions (h1)–(h2): this is not surprising since
the convergence of polynomial interpolants can be proved under weaker regularity assump-
tions [29]. We plan to extend and improve the convergence analysis in the near future,
considering more realistic assumptions on g and weaker regularity conditions.

For the delay discretization [4], on the other hand, the correspondence between equilibria
is exactly one-to-one and the eigenvalues of the linearized operator converge with spectral
accuracy, due to the fact that the corresponding eigenfunctions are exponentials. We won-
der in which way the polynomial order of convergence of equilibria, which emerges from
Theorem 1, affects the convergence of the eigenvalues of the linearized operators. After the
analysis of equilibria, the proof of convergence of stability indicators and bifurcation points
is indeed the next step for ensuring the validity of the method for numerical bifurcation
analysis.

In this spirit, B. deWolff, S.M.Verduyn Lunel, FS and OD investigate in work in progress
the convergence of the normal form coefficient of a Hopf bifurcation for delay differential
equations. Wishful thinking suggests to go one step beyond and derive properties of the
infinite dimensional system by passing to the limit in results for the approximation (note that
both models considered here display a form of state-dependent delay and that the theory of
state-dependent delay equations is technically demanding because of smoothness problems
[27]; since polynomials are C∞, the approximation eliminates the smoothness problem; the
technically demanding step is now to pass to the limit).

In the spirit of using software for ODE for numerical bifurcation analysis of structured
population models, we recall that infinite dimensional systems may admit an equivalent
representation as finite dimensional ODE. Conditions on the individual rates under which
such reduction is possible are studied in detail in [14, 16].

We also note that the assumption of finite maximal size may be relaxed by using suitable
nodes in the semi-infinite real line and suitable interpolation rules, as done for instance in
[26].

Finally we mention the obvious fact that pseudospectral approximation can also be used
to study the dynamics experimentally via the computation of orbits with ODE solvers, i.e.,
by varying not just parameters but also initial conditions. So we end with a recommendation:
if you want to investigate a structured population model beyond what can be derived by a
pen and paper analysis, try pseudospectral approximation in combination with numerical
tools for ODE.
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