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The Brauer group of the moduli stack of elliptic curves

Benjamin Antieau∗ and Lennart Meier†

Abstract

We compute the Brauer group of M1,1, the moduli stack of elliptic curves, over SpecZ,
its localizations, finite fields of odd characteristic, and algebraically closed fields of
characteristic not 2. The methods involved include the use of the parameter space of
Legendre curves and the moduli stack M(2) of curves with full (naive) level 2 structure,
the study of the Leray–Serre spectral sequence in étale cohomology and the Leray
spectral sequence in fppf cohomology, the computation of the group cohomology of S3

in a certain integral representation, the classification of cubic Galois extensions of Q,
the computation of Hilbert symbols in the ramified case for the primes 2 and 3, and
finding p-adic elliptic curves with specified properties.
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1 Introduction

Brauer groups of fields have been considered since the times of Brauer and Noether; later
Grothendieck generalized Brauer groups to the case of arbitrary schemes. Although both
the definition via Azumaya algebras and the cohomological definition generalize to arbitrary
Deligne–Mumford stacks, Brauer groups of stacks have so far mostly been neglected espe-
cially for stacks containing arithmetic information. Some exceptions are the use of Brauer
groups of root stacks, as in the work of Chan–Ingalls [CI05] on the minimal model program
for orders on surfaces, the work of Auel–Bernardara–Bolognesi [ABB14] on derived cate-
gories of families of quadrics, and the work of Lieblich [Lie11], who computed the Brauer
group Br(Bµn) over a field and applied it to the period-index problem. In this paper, we
study the Brauer group Br(M) of the moduli stack of elliptic curves M = M1,1.

The case of the Picard group has been considered before. Mumford showed in [Mum65]
that Pic(Mk) = H1

ét(Mk,Gm) ∼= Z/12 if k is a field of characteristic not dividing 6, and
that the Picard group is generated by the Hodge bundle λ. The bundle λ is characterized
by the property that u∗λ ∼= p∗Ω

1
E/T when u : T → M classifies a family p : E → T

of elliptic curves. This calculation was extended by Fulton and Olsson who showed that
Pic(MS) ∼= Pic(A1

S)⊕Z/12 whenever S is a reduced scheme [FO10].

In contrast, an equally uniform description of Br(MS) does not seem possible (even if
we assume that S is regular noetherian); both the result and the proofs depend much more
concretely on the arithmetic on S. The following is a sample of our results in ascending
order of difficulty. We view (5) as the main result of this paper.

Theorem 1.1. (1) Br(Mk) = 0 if k is an algebraically closed field of characteristic not
2,1

(2) Br(Mk) ∼= Z/12 if k is a finite field of characteristic not 2,

(3) Br(MQ) ∼= Br(Q) ⊕⊕
p6≡3 mod 4 Z/4 ⊕

⊕
p≡3 mod 4 Z/2 ⊕ H1(Q, C3),

where p runs over all primes and −1,

(4) Br(M
Z[

1
2 ]
) ∼= Br(Z[ 12 ])⊕Z/2⊕Z/4, and

(5) Br(M) = 0.

In all cases the non-trivial classes can be explicitly described via cyclic algebras (see
Lemma 7.2, Proposition 9.6 and Remark 9.8). In general, the p-primary torsion for p ≥ 5
is often easy to control via the following theorem.

Theorem 1.2. Let S be a regular noetherian scheme and p ≥ 5 prime. Assume that
S[ 1

2p ] = S
Z[

1
2p ]

is dense in S and that MS → S has a section. Then, the natural map

p Br
′(S)→ p Br

′(MS) is an isomorphism.

Here, Br′(MS) denotes the cohomological Brauer group, which agrees with Br(MS) when-
ever S is affine and at least one prime is invertible on S.

Let us now explain how to compute the 2- and 3-primary torsion in the example of
Br(M

Z[
1
2 ]
). We use the S3-Galois cover M(2)→ M

Z[
1
2 ]
, where M(2) is the moduli stack of

elliptic curves with full (naive) level 2-structure. The Leray–Serre spectral sequence reduces
the problem of computing Br(M

Z[
1
2 ]
) to understanding the low-degree Gm-cohomology of

M(2) together with the action of S3 on these cohomology groups and to the computation of
differentials.

1Minseon Shin has proved in [Shi19] that when k is algebraically closed of characteristic 2 one has
Br(Mk) ∼= Z/2.
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To understand the groups themselves, it is sufficient to use the fact that M(2) ∼= BC2,X ,
the classifying stack of cyclic C2-covers over X , where X is the parameter space of Legendre
curves. Explicitly, X is the arithmetic surface

X = P1

Z[
1
2 ]
− {0, 1,∞} = SpecZ[ 12 , t

±1, (t− 1)−1],

and the universal Legendre curve over X is defined by the equation

y2 = x(x − 1)(x− t).

The Brauer group of BC2,X can be described using a Leray–Serre spectral sequence as well,
but this description is not S3-equivariant, which causes some complications, and we have
to use the S3-equivariant map from M(2) to X , its coarse moduli space, to get full control.
Knowledge about the Brauer group of X leads for the 3-primary torsion to the following
conclusion.

Theorem 1.3. Let S be a regular noetherian scheme. If 6 is a unit on S, then there is an
exact sequence

0→ 3 Br
′(S)→ 3 Br

′(MS)→ H1(S,C3)→ 0,

which is non-canonically split.

There is a unique cubic Galois extension of Q which is ramified at most at (2) and
(3), namely Q(ζ9 + ζ9). This shows that the cokernel of Br(Z[ 16 ]) →֒ Br(M

Z[
1
6 ]
) is Z/3.

The proof that this extra class does not extend to M
Z[

1
2 ]
, which is similar to the strategy

discussed below for the 2-torsion, uses the computation of cubic Hilbert symbols at the
prime 3. Putting these ingredients together, we conclude that Br(M

Z[
1
2 ]
) is a 2-group,

and further computations first over Z[ 12 , i] and then over Z[ 12 ] let us deduce the structure in
Theorem 1.1(4). The corresponding general results on 2-torsion are contained in Proposition
9.3 and Theorem 9.1. They are somewhat more complicated to state so we omit them from
this introduction.

To show that Br(M) = 0, we need an extra argument since all our arguments using the
Leray–Serre spectral sequence presuppose at least that 2 is inverted. Note first that the
map Br(M) → Br(M

Z[
1
2 ]
) is an injection. Thus, we have only to show that the non-zero

classes in Br(M
Z[

1
2 ]
) do not extend to M. Our general method is the following. For each

non-zero class α in the Brauer group ofM
Z[

1
2 ]
, we exhibit an elliptic curve over SpecZ2 such

that the restriction of α to SpecQ2 is non-zero. Such an elliptic curve defines a morphism
SpecZ2 →M and we obtain a commutative diagram

Br(Q2) Br(M
Z[

1
2 ]
)oo

Br(Z2)

OO

Br(M)

OO

oo

(1.4)

Together with the fact that Br(Z2) = 0, this diagram implies that the class α cannot come
from Br(M). This argument requires us to understand explicit generators for Br(M

Z[
1
2 ]
)

and the computation of Hilbert symbols again.
We remark that the computation of Br(M) – while important in algebraic geometry and

in the arithmetic of elliptic curves – was nevertheless originally motivated by considerations
in chromatic homotopy theory, especially in the possibility in constructing twisted forms
of the spectrum TMF of topological modular forms. The Picard group computations of
Mumford and Fulton–Olsson are primary inputs into the computation of the Picard group
of TMF due to Mathew and Stojanoska [MS16].
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Conventions. We will have occasion to use Zariski, étale, and fppf cohomology of schemes
and Deligne-Mumford stacks. We will denote these by Hi

Zar(X,F ), Hi(X,F ), and Hi
pl(X,F )

when F is an appropriate sheaf on X . Note in particular that without other adornment,
Hi(X,F ) or Hi(R,F ) (when X = SpecR) always denotes étale cohomology. If G is a group
and F is a G-module, we let Hi(G,F ) denote the group cohomology.

For all stacks X appearing in this paper, we will have Br′(X) ∼= H2(X,Gm). Thus, we
will use the two groups interchangeably. When working over a general base S, we will
typically state our results in terms of Br′(S) or Br′(MS). However, when working over an
affine scheme, such as S = SpecZ[ 12 ], we will write Br(S) or Br(MS). There should be no
confusion as in all of these cases we will have Br(S) = Br′(S) and Br(MS) = Br′(MS) and
so on by [dJ].

For an abelian group A and an integer n, we will denote by nA the subgroup of n-primary
torsion elements: nA = {x ∈ A : nkx = 0 for some k ≥ 1}.

Acknowledgments. We thank the Hausdorff Research Institute for Mathematics, UIC,
and Universität Bonn for hosting one or the other author in 2015 and 2016 while this paper
was being written. Furthermore, we thank Asher Auel, Akhil Mathew, and Vesna Stojanoska
for their ideas at the beginning of this project and Peter Scholze and Yichao Tian for the
suggestion to use fppf-cohomology and the idea for the splitting in Proposition 2.9. Finally,
we thank the anonymous referees for their helpful suggestions.

2 Brauer groups, cyclic algebras, and ramification

We review here some basic facts about the Brauer group, with special attention to providing
references for those facts in the generality of Deligne-Mumford stacks. For more details about
the Brauer group in general, see [Gro68a].

Any Deligne-Mumford stack has an associated étale topos, and we can therefore consider
étale sheaves and étale cohomology [LMB00].

Definition 2.1. If X is a quasi-compact and quasi-separated Deligne-Mumford stack, the
cohomological Brauer group of X is defined to be Br′(X) = H2(X,Gm)tors, the torsion
subgroup of H2(X,Gm).

Because of its definition as the torsion in a cohomology group, the cohomological Brauer
group is amenable to computation via Leray–Serre spectral sequences, long exact sequences,
and so on, as we will see in the next sections. However, our main interest is in the Brauer
group of Deligne-Mumford stacks.

Definition 2.2. An Azumaya algebra over a Deligne-Mumford stack X is a sheaf of
quasi-coherent OX -algebras A such that A is étale-locally on X isomorphic to Mn(OX), the
sheaf of n× n-matrices over OX , for some n ≥ 1.

In particular, an Azumaya algebra A is a locally free OX -module, and the degree
n appearing in the definition is a locally constant function. If the degree n is in fact
constant, then A corresponds to a unique PGLn-torsor on X because the group of k-
algebra automorphisms of Mn(k) is isomorphic to PGLn(k) for fields k. The exact sequence
1→ Gm → GLn → PGLn → 1 gives a boundary map

δ : H1(X,PGLn)→ H2(X,Gm).

For an Azumaya algebra A of degree n, we write [A] for the class δ(A) in H2(X,Gm).
In general, when X has multiple connected components, its invariant [A] ∈ H2(X,Gm) is
computed on each component.

Example 2.3. 1. If E is a vector bundle on X of rank n > 0, then A = End(E), the
sheaf of endomorphisms of E, is an Azumaya algebra on X . Indeed, in this case, A
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is even Zariski-locally equivalent to Mn(OX). The class of A in H1(X,PGLn) is the
image of E via H1(X,GLn)→ H1(X,PGLn), so the long exact sequence in nonabelian
cohomology implies that [A] = 0 in H2(X,Gm).

2. If A and B are Azumaya algebras on X , then A⊗OX
B is an Azumaya algebra.

Definition 2.4. Two Azumaya algebras A and B are Brauer equivalent if there are
vector bundles E and F on X such that A ⊗OX

End(E) ∼= B ⊗OX
End(F ). The Brauer

group Br(X) of a Deligne-Mumford stack X is the multiplicative monoid of isomorphism
classes of Azumaya algebras under tensor product modulo Brauer equivalence.

In terms of Azumaya algebras, addition is given by the tensor product [A] + [B] =
[A ⊗OX

B], and −[A] = [Aop]. Here are the basic structural facts we will use about the
Brauer group.

Proposition 2.5. (i) The Brauer group of a quasi-compact and quasi-separated Deligne-
Mumford stack X is the subgroup of Br′(X) generated by [A] for A an Azumaya algebra
on X.

(ii) The Brauer group Br(X) is a torsion group for any quasi-compact and quasi-separated
Deligne-Mumford stack X.

(iii) If X is a regular and noetherian Deligne-Mumford stack, then H2(X,Gm) is torsion,
so in particular Br′(X) ∼= H2(X,Gm).

(iv) If X is a regular and noetherian Deligne-Mumford stack, and if U ⊆ X is a dense
open subset, then the restriction map H2(X,Gm)→ H2(U,Gm) is injective.

(v) If X is a scheme with an ample line bundle, then Br(X) = Br′(X).

(vi) If X is a regular and noetherian scheme with p invertible on X, then the morphism

pH
i(X,Gm)→ pH

i(A1
X ,Gm) on p-primary torsion is an isomorphism for all i ≥ 0.

Proof. See [Gro68a, Section 2] for points (i) and (ii). The proof of (iv) is analogous to that
of [Lie08, Lemma 3.1.3.3], using an analogue of [LMB00, Proposition 15.4] to generalize
[Lie08, Lemma 3.1.1.9] to algebraic stacks. See also [ABB14, Proposition 1.26]. For (v), see
de Jong [dJ].

For (iii), see for instance [Gro68b, Proposition 1.4] in the case of schemes. We must
generalize it to the case of a regular noetherian Deligne-Mumford stack X . We can assume
that X is connected and hence irreducible as X is normal. Pick U ⊆ X a dense open such
that U admits a finite étale map V → U of degree n where V is a scheme. The composition
H2(U,Gm) → H2(V,Gm) → H2(U,Gm) of restriction and transfer is multiplication by n.
Since H2(V,Gm) is torsion, this implies that H2(U,Gm) is torsion. By (iv), H2(X,Gm) is
torsion as well.

Finally, we have to prove (vi). For i ≤ 1, the A1-invariance is even true before taking
p-power torsion (see e.g. [Har77, II.6.6 and II.6.15]). Because p is invertible on S, the maps
Hi(X,µpm)→ Hn(A1

X , µpm) are isomorphisms for all i and m. This is the A1-invariance of
étale cohomology and a proof can be found in [Mil80, Corollary VI.4.20]. The short exact
sequence

1→ µpm → Gm
pm

−−→ Gm → 1

induces short exact sequences

0 // Hi−1(X,Gm)/pm //

��

Hi(X,µpm) //

∼=

��

Hi(X,Gm)[pm]

��

// 0

0 // Hi−1(A1
X ,Gm)/pm // Hi(A1

X , µpm) // Hi(A1
X ,Gm)[pm] // 0
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Inductively, using the A1-invariance of Hi−1(X,Gm) if i ≤ 2 or of pH
i−1(X,Gm) if i > 2

as well as the fact that Hi−1(X,Gm) is torsion for i ≥ 3 since X is regular and noetherian
([Gro68b, Proposition 1.4]), we see by the five lemma that Hi(X,Gm)[pm]→ Hi(A1

X ,Gm)[pm]
is an isomorphism for all i and m and hence we also get an isomorphism pH

i(X,Gm) →
pH

i(A1
X ,Gm).

Remark 2.6. At a couple points, we use another important fact, due to Gabber, which says
that if p : Y → X is a surjective finite locally free map, if α ∈ Br′(X), and if p∗α ∈ Br(Y ),
then α ∈ Br(X). This is already proved in Gabber [Gab81, Chapter II, Lemma 4] for locally
ringed topoi with strict hensel local rings, so we need to add nothing further in our setting.

By far the most important class of Azumaya algebras arising in arithmetic applications
is the class of cyclic algebras. For a treatment over fields, see [GS06, Section 2.5]. These
algebras give a concrete realization of the cup product in fppf cohomology

H1
pl(X, Cn)×H1

pl(X, µn)→ H2
pl(X, µn)→ H2

pl(X,Gm)

for an algebraic stack X. Given that Cn and Gm are smooth and that the image of such a cup
product is torsion, we can re-write this as H1(X, Cn) × H1

pl(X, µn) → H2
pl(X, µn) → Br′(X).

Given χ ∈ H1(X, Cn) and u ∈ H1
pl(X, µn), we write [(χ, u)n] or [(χ, u)] for the image of the

cup product in Br′(X).
Fix an algebraic stack X. Let p(χ) : Y → X be the cyclic Galois cover defined by χ ∈

H1(X, Cn). Then, p(χ)∗OY is a locally free OX-algebra of finite rank which comes equipped
with a canonical Cn-action. There is a natural isomorphism SpecX (p(χ)∗OY) ∼= Y→ X.

The group H1
pl(X, µn) fits into a short exact sequence

0→ Gm(X)/n→ H1
pl(X, µn)→ Pic(X)[n]→ 0. (2.7)

It is helpful to have a more concrete description of H1
pl(X, µn), which will also show that the

exact sequence (2.7) is non-canonically split. Let H(X, n) be the abelian group of equivalence
classes of pairs (L, s) where L ∈ Pic(X)[n] and s is a choice of trivialization s : OX → L⊗n.
Two pairs (L, s) and (M, t) are equivalent if there is an isomorphism g : L→M and a unit
v ∈ Gm(X) such that g(s) = vnt. The group structure is given by tensor product of line
bundles and of trivializations. The following construction is part of Kummer theory and is
well-known in the scheme case (see e.g. [Mil80, p. 125], which also shows part of Proposition
2.9 below).

Construction 2.8. Let X be an algebraic stack and fix a class [u] ∈ H(X, n) with u =
(L, s) for a line bundle L on X with a trivialization s : OX → L⊗n. Define OX( n

√
u) as⊕

i∈Z L⊗i/(s − 1) and X( n
√
u) → X as the affine morphism SpecXOX( n

√
u) → X. It is

easy to see that X( n
√
u) → X is an fppf µn-torsor and that this construction defines a

group homomorphism H(X, n) → H1
pl(X, µn). Indeed, if X = SpecA and L is trivial, then

X( n
√
u) ∼= SpecA(

n
√
s−1) ∼= SpecA( n

√
s).

Proposition 2.9. The map H(X, n)→ H1
pl(X, µn) is an isomorphism. In particular, there

is a non-canonical splitting

H1
pl(X, µn) ∼= Gm(X)/n⊕ Pic(X)[n].

Proof. We claim that the line bundle associated with the µn-torsor X( n
√
u) → X (via the

map H1
pl(X, µn)→ H1(X,Gm) induced by the inclusion µn → Gm) is exactly L. Indeed, the

obvious map from X( n
√
u) to SpecX

(⊕
i∈Z L⊗i

)
is equivariant along the inclusion µn → Gm

and the target is the Gm-torsor associated with L. Thus, the composition H(X, n) →
H1

pl(X, µn) → Pic(X)[n] is surjective. By (2.7), to prove that H(X, n) → H1
pl(X, µn) is an

isomorphism, it suffices to prove that the induced map from the kernel of this map to
Gm(X)/n is an isomorphism. But, this follows immediately from the definition of H(X, n).
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It remains to construct the splitting. By Prüfer’s theorem [Fuc70, Theorem 17.2],
Pic(X)[n] is a direct sum of cyclic groups. Thus, we have only to show that for every divisor k
of n and each k-torsion element [L] in Pic(X), there exists a pre-image in H1

pl(X, µn) that is k-

torsion. This pre-image can be constructed as follows: choose a trivialization s : OX → L⊗k

and take the µn-torsor associated with the µk-torsor X( k
√
v)→ X with v = (L, s).

Now, given χ and u as above, we let Ãχ,u be the coproduct



p(χ)∗OY

∐

OX

OX(
n
√
u)





in the category of sheaves of quasi-coherent (associative and unital) OX-algebras. Finally,
we let

Aχ,u = Ãχ,u/(ab− bag(χ))

be the quotient of Ãχ,u by the two-sided ideal generated by terms ab− bag(χ) where a is a
local section of χ∗OY , b is a local section of OX( n

√
u), and ag(χ) denotes the action of g(χ)

on χ∗OY for g(χ) a fixed generator of the action of Cn on p(χ)∗OY.

Lemma 2.10. Given an algebraic stack X and classes χ ∈ H1(X, Cn) and u ∈ H1
pl(X, µn),

the algebra Aχ,u is an Azumaya algebra on X.

Proof. It suffices to check this fppf-locally, and in particular we can assume that in fact X
is a scheme X , that L ∼= OX, and that χ classifies a Cn-Galois cover p(χ) : Y → X . In
this case, we can write the OX -algebra p(χ)∗OY Zariski locally as a quotient OX [x]/f(x) for
some monic polynomial f(x) of degree n. Then, locally, we have that

Aχ,u
∼= OX〈x, y〉/(f(x), yn − u, xy − yxg(χ)),

a quotient of the free algebra over OX on generators x and y. Note that the sections xiyj

for 0 ≤ i, j ≤ n − 1 form a basis of Aχ,u as an OX -module and in particular that Aχ,u

is (locally) a free OX -module. Examining the fibers of Aχ,u over X , we obtain the usual
definition of a cyclic algebra given in [GS06, Proposition 2.5.2]. So, Aχ,u is locally free with
central simple fibers and [Gro68a, Théorème 5.1] implies that Aχ,u is Azumaya.

The following proposition is well-known, but we do not know an exact reference. However,
in the case of quaternion algebras, it is given in [PS92, Lemma 8].

Proposition 2.11. Let X be a regular noetherian scheme and suppose that χ ∈ H1(X,Cn)
and u ∈ H1

pl(X,µn) are fixed classes. In the notation above, we have [(χ, u)n] = [Aχ,u] in

Br′(X). In particular [(χ, u)n] ∈ Br(X).

Proof. We can assume that X is connected. As Br′(X) → Br′(K) is injective (see [Mil80,
IV.2.6] or Proposition 2.5(iv)), it is enough to check this on a generic point SpecK of X .
By definition and the previous example, Aχ,u is a standard cyclic algebra over K as defined
in [GS06, Chapter 2]. They check in [GS06, Proposition 4.7.3] that Aχ,u does indeed have
Brauer class given by the cup product. See also the remark at the beginning of the proof
of [GS06, Proposition 4.7.1].

Remark 2.12. The reader may notice that Aχ,u is defined in complete generality, but that
we only prove the equality [(χ, u)n] = [Aχ,u] for regular noetherian schemes. In fact, this
equality extends to arbitrary algebraic stacks, but a different argument is necessary. It is
given at the end of Section 3.
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We will abuse notation and write (χ, u)n or even just (χ, u) for Aχ,u. This is called a
cyclic algebra. If there is a primitive nth root of unity ω ∈ µn(X) and the cyclic Galois
cover Y → X is obtained by adjoining an nth root of an element a ∈ Gm(X), we write
(a, u) = (a, u)ω for the corresponding cyclic algebra, where we need the choice of ω to fix
an isomorphism H1(X, Cn) ∼= H1(X, µn). For n = 2, we obtain the classical notion of a
quaternion algebra.

For us, the key point about the cyclic algebra is that it allows us to compute the ramifi-
cation of a Brauer class explicitly. Before explaining this, we mention that by the Gabber–
Česnavičius purity theorem the Brauer group of a regular noetherian scheme X is insensitive
to throwing away high codimension subschemes.

Proposition 2.13 (Purity [Gab81, Chapter I], [Ces17]). Let X be a regular noetherian
scheme. If U ⊆ X is a dense open subscheme with complement of codimension at least 2,
then the restriction map Br′(X)→ Br′(U) is an isomorphism.

Let X be a regular noetherian scheme and let η be the scheme of generic points in X .
The purity theorem reduces the problem of computing Br(X) from Br(η) to the problem of
extending Brauer classes α ∈ Br(η) over divisors in X . This is controlled by ramification
theory. The following proposition is basically well-known, but we include a proof for the
reader’s convenience.

Proposition 2.14. Let X be a regular noetherian scheme, i : D ⊆ X a Cartier divisor that
is regular with complement U , and n an integer. There is an exact sequence

0→ n Br
′(X)→ n Br

′(U)
ramD−−−→ nH

3
D(X,Gm)→ nH

3(X,Gm)→ nH
3(U,Gm). (2.15)

If n is prime to the residue characteristics of X, we have nH
3
D(X,Gm) ∼= H1(D, nQ/Z).

Proof. By [Gro68c, 6.1] or [Mil80, III.1.25] there is a long exact sequence

H2(X,Gm)→ H2(U,Gm)→ H3
D(X,Gm)→ H3(X,Gm)→ H3(U,Gm).

By [Gro68b, Propsition 1.4] all occurring groups are torsion so that the sequence is still
exact after taking n-primary torsion. Furthermore, by Proposition 2.5 the first map is an
injection.

We may assume that n = p is a prime, in which case pQ/Z ∼= Qp/Zp. We have to show
that pH

3
D(X,Gm) ∼= H1(D,Qp/Zp). By either the relative cohomological purity theorem

of Artin [SGA4.3, Théorème XVI.3.7 and 3.8] (when both X and D are smooth over some
common base scheme S) or the absolute cohomological purity theorem of Gabber [Fuj02,
Theorem 2.1], we have the following identifications of local cohomology sheaves: Ht

D(µpν ) =
0 for t 6= 2 and H2

D(µpν ) ∼= i∗Z/p
ν(−1). It follows from the long exact sequence of local

cohomology sheaves associated to the exact sequence 1 → µpν → Gm
pν

−→ Gm → 1 that p
acts invertibly on Ht

D(Gm) for t 6= 1, 2. Moreover, since X is regular and noetherian, for
every open V ⊂ X , the map Pic(V ) → Pic(U ∩ V ) is surjective with kernel (i∗Z)(V ) by
[Har77, II.6.5] and Br′(V )→ Br′(U ∩V ) is injective; thus H2

D(Gm) = 0 and H1
D(Gm) ∼= i∗Z.

Therefore, the only contribution to p-primary torsion in H3
D(X,Gm) in the local to global

spectral sequence
Hs(X,Ht

D(Gm))⇒ Hs+t
D (X,Gm)

is pH
2(X, i∗Z). We obtain

pH
3
D(X,Gm) ∼= pH

2(X,H1
D(Gm)) ∼= pH

2(D,Z) ∼= H1(D,Qp/Zp)

as desired, where the last isomorphism holds because Hi(D,Q) = 0 for i > 0 since D is
normal (see for example [Den88, 2.1]).

Note that in all cases where we use Proposition 2.14, the easier relative cohomological
purity theorem of Artin is applicable, so that in the end our paper does not rely on the
more difficult results of Gabber and Česnavičius.

We will need to know a special case of the ramification map ramD : Br(U)→ H1(D,Q/Z).
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Proposition 2.16. Let R be a discrete valuation ring with fraction field K and residue field
k. Set X = SpecR, U = SpecK, and x = Spec k. Let (χ, π)n be a cyclic algebra over K,
where χ is a degree n cyclic character of K, π is a uniformizing parameter of R (viewed as
an element of Gm(K)/n), and n is prime to the characteristic of k. Finally, let L/K be
the cyclic Galois extension defined by χ. If the integral closure S of R in L is a discrete
valuation ring with uniformizing parameter πS, then ram(π)(χ, π) is the class of the cyclic
extension S/(πS) over k.

Proof. See [Sal99, Lemma 10.2].

Finally, we discuss cyclic algebras over local fields and some implications for global
calculations. Let K be a local field containing a primitive nth root of unity ω. Then there
is a pairing (−,−

p

)
: Gm(K)/n×Gm(K)/n→ µn(K),

called the Hilbert symbol (where p stands for the maximal ideal of the ring of integers of
K). Our standard reference for this pairing is [Neu99, Section V.3]. If p is generated by an
element π, we will also write

(
a,b
π

)
. We will use Hilbert symbols to check whether explicitly

defined cyclic algebras are zero in the Brauer group.

Proposition 2.17. For a, b ∈ K×, the cyclic algebra (a, b)ω is trivial in Br(K) if and only
if
(
a,b
p

)
= 1.

Proof. By Proposition V.3.2 of [Neu99] the Hilbert symbol
(
a,b
p

)
equals 1 if and only if a is

a norm from the extension K( n
√
b)|K. By [GS06, Corollary 4.7.7], this happens if and only

if (a, b)ω splits, i.e. defines the trivial class in Br(K).

More generally, local class field theory calculates Br(η) when η = SpecK where K is
a (non-archimedean) local field. Let X = SpecR and x = Spec k, where R is the ring of
integers in K and k is the residue field of R. As H3(X,Gm) ∼= H3(x,Gm) = 0 (for instance
by [Gro68c, Théorème 1.1]), we find from [Gro68c, Corollaire 2.2] that there is an exact
sequence

0→ Br(X)→ Br(η)→ H1(x,Q/Z)→ 0.

The idea is similar to that of Proposition 2.14, but here the proof is easier as 0 → Gm →
j∗Gm → i∗Z → 0 is exact where j : η → X and i : x → X . Since K is local, k is finite,
so that H1(x,Q/Z) ∼= Q/Z. However, since R is Henselian, Br(X) = Br(x) (see [Gro68a,
Corollaire 6.2]), and Br(x) = 0 by a theorem of Wedderburn (see [Gro68c, Proposition 1.5]).

Now, let K be a number field, and let R be a localization of the ring of integers of K.
Set η = SpecK and X = SpecR. In this case, by [Gro68c, Proposition 2.1], there is an
exact sequence

0→ Br(X)→ Br(η)→
⊕

p∈X(1)

Br(SpecKp),

where X(1) denotes the set of codimension 1 points of X . This exact sequence is compatible
with (2.15) and with the exact sequence

0→ Br(η)→
⊕

p

Br(SpecKp)→ Q/Z→ 0 (2.18)

of class field theory (see [NSW00, Theorem 8.1.17]). The sum ranges over the finite and the
infinite places of K, and the map Br(SpecKp)→ Q/Z is the isomorphism described above
when p is a finite place, the natural inclusion Z/2 → Q/Z when Kp

∼= R, and the natural
map 0→ Q/Z when Kp

∼= C. Using these sequences, we can compute the Brauer group of
X .

The two fundamental observations we need about (2.18) are that a class α ∈ Br(η)
is ramified at no fewer than 2 places and that if K is purely imaginary, then α ∈ Br(η) is
ramified at no fewer than 2 finite places. The reader can easily verify the following examples.
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Example 2.19. (1) Br(Z) = 0.

(2) Br(Z[ 1p ])
∼= Z/2.

(3) Br(Z[ 1
pq ])
∼= Z/2⊕Q/Z.

(4) Br(Z[ 1p , ζp]) = 0.

We will use these computations and those like them throughout the paper, often without
comment.

3 The low-dimensional Gm-cohomology of BCm

Let S be a scheme. Write Cn,S for the constant étale group scheme on the cyclic group Cn

of order n ≥ 2 over S. We will often suppress the base in the notation and simply write
Cn when the base is clear from context. The purpose of this section is to make a basic
computation of the Gm-cohomology of the Deligne-Mumford stack BCn = BCn,S . In fact,
we are only interested in the cases n = 2 and n = 4, but the general case is no more difficult.

The first tool for our computations of the étale cohomology of an étale sheaf F is the
convergent Leray–Serre spectral sequence. If π : Y → X is a G-Galois cover where X and
Y are Deligne-Mumford stacks, then this spectral sequence has the form

Ep,q
2 = Hp(G,Hq(Y, π∗F))⇒ Hp+q(X,F),

with differentials dr of bidegree (r, 1− r).
We will use the spectral sequence in this section for the Cn-Galois cover π : S → BCn,

where Cn acts trivially on S. In this case it is of the form

Ep,q
2 = Hp(Cn,H

q(S,Gm))⇒ Hp+q(BCn,S ,Gm)

and Figure 1 displays the low-degree part of its E2-page. The fact that Cn acts trivially on
the cohomology of S implies that the left-most column is simply the Gm-cohomology of S.
For F a constant Cn-module, we use the standard isomorphisms Hi(Cn, F ) ∼= F [n] when
i > 0 odd, and Hi(Cn, F ) ∼= F/n when i > 0 is even. We are only interested in Hi(BCn,Gm)
for 0 ≤ i ≤ 2.

H2(S,Gm)

Pic(S) Pic(S)[n]

--❩❩❩❩
❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

Pic(S)/n

Gm(S) µn(S) Gm(S)/n µn(S)

Figure 1: The E2-page of the Leray–Serre spectral sequence computing Hi(BCn,Gm).

Recall Grothendieck’s theorem that the natural morphism Hi(X,G) → Hi
pl(X,G) is an

isomorphism for i ≥ 0 when G is a smooth group scheme on X (such as Cn or Gm). See
[Gro68c, Section 5, Thèoréme 11.7]. Note that this implies the agreement of étale and fppf
cohomology on a Deligne–Mumford stack. For example, Grothendieck’s theorem implies
that the morphism from the Leray–Serre spectral sequence above to the analogous Leray–
Serre spectral sequence

Ep,q
2 = Hp(Cn,H

q
pl(S,Gm))⇒ Hp+q

pl (BCn,Gm)

for the fppf cohomology is an isomorphism; thus the comparison map

Hi(BCn,Gm)→ Hi
pl(BCn,Gm)
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is also an isomorphism. For Gm-coefficients, we will thus not distinguish between étale and
fppf cohomology in what follows.

We use these observations to compute the Picard and Brauer groups of BCn,S via a
Leray spectral sequence. The idea is borrowed from [Lie11, Section 4.1]. Consider the map
to the coarse moduli space c : BCn,S → S. We claim that

R0
plc∗Gm = Gm

R1
plc∗Gm = µn

R2
plc∗Gm = 0.

Indeed, Ri
plc∗Gm is the fppf-sheafification of U 7→ Hi(BCn,U ,Gm) and in the Leray–Serre

spectral sequences all classes in Hp(Cn,H
q(U,Gm)) for q > 0 are killed by some fppf cover

of U . Furthermore every unit has an n-th root fppf-locally so that the fppf-sheafification of
the presheaf Gm/n vanishes. This implies the claim.

It follows that the fppf-Leray spectral sequence

Ep,q
2 = Hp

pl(S,R
q
plc∗Gm)⇒ Hp+q

pl (BCn,S ,Gm) (3.1)

for c takes the form given in Figure 2 in low degrees. As π∗c∗ = id, we see that the edge

0

µn(S)

--❩❩❩❩
❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩

❩ H1
pl(S, µn)

--❬❬❬❬
❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

Gm(S) Pic(S) H2(S,Gm) H3(S,Gm)

Figure 2: The E2-page of the Leray spectral sequence (3.1) computing Hi(BCn,Gm).

homomorphisms Hi(S,Gm) → Hi(BCn,S ,Gm) from the bottom line in the Leray spectral

sequence are all split injections. In particular, the displayed differentials d0,12 and d1,12 are
zero.

Proposition 3.2. There is an isomorphism

Gm(BCn,S) ∼= Gm(S)

and short exact sequences

0→ Pic(S)
c∗−→ Pic(BCn,S)→ µn(S)→ 0

and

0→ H2(S,Gm)
c∗−→ H2(BCn,S ,Gm)

r−→ H1
pl(S, µn)→ 0,

0→ Br′(S)
c∗−→ Br′(BCn,S)

r−→ H1
pl(S, µn)→ 0,

0→ Br(S)
c∗−→ Br(BCn,S)

r−→ H1
pl(S, µn)→ 0,

which are split. The isomorphism and the short exact sequences are functorial in BCn,S

(i.e. endomorphisms of BCn,S induces endomorphisms of exact sequences in a functorial
manner), but the splittings are only functorial in S.

Proof. By the discussion above, the Leray spectral sequence proves everything except for
the split exactness of the last two sequences. For the sequence involving the cohomological
Brauer group, we just apply the torsion subgroup functor to the split exact sequence involv-
ing H2(−,Gm). By Remark 2.6 we furthermore see that a = π∗c∗a ∈ H2(S,Gm) is in Br(S)
if and only if c∗a ∈ Br(BCn,S), implying split exactness for the last exact sequence.
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Later on we will need not only the computation of the Brauer group of BCn, but also a
description of the classes coming from the inclusion Gm(S)/n →֒ Br(BCn), which is either
defined via the Leray–Serre spectral sequence or using the splitting in Proposition 3.2 (the
proof of the following lemma will, in particular, show that these two maps differ at most by
a unit). These classes are described via the classical cyclic algebra construction from the
previous section.

Lemma 3.3. Let X be an algebraic stack and n a positive integer. Let σ ∈ H1(BCn,X , Cn)
be the class of the universal Cn-torsor X → BCn,X . Then there is an integer k prime to n
(that only depends on n) such that the map

s : H1
pl(X,µn)→ H2(BCn,X ,Gm)

defined by s(u) = k[(σ, u)n] is a section to the map r from Proposition 3.2.

Proof. It suffices to consider the universal case of X = Bplµn over SpecZ, the stack classify-
ing fppf µn torsors. Note that Bplµn is indeed a stack by [TS, Tag 04UR] and is an algebraic
stack by [TS, Tag 06DC] with fppf atlas SpecZ → Bplµn. Let d : Bplµn → SpecZ denote
the structure map, and let Rq

pld∗µn denote the derived functors of the push-forward in the

fppf topos. Then, it is easy to see that R0
pld∗µn

∼= µn and we claim that R1
pld∗µn

∼= Cn. To
see the latter isomorphism, consider the natural transformations

Homgp
SpecR(µn,R,Gm,R)→ H1(Bplµn,R,Gm)[n]← H1

pl(Bplµn,R, µn) (3.4)

of presheaves on affine schemes over Z; the first map sends a homomorphism f : µn,R →
Gm,R to the image of the canonical class H1(Bplµn,R, µn) under f∗ and the second map
is part of the Kummer sequence. The leftmost term is a sheaf and it is a standard fact
that it is represented by the constant étale group scheme Cn. See [CSS97, Section V.2.10]
for example. The fppf-sheafification of the rightmost term is R1

pld∗µn. To see that the
induced map of sheaves are isomorphisms, it is sufficient to check on stalks in the fppf
topology [GK15, Remark 1.8, Theorem 2.3] and in particular if R is a Henselian local ring
with algebraically closed residue field [GK15, Lemma 3.3]. If R is such a local ring, then
Gm(R)/n = 0 so that H1

pl(Bplµn,R, µn) ∼= H1
pl(Bplµn,R,Gm)[n]. Using that Pic(R) = 0, the

Leray–Serre spectral sequence for the cover SpecR→ Bplµn,R shows that

H1
pl(Bplµn,R,Gm) ∼= H1

group(µn,R,Gm,R) ∼= Homgp
SpecR(µn,R,Gm,R),

where H1
group(µn,R,Gm,R) is the first cohomology of the cobar complex

Gm(S)→ Gm(µn,R)→ Gm(µn,R ×SpecR µn,R)→ · · ·

with differentials as in the usual definition of group cohomology. This shows that the
morphisms in (3.4) are isomorphisms on fppf-stalks and thus that R1

pld∗µn
∼= Cn.

Now, the fppf-Leray spectral sequence for d : Bplµn → SpecZ yields an exact sequence

0→ H1
pl(SpecZ, µn)→ H1

pl(Bplµn, µn)→ H0(SpecZ, Cn)→ 0. (3.5)

The right hand term is isomorphic to Z/n, and the sequence is split by applying the pullback
map along SpecZ → Bplµn. We denote by τ ∈ H1

pl(Bplµn, µn) the class of the universal
µn-torsor over Bplµn. This is (exactly) of order n and pulls back to zero on SpecZ.

Consider c : BCn,Bplµn
→ Bplµn and the class α = [(σ, c∗τ)n]. The class of α has

order (exactly) n as there are cyclic algebras of order n over fields, for example by [GS06,
Lemma 5.5.3]. As π∗α = 0 for π : Bplµn → BCn,Bplµn

the projection, it follows from
Proposition 3.2 that r(α) in H1

pl(Bplµn, µn) has order n as well. On the other hand, r(α)
pulls back to zero over SpecZ so it is a non-zero multiple of τ (using the split-exact sequence
(3.5)). Thus, r(α) = mτ for some m prime to n. This completes the proof if we set k to be
a number such that km ≡ 1 mod n.
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Corollary 3.6. Suppose that χ : X → Y is a Cn-torsor for some positive integer n. Let
u ∈ Gm(Y )/n be the class of a unit, and write αu for the corresponding class in Br′(Y )
(defined via the Leray–Serre spectral sequence). Then we have αu = k[(χ, u)] in Br′(Y ),
where k is some number prime to n which only depends on n.

We do not know the value of k in the corollary. Perhaps it is always ±1, as is the case
in similar computations, such as the result of Lichtenbaum (see [GS06, Theorem 5.4.10]),
which computes the exact value of the map Pic(Xk)

G ∼= Z → Br(k) when X is a Severi–
Brauer variety of a field with Galois group G, or the computation of [GQM11] of the sign
of the Rost invariant.

Proposition 3.7. Let X be an algebraic stack and suppose that χ ∈ H1(X, Cn) and u ∈
H1

pl(X, µn) are fixed classes. In the notation above, we have [(χ, u)n] = [Aχ,u] in Br′(X).

Proof. Both [Aχ,u] and [(χ, u)n] define classes in H2
pl(BCn × Bplµn,Gm). As at the end of

the proof of Proposition 3.3, we see that [Aχ,u] = k[(χ, u)n] for some k prime to n. We saw
in Proposition 2.11 that they agree when pulled back to regular noetherian schemes. The
result follows.

4 A presentation of the moduli stack of elliptic curves

We will compute Br(M) using that it injects into Br(M
Z[

1
2 ]
) by Proposition 2.5(iv) and using

a specific presentation of M
Z[

1
2 ]
, which we now describe. This presentation is standard and

we claim no originality in our presentation of it. For references, see [DR73] or [KM85],

Definition 4.1. A full level 2 structure on an elliptic curve E over a base scheme S is
a fixed isomorphism (Z/2)2S → E[2], where (Z/2)2S denotes the constant group scheme on
(Z/2)2 over S and E[2] is the subgroupscheme of order 2 points in E. If there exists an
isomorphism (Z/2)2S

∼= E[2], an equivalent way of specifying a level 2 structure is to order
the points of exact order 2 in E(S) (over each connected component of S).

Remark 4.2. These full level 2 structures are sometimes called naive to distinguish them
from the level structures considered by Drinfeld, which allow one to extend M(2) to a stack
supported over all of SpecZ. We will not need this generalization in this paper. It is the
subject of [KM85].

The moduli stack M(2) of elliptic curves with fixed level 2 structures is a regular noethe-
rian Deligne-Mumford stack. Moreover, since the existence of a full level 2 structure implies
that 2 is invertible in S (by [KM85, Corollary 2.3.2] for example), the functor M(2) → M

which forgets the level structure factors through M
Z[

1
2 ]
. This map is clearly equivariant

for the right S3-action on M(2) that permutes the non-zero 2-torsion points and the trivial
S3-action on M. Note that in general, being G-equivariant for a map f : X → Y of stacks
with G-action is extra structure: for every g ∈ G one has to provide compatible 2-morphism
σg : gf → fg (see [Rom05] for details). In the case ofM(2)→MZ[ 12 ]

though the equivariance

is strict in the sense that all σg are the identity 2-morphisms of M(2)→M
Z[

1
2 ]
.

We have the following well-known statement; to fix ideas, we will provide a proof.

Lemma 4.3. The map M(2)→M
Z[

1
2 ]

is an S3-Galois cover.

Proof. It is enough to show that for every affine scheme SpecR over SpecZ[ 12 ] and every
elliptic curve E over SpecR, we can find a full level 2 structure étale locally. Indeed, if there
is one full level 2 structure on E, the map

(S3)SpecR = S3 × SpecR→ SpecR×M
Z[

1
2 ]

M(2)
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from the constant group scheme on S3 is an isomorphism since we get every other full level
2 structure on E by permuting the non-zero 2-torsion points.

The elliptic curveE defines an R-point E : SpecR→M
Z[

1
2 ]

of the moduli stack of elliptic

curves. Zariski locally we can assume the pullback E∗λ of the Hodge bundle to be trivial, in
which case there exists a nowhere vanishing invariant differential ω. By [KM85, Section 2.2],
we can then write E in Weierstrass form over SpecR, which after a coordinate change takes
the form

y2 = x3 + b2x
2 + b4x+ b6.

As a point (x, y) on E is 2-torsion if and only if y = 0, we have a full level 2 structure
after adjoining the three roots e1, e2 and e3 of x3 + b2x

2 + b4x + b6 to R. This defines an
étale extension as the discriminant of this cubic polynomial does not vanish (because E is
smooth).

Definition 4.4. A Legendre curve with parameter t over S is an elliptic curve Et with
Weierstrass equation

y2 = x(x − 1)(x− t).

As the discriminant of this equation is 16t2(t−1)2, such an equation defines an elliptic (and
hence Legendre) curve if and only if 2, t and t− 1 are invertible on S.

The points (0, 0), (1, 0), and (t, 0) define three non-zero 2-torsion points on Et. Taking
them in this order fixes a full level 2 structure on E. This defines a morphism

π : X →M(2),

where X is the parameter space of Legendre curves. In fact, X is an affine scheme, given as

X = SpecZ
[
1
2 , t

±1, (t− 1)−1
]
= A1

Z[ 12 ]
− {0, 1}.

We will use X throughout this paper to refer specifically to this moduli space of Legendre
curves. In particular, X is naturally defined over Z[ 12 ]. In general, given a scheme S, we let
XS = A1

S − {0, 1}. Note that this is a slight abuse of notation as we do not assume that 2
is invertible on S.

We equip the map π : X → M(2) with the structure of a C2-equivariant map with the
trivial C2-action on X and M(2) by choosing σg : gπ → πg to be [−1] (i.e. multiplication by
−1 on the universal elliptic curve) for g ∈ C2 the non-trivial element. Note that [−1] fixes
the level 2 structure and so indeed defines a natural automorphism of idM(2). The structure
of a C2-equivariant map on π induces a map [X/C2] = BC2,X →M(2).

Proposition 4.5. The C2-equivariant map π : X → M(2) is a C2-torsor. Thus, the map
BC2,X →M(2) is an equivalence.

Proof. First we will show that an elliptic curve E → SpecR with full level 2 structure
can étale locally be brought into Legendre form. Our proof will be along the lines of
[Sil09, Proposition III.1.7], but we have to take a little bit more care.

As in the proof of Lemma 4.3, Zariski locally over SpecR, we can write E in the form

y2 = x2 + b2x
2 + b4x+ b6

and the full level 2 structure allows us to factor the right hand side as

(x − e1)(x − e2)(x− e3),

where (e1, 0), (e2, 0) and (e3, 0) are the nonzero 2-torsion points. We set p = e2 − e1 and
q = e3 − e1. By a linear coordinate change, we get y2 = x(x − p)(x− q).

Since the equation y2 = x(x−p)(x−q) defines an elliptic curve, p, q and p−q are nowhere
vanishing. Thus, the extension R → R[

√
p] is étale so that we can (and will) assume étale
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locally to have a (chosen) square root
√
p. Now, E is isomorphic to y2 = x(x − 1)(x − t)

for t = q
p , where the isomorphism is given by x = px′ and y = p3/2y′. Thus our original

E is indeed étale locally (on the base) isomorphic to a Legendre curve as an elliptic curve
with level 2 structure. It is moreover an elementary check with coordinate transformations
that there is at most one choice of t ∈ R such that the Legendre curve Et with paramter t
is isomorphic to E in M(2).

Now assume that our elliptic curve E over R is in Legendre form and assume further
that SpecR is connected. By definition, for a commutative R-algebra R′, an element of
(X ×M(2) SpecR)(R′) consists of a Legendre curve Et together with an isomorphism of Et

to ER′ in M(2). By assumption this set is non-empty and it is indeed a torsor under the
group of automorphisms of ER′ in M(2). By [KM85, Corollary 2.7.2], the only non-trivial
automorphism of ER′ with level 2 structure is [−1]. Thus, the C2-action exactly interchanges
the two elements of (X ×M(2) SpecR)(R′) and we obtain a C2-equivariant equivalence

C2 × SpecR ≃ X ×M(2) SpecR.

As every E with full level 2 structure satisfies étale locally our assumptions, this implies
that X →M(2) is a C2-torsor.

By the general fact that for a G-torsor X → Y, the induced map [X/G] → Y is an
equivalence, we obtain in our case the equivalence BC2,X ≃M(2).

Corollary 4.6. The map c : M(2) → X sending y2 = (x − e1)(x − e2)(x − e3) to y2 =
x(x − 1)(x− e3−e1

e2−e1
) exhibits X as the coarse moduli space of M(2).

Proof. The set of maps from M(2) ≃ BC2,X to X is in bijection with C2-equivariant maps
X → X . Thus, a map M(2)→ X exhibits X as the coarse moduli space if and only if the
precomposition with π is the identity. This is clearly the case for c.

It follows that the right S3-action on M(2) induces a right S3 action on X . We can
describe this explicitly as follows. Consider the generators σ = (1 3 2) and τ = (2 3) of
GL2(Z/2) ∼= S3, of orders 3 and 2, respectively. Then,

σ(t) =
t− 1

t
,

τ(t) =
1

t
.

By a simple computation, the map c : M(2)→ X defined above is strictly S3-equivariant.
In contrast, the map π : X → M(2) described above is not S3-equivariant, as one notes

for example by checking that the elliptic curves y2 = x(x−1)(x− t) and y2 = x(x−1)(x− 1
t )

are generally not isomorphic. To actually explain the correct S3-action on BC2,X , we have
to fix some notation.

Consider again an elliptic curve E given by y2 = (x − e1)(x − e2)(x − e3). Set again
p = e2 − e1 and q = e3 − e1 so that we can write E as

y2 = x(x − p)(x− q).

The only possible coordinate changes fixing the form of this equation are the transformations
y 7→ u3y and x 7→ u2x; such a coordinate change results in multiplying the standard invariant
differential ω = −dx

2y by u−1 and sending p to u2p and q to u2q. Thus, pω⊗2 and qω⊗2 define

canonical sections of λ⊗2 on M(2), not dependent on any choice of Weierstrass form. Note
that these sections are nowhere vanishing. We can consider the C2-torsorM(2)(

√
p)→M(2)

defined as the cyclic cover SpecM(2)

(⊕
i∈Z λ⊗i/(1− p)

)
. Étale locally on some SpecR, we

can trivialize λ so that p becomes an element of R and the C2-torsor becomes SpecR[
√
p]→

SpecR. The C2-torsor M(2)(
√
p) → M(2) is equivalent to X → M(2). Indeed, we have

shown in the proof of Proposition 4.5 that the latter has a section as soon as we have a
chosen square root of p.
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As g∗λ for g ∈ S3 on M(2) is canonically isomorphic to λ (as this is pulled back from
M), we have an action of S3 on H0(M(2), λ⊗∗). Consider the section

g(p)

p
∈ H0(M(2),OM(2)) ∼= H0(X,OX),

which can for E as above be written as
eg(2)−eg(1)

e2−e1
. For example, we have g(p)

p = q
p for g = τ ,

which equals t on X . For a scheme S with a map f : S → X or f : S → M(2), we denote

the torsor adjoining the square root of f∗ g(p)
p by Tf,g → S.

For the next lemma, we recall that an object in BC2,X(S) corresponds to a C2-torsor
T → S and a C2-equivariant map T → X , where X has the trivial C2-action. Equivalently,
an object can be described as a C2-torsor T → S with a map f : S → X . Let S3 act on
BC2,X in the following way: g ∈ S3 acts (from the right) on (T, f) ∈ BC2,X(S) by setting

g(T ) to be (T ×S Tf,g)/C2 and the map g(f) to be the composition S
f−→ X

g−→ X .

Lemma 4.7. The natural map M(2) → BC2,X induces an S3-equivariant equivalence
BC2,X ≃M(2).

Proof. As noted above, the map M(2)→ BC2,X classifying the torsor M(2)(
√
p)→M(2) is

an equivalence by Proposition 4.5 (as this torsor is equivalent to X →M(2)). We have only
to check the S3-equivariance of this map.

Given an f : S → M(2), the corresponding object in BC2,X is the torsor S(
√
f∗p) → S

together with S → M(2) → X . The composition gf for g ∈ S3 corresponds to the torsor

S(
√
(gf)∗p)→ S together with S → M(2)→ X

g−→ X as M(2)→ X is S3-equivariant. As

(gf)∗p = f∗(g(p)), we have (gf)∗p = f∗p · f∗
(

g(p)
p

)
. Thus, we have a natural isomorphism

(S(
√
p)×STf,g)/C2

∼=−→ S(
√
(gf)∗p). One can check that these isomorphisms are compatible

(similarly to [Rom05, Definition 2.1], although we do not have a strict S3-action on BC2,X)
so that one actually gets the structure of an S3-equivariant map.

Of particular import will be the action of S3 on the units of X . Let ρ be the tautological
permutation representation of S3 on Z⊕3 and let ρ̃ be the kernel of the morphism

ρ ∼= indS3

C2
Z→ Z

to the trivial representation, the adjoint to the identity.

Lemma 4.8. For any connected normal noetherian scheme S over Z[ 12 ], there is an S3-
equivariant exact sequence

0→ Gm(S)→ Gm(XS)→ ρ̃→ 0,

where S3 acts on Gm(S) trivially and ρ̃ is additively generated by the images of t and t− 1.
This exact sequence is non-equivariantly split.

Proof. Denote by π : XS → S the structure map. We have a map f : Z2 ⊕Gm → π∗Gm,XS

of sheaves on S, where f takes the two Z-summands to t and (t− 1), respectively. We claim
that this map is an isomorphism. It is enough to check this on affine connected opens SpecR,
where it follows from R being an integral domain (as it is normal). The non-equivariant
statement follows.

Moreover, the action of S3 on Gm(S) is trivial by definition. Set σ = (1 3 2) and τ = (2 3).

If we choose the basis vectors




0
1
−1


 and




1
0
−1


 for ρ̃, we obtain exactly the same S3-

representation as on Gm(XS)/Gm(S) ∼= Z{t, t − 1}, where the latter denotes the free Z-
module on t and t− 1 with elements thought of as tk(t− 1)l.
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5 Beginning of the computation

Let S be a connected regular noetherian scheme over Z[ 12 ], let MS be the moduli stack of
elliptic curves over S, and let M(2)S be the moduli stack of elliptic curves with full level 2
structure over S. The Leray–Serre spectral sequence for M(2)S →MS takes the form

Ep,q
2 : Hp(S3,H

q(M(2)S ,Gm))⇒ Hp+q(MS ,Gm), (5.1)

with differentials dr of bidegree (r, 1 − r). In this section, we will collect the basic tools to
compute the E2-term. We start with two brief remarks about the cohomology of S3.

Lemma 5.2. Let M be a trivial S3-module. Then,

H1(S3,M) ∼= M [2],

H2(S3,M) ∼= M/2,

H3(S3,M) ∼= M [6],

H4(S3,M) ∼= M/6.

Proof. We use the Lyndon–Hochschild–Serre spectral sequence for

1→ Z/3→ S3 → Z/2→ 1.

A reference is [Wei94, Example 6.7.10]. On the E2-page, E
pq
2 = 0 whenever p > 0 and

q > 0 because the cohomology of Z/3 is 3-torsion. Moreover, Z/2 acts on Hq(Z/3,M) by
multiplication by −1 for q ≡ 1, 2mod4 and by 1 for q ≡ 0, 3mod4.

The next lemma is about the cohomology of the reduced regular representation ρ̃ of S3

introduced in Section 4.

Lemma 5.3. Let M be an abelian group, and let ρ̃⊗M be an S3-module through the action
on ρ̃. Then,

H0(S3, ρ̃⊗M) ∼= M [3],

H1(S3, ρ̃⊗M) ∼= M/3,

H2(S3, ρ̃⊗M) ∼= 0

H3(S3, ρ̃⊗M) ∼= 0.

Proof. There is a short exact sequence of S3-modules

0→ ρ̃⊗M → ρ⊗M →M → 0.

In the associated long exact sequence in cohomology, note that Hi(S3, ρ⊗M) ∼= Hi(C2,M)
by Shapiro’s lemma, as ρ⊗M ∼= indS3

C2
M . The map

Hi(S3, ρ⊗M) ∼= Hi(C2,M)→ Hi(S3,M)

is the transfer. We obtain short exact sequences

0→ coker trS3

C2
(Hi−1)→ Hi(S3, ρ̃⊗M)→ ker trS3

C2
(Hi)→ 0.

Because C2 → S3 has a retraction, the restriction map Hi(S3,M) → Hi(C2,M) is the
projection to a direct summand. The transfer equals 3 times the inclusion of this summand as
can easily be deduced from the equation trS3

C2
resS3

C2
= 3. Thus, the transfer is multiplication

by 3 on H0, an isomorphism on H1 and H2 and the inclusion M [2] → M [6] on H3. The
lemma follows.
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These computations allow us to compute the E2-term of the Leray–Serre spectral se-
quence

Ep,q
2 : Hp(S3,H

q(M(2)S ,Gm))⇒ Hp+q(MS ,Gm)

in a range. Using the results of the last two sections, we can analyze Hq(M(2)S ,Gm) in
terms of Hq(XS ,Gm). Especially Proposition 3.2 turns out to be useful as the short exact
sequences in it are S3-equivariant by naturality. Using additionally Lemma 4.8 for the first
one, we obtain the S3-equivariant extensions

0→ Gm(S)→ Gm(M(2)S) ∼= Gm(XS)→ ρ̃→ 0, (5.4)

0→ Pic(XS) ∼= Pic(S)→ Pic(M(2)S)→ µ2(S)→ 0, (5.5)

and

0→ Br′(XS)→ Br′(M(2)S)→ H1(XS , µ2)→ 0. (5.6)

The only point needing justification is that the pullback map Pic(S) → Pic(XS) is an
isomorphism. It is injective because XS has an S-point. It is surjective as it factors through
the isomorphism Pic(S)→ Pic(A1

S) and since j∗ : Pic(A1
S) → Pic(XS) is surjective, where

j denotes the inclusion XS ⊆ A1
S . Indeed, given a line bundle L on XS , we take a coherent

subsheaf F of j∗L with j∗F ∼= L. The double dual of F is a reflexive sheaf L′ with j∗L′ still
isomorphic to L. By [Har80, Prop 1.9], L′ is a line bundle.

The sequence (5.5) is S3-equivariantly split and thus consists only of S3-modules with
the trivial action. Indeed, the morphism S → SpecZ[ 12 ] induces by pullback a morphism
from the exact sequence

0→ 0→ Pic(M(2))→ µ2(Z[
1
2 ])→ 0,

where the splitting is clearly S3-equivariant. As µ2(Z[
1
2 ])→ µ2(S) is an isomorphism for S

connected, the result follows. These observations allow us to compute the q = 0, 1 lines of
the Leray–Serre spectral sequence (5.1).

Lemma 5.7. If S is a connected regular noetherian scheme over Z[ 12 ], then there are natural
extensions

0→ Hp(S3,Gm(S))→ Hp(S3,Gm(M(2)S))→ Hp(S3, ρ̃)→ 0

for 0 ≤ p ≤ 3, and natural isomorphisms

Hp(S3,H
1(M(2)S ,Gm)) ∼= Hp(S3,Pic(S))⊕Hp(S3, µ2(S))

for all p ≥ 0.

Proof. The first exact sequence follows from Lemma 5.2 and Lemma 5.3 using that H1(S3, ρ̃)
is 3-torsion and H2(S3,Gm(S)) is 2-torsion. The direct sum decomposition follows from the
fact that (5.5) is S3-equivariantly split.

The only necessary remaining group we need to understand for our computations is
H2(M(2)S ,Gm)S3 , which we analyze using the short exact sequence (5.6).

Lemma 5.8. If S is a regular noetherian scheme over Z[ 12 ], then there is a canonical
isomorphism H1(S, µ2) ∼= H1(XS , µ2)

S3 .

Proof. Using the S3-equivariant short exact sequence

0→ Gm(XS)/2→ H1(XS , µ2)→ Pic(XS)[2]→ 0,

we get a long exact sequence

0→ (Gm(XS)/2)
S3 → H1(XS , µ2)

S3 → Pic(XS)[2]
S3 → H1(S3,Gm(XS)/2)→ · · ·
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As the canonical map XS → S is S3-equivariant, we obtain a map into this from the exact
sequence

0→ Gm(S)/2→ H1(S, µ2)→ Pic(S)[2]→ 0.

As the maps Gm(S)/2 → (Gm(XS)/2)
S3 and Pic(S)[2] → Pic(XS)[2] are isomorphisms

(using the exact sequence (5.4) and Lemma 5.3), the five lemma implies that H1(S, µ2) →
H1(XS , µ2)

S3 is an isomorphism as well.

From (5.6), we obtain a long exact sequence

0→ Br′(XS)
S3 → Br′(M(2))S3 → H1(S, µ2)→ H1(S3,Br

′(XS))→ · · · (5.9)

Lemma 5.10. Let S be a regular noetherian scheme over SpecZ[ 1p ] for some prime p, and

let XS = A1
S − {0, 1} as before. There is a non-canonically split exact sequence

0→ p Br
′(S)→ p Br

′(XS)→ pH
3
{0,1}(A

1
S ,Gm)→ 0.

Proof. By Proposition 2.14 we have an exact sequence

0→ p Br
′(A1

S)→ p Br
′(XS)→ pH

3
{0,1}(A

1
S ,Gm)→ pH

3(A1
S ,Gm)→ pH

3(XS ,Gm).

Because p is invertible on S, Proposition 2.5 implies that pH
i(S,Gm) ∼= pH

i(A1
S ,Gm) for

all i ≥ 0. But, since XS has an S-point, it follows that pH
i(A1

S ,Gm) ∼= pH
i(S,Gm) →

pH
i(XS ,Gm) is split injective for all i.

Lemma 5.11. For any prime p and any regular noetherian scheme over SpecZ[ 1p ], there
is a canonical isomorphism

Hq
{0,1}(A

1
S ,Gm) ∼= Hq

{0}(A
1
S ,Gm)⊕Hq

{1}(A
1
S ,Gm).

The action of S3 on p Br
′(XS)/pBr

′(S) is isomorphic to

ρ̃⊗ pH
3
{0}(A

1
S ,Gm) ∼= ρ̃⊗H1(S,Qp/Zp).

Proof. Given any étale sheaf F, there is a canonical isomorphism

H0
{0,1}(A

1
S ,F)

∼= H0
{0}(A

1
S ,F)⊕H0

{1}(A
1
S ,F),

as one sees by an easy diagram chase. By deriving this isomorphism, the first part of the
lemma follows.

To prove the second statement, we compare the sequence of Lemma 5.10 with the long
exact sequence for étale cohomology with supports coming from the open inclusionXS ⊆ P1

S .
Using the natural map of long exact sequences, we obtain a commutative diagram

0 //
p Br

′(P1
S)

//

∼=

��

p Br
′(XS) //

=

��

pH
3
{0,1,∞}(P

1
S ,Gm)

��

0 //
p Br

′(A1
S)

//
p Br

′(XS) //
pH

3
{0,1}(A

1
S ,Gm) // 0

with exact rows, where the left-hand vertical map is an isomorphism because it is injective
(by Proposition 2.5(iv)), p Br

′(S) → p Br
′(A1

S) is an isomorphism, and there is an S-point
of A1

S ⊆ P1
S .

Now, by Proposition 2.14,

pH
3
{0,1,∞}(P

1
S ,Gm) ∼=

⊕

{0,1,∞}

H1(S,Qp/Zp)
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and

pH
3
{0,1}(A

1
S ,Gm) ∼=

⊕

{0,1}

H1(S,Qp/Zp).

With this description, the right-hand vertical map above is the natural projection away from
the factor of H1(S,Qp/Zp) corresponding to∞. Let χ0 and χ1 be p-primary characters of S,
i.e., elements of H1(S,Qp/Zp). Then, as χ0, χ1 vary, the Azumaya algebras (χ0, t)⊗(χ1, t−1)
give elements of Br(XS) whose ramification classes (χ0, χ1) span pH

3
{0,1}(A

1
S ,Gm). The

ramification of such a class computed in H3
{0,1,∞}(P

1
S ,Gm) is (χ0, χ1,−χ0 − χ1). This

follows from Proposition 2.16, the fact that ram(π)(χ, π
−1) = −ram(π)(χ, π) in the notation

of that proposition, and the fact that both t−1 and (t−1)−1 are uniformizing parameters for
the divisor at ∞ of P1

S . It follows that the image of p Br
′(XS) inside pH

3
{0,1,∞}(P

1
S ,Gm) ∼=⊕

{0,1,∞} H
1(S,Qp/Zp) can be identified with ρ̃⊗H1(S,Qp/Zp).

We will analyze the implications for p-primary torsion for p > 2 in the next three sections.
For the rest of this section, we will begin the study of the 2-primary torsion of Br′(MS) where
S is a Z[ 12 ]-scheme. By Lemmas 5.11 and 5.3, we know that 2H

3
{0,1}(A

1
S ,Gm)S3 = 0. Thus

from Lemma 5.10, we see that 2 Br
′(S)→ 2 Br

′(XS)
S3 is an isomorphism. If we tensor the

sequence (5.9) with Z(2), we obtain (using Lemmas 5.2 and 5.3) the exact sequence

0→ 2 Br
′(S)→ 2 Br

′(M(2))S3 → H1(S, µ2)
∂−→ H1(S3, 2 Br

′(XS)) ∼= Br′(S)[2]→ · · · (5.12)

Here we recall that we denote for an abelian group A by A[2] its 2-torsion, while 2A denotes
its 2-primary torsion. We want to analyze the boundary map ∂.

Lemma 5.13. If u ∈ H1(S, µ2), then ∂(u) equals the Brauer class of the cyclic (quaternion)
algebra (−1, u).

Proof. We assume that S is connected. Denote by π : XS → BC2,XS
the projection and by

c : BC2,XS
→ XS the canonical map to the coarse moduli space. Denote by

r : Br′(BC2,XS
)→ H1(XS , µ2)

the map obtained from the Leray spectral sequence. Finally, let

s : H1(XS , µ2)→ Br′(BC2,XS
)

be given by s(u) = [(χ, u)] = [(χ, c∗u)], where χ ∈ H1(BC2,XS
, C2) classifies π. We have

r(s(u)) = u by Lemma 3.3.
Using [Ser97, Section 5.4], we can compute a crossed homomorphism representing ∂(u)

thus as
g 7→ π∗(g(s(u))− s(u)) ∈ Br′(XS).

Consider the subgroup C2 = 〈(2 3)〉 ⊂ S3 and the C2-equivariant morphism z : S → XS

classifying y2 = x(x − 1)(x + 1) (i.e., t = −1). It follows from Lemmas 5.2 and 5.3 that
the morphism z∗resS3

C2
induces an isomorphism H1(S3, 2 Br

′(XS)) → H1(C2, 2 Br
′(S)). The

isomorphism H1(C2,Br
′(S))→ Br′(S)[2] is given by evaluating the crossed homomorphism

at the non-trivial element (2 3) ∈ C2. Thus, the coboundary map ∂ : H1(S, µ2)→ Br′(S)[2]
sends u to

z∗π∗((2 3)(s(u))− s(u)).

As the pullback of XS → BC2,XS
along π ◦ z : S → XS → BC2,XS

is the trivial C2-
torsor, z∗π∗s(u) = (πz)∗(χ, u) defines the trivial Brauer class. By Lemma 4.7, the action
of (2 3) multiplies the torsor XS → BC2,XS

with the torsor BC2,XS
(
√
t) → BC2,XS

. Thus,
z∗π∗(2 3)(s(u)) = (z∗t, u) = (−1, u).

Summarizing, we obtain the following result.
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2
]) for primes p ≥ 5

Proposition 5.14. Let S be a regular noetherian scheme over Z[ 12 ]. We have an exact
sequence

0→ 2 Br
′(S)→ 2 Br

′(M(2)S)
S3 → H1(S, µ2)

∂−→ Br′(S)[2]

with ∂(u) = [(−1, u)]. The map 2 Br
′(S)→ 2 Br

′(M(2)S)
S3 is non-canonically split.

Proof. The exact sequence is exactly (5.12). The identification of ∂(u) follows from the
previous lemma. For the splitting, choose an S-point S → M(2)S . Then the composition
Br′(M(2)S)

S3 → Br′(M(2)S)→ Br′(S) provides the splitting.

6 The p-primary torsion in Br(MZ[ 12 ]
) for primes p ≥ 5

Before we proceed to study the 3-primary and 2-primary torsion, we will show in this section
that for a large class of S there is no p-primary torsion for p ≥ 5 in the Brauer group of
MS . Lemma 5.3 implies the crucial fact that there are no S3-invariant classes in p Br

′(XS)
ramified at {0, 1} when p 6= 3 is invertible on S. The main point of the following theorem is
that this is true for p ≥ 5 even for certain regular noetherian schemes where p is not a unit.

Theorem 6.1. Let S be a regular noetherian scheme over Z and p ≥ 5 prime. Assume
that S[ 1

2p ] = S
Z[

1
2p ]

is dense in S and that MS → S has a section. Then the natural map

p Br
′(S)→ p Br

′(MS) is an isomorphism.

Proof. Assume first that 2 is invertible on S. The only contribution to p Br
′(MS) in the

Leray–Serre spectral sequence (5.1) occurs as

p

(
H2(BC2,XS

,Gm)S3
)
=

(
pH

2(BC2,XS
,Gm)

)S3
(6.2)

because Hi of S3 for i ≥ 1 can never have p-primary torsion for p ≥ 5.
We will argue that the p-group (6.2) is isomorphic to p Br

′(S) for all primes p ≥ 5 if
additionally p is invertible on S. To do so, note first that

pH
2(BC2,XS

,Gm) ∼= p Br
′(XS)

for p 6= 2 by Proposition 3.2. By Lemmas 5.10, 5.11 and 5.3, we see that p Br
′(S) →

p Br
′(XS)

S3 is an isomorphism.
This shows the theorem if 2p is invertible on S. Let now S be arbitrary regular noetherian

such that S[ 1
2p ] ⊂ S is dense and MS has an S-point. Consider the commutative diagram

p Br
′(MS) //

��

p Br
′(MS[ 1

2p ]
)

∼=

��

p Br
′(S) //

p Br
′(S[ 1

2p ]).

induced by the choice of an S-point of MS. As MS has a cover by a scheme that is fppf
over S and fppf morphisms are open [Gro65, Thm 2.4.6], MS → S is open as well. Thus,
MS[ 1

2p ]
⊂ MS is dense and hence Br′(MS) → Br′(MS[ 1

2p ]
) is injective by Proposition 2.5.

This implies that Br′(MS)→ Br′(S) is injective as well. As it is also split surjective, we see
that it is an isomorphism.

Remark 6.3. In general, it is a subtle question to decide whether MS has an S-point. For
example for S = Z[ 12 ] or S = Z[ 13 ], there is such an S-point, but for S = Z[ 15 ] or S = Z[ 1

29 ]
there is none (for this and other examples see [EdGT90, Cor 1]). Nevertheless, sometimes
one can still control the p-power torsion for p ≥ 5 if there is no S-point, as the following
corollary shows.
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Corollary 6.4. The Brauer groups Br(M) ⊆ Br(M
Z[

1
2 ]
) have only 2 and 3-primary torsion.

Proof. Indeed, Br(M) ⊆ Br(M
Z[

1
2 ]
), and there is no p-torsion in Br(Z[ 12 ])

∼= Z/2 for p 6=
2.

7 The 3-primary torsion in Br(M
Z[

1
6
]
)

The next theorem describes the 3-primary torsion in Br′(MS) in many cases.

Theorem 7.1. Let S be a regular noetherian scheme. If 6 is a unit on S, then there is an
exact sequence

0→ 3 Br
′(S)→ 3 Br

′(MS)→ H1(S,C3)→ 0,

which is non-canonically split. The map 3 Br
′(MS) → H1(S,C3) can be described as the

composition of pullback to XS and taking the ramification at the divisor {0} in A1
S defined

by t (using Proposition 2.14).

Proof. The 3-primary torsion in Br′(M(2)S) ∼= Br′(BC2,XS
) is just the 3-primary torsion in

Br′(XS) by Proposition 3.2 as H1
pl(XS ;µ2)(3) = 0. Similarly, since 2 is invertible in S, the

Leray–Serre spectral sequence (5.1) together with the group cohomology computations of
Lemma 5.2 and Lemma 5.3 and the exact sequences (5.4)-(5.6) say that

3 Br
′(MS) ∼=

(
3 Br

′(XS)
)S3

.

Since 3 is invertible in S, we have a short exact sequence

0→ 3 Br
′(S)→ 3 Br

′(XS)→ 3H
3
{0,1}(A

1
S ,Gm)→ 0

by Lemma 5.10.

The 0 and 1 sections are disjoint, so that there is an isomorphism of S3-modules

3H
3
{0,1}(A

1
S ,Gm) ∼=

⊕

i=0,1

H1(S,Q3/Z3) ∼= ρ̃⊗H1(S,Q3/Z3)

by Proposition 2.14 and Lemma 5.11. Thus, Lemma 5.3 implies that the long exact sequence
in S3-cohomology takes the following form:

0→ 3 Br
′(S)→ 3 Br

′(XS)
S3 → H1(SpecS,C3)→ H1(S3, 3 Br

′(S)).

However, the action of S3 on 3 Br
′(S) is trivial, so the group on the right vanishes by

Lemma 5.2. Since MS has an S-point (because 2 is inverted), the splitting follows.

The map 3 Br
′(XS) →

⊕
i=0,1 H

1(S,Q3/Z3) takes the ramification at the divisors {0}
and {1}. At this point, we need to make the isomorphism

(
ρ̃⊗H1(S,Q3/Z3)

)S3 → H1(S,C3)
more explicit. By choosing the ordered basis t, t − 1 of Gm(XS)/Gm(S) ∼= ρ̃, we see from
the description of the action that Z/3 ∼= (ρ̃/3)S3 ⊆ ρ̃/3 is generated by t(t − 1). Indeed,
σ(t(t − 1)) = −t−2(t − 1) and τ(t(t − 1)) = −t−2(t − 1) for σ = (1 3 2) and τ = (2 3) and
thus

σ(t(t− 1)) ≡ t(t− 1) ≡ τ(t(t − 1)) ∈ Gm(XS)/3.

This implies that
(
ρ̃⊗H1(S,Q3/Z3)

)S3 → H1(S,C3) can be identified with projection onto
the first coordinate. Thus, 3 Br

′(SR)
S3 → H1(S,C3) takes the ramification at the divisor

{0}.
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We want to be more specific about the Azumaya algebras arising from H1(S,C3). For
that purpose consider the section ∆ ∈ H0(M, λ⊗12), which is defined as follows. Given an
elliptic curve E over S, we can write it Zariski locally in Weierstrass form. Consider its
discriminant ∆E ∈ O(S) and its invariant differential ω ∈ Ω1

E/R(E) ∼= λ(R). It is easy to

see by [Sil09, Table 3.1] that ∆ = ∆Eω
⊗12 is a section of λ⊗12, which is invariant under

coordinate changes. Thus, ∆ defines a section of λ⊗12 on M.

Lemma 7.2. By Construction 2.8, we can associate with the line bundle L = λ⊗4 and
the trivialization ∆: OM → L⊗3 the µ3-torsor M( 3

√
∆) → M whose class in H1(M, µ3) we

denote by [∆]3. If S is a regular noetherian scheme and 6 is a unit on S, then the composite

H1(S,C3)→ H1(MS , C3)
∪(−[∆]3)−−−−−−→ H2(MS , µ3)→ 3 Br

′(MS)

is a section of the map 3 Br
′(MS)→ H1(S,C3) of Theorem 7.1.

Remark 7.3. Informally, this section associates with χ ∈ H1(S,C3) the symbol algebra
[(χ,∆−1)3].

Proof. The pullback of ∆ to X is the discriminant of the universal Legendre curve, which
is 16t2(t− 1)2 (using the standard trivialization of λ on X given by dx

2y ). For χ ∈ H1(S,C3)

the pullback of [(χ,∆−1)3] to Br′(XS) is thus [(χ, 4t(t− 1))3]. As 4t(t− 1) is a uniformizer
for the local ring of A1

S at t = 0, Proposition 2.16 implies the result.

Remark 7.4. While this map H1(S,C3)→ Br′(MS) is defined whether or not 6 is a unit on
S, without this assumption we do not know that H1(S,C3) is the cokernel of 3 Br

′(S) →
3 Br

′(MS).

Corollary 7.5. When S = SpecZ[ 16 ], there is an isomorphism 3 Br(M
Z[

1
6 ]
) ∼= Q3/Z3⊕Z/3.

The 3-torsion subgroup is generated by classes σ and θ, which can be described as follows.
Let χ ∈ H1(SpecZ[ 16 ], C3) be the character of the Galois extension Q(ζ9 + ζ9) of Q. Then
σ = [(χ, 6)3] and θ = [(χ, 16∆−1)3], which pulls back to [(χ, t(t− 1))3] on X

Z[
1
6 ]
.

Proof. We claim first that Q(ζ9 + ζ9) is the only cyclic cubic extension L of Q that ramifies
at most at 2 and 3. This can either be deduced from [Has48, I.§1.2] or shown as follows.
By the Kronecker–Weber theorem, any cyclic cubic extension L of Q has to embed into a
cyclotomic extension Q(ζn) and is more precisely its fixed field under a normal subgroup
H ⊂ (Z/n)× of index 3. As H contains all elements of 2-power order, we can assume that
n is odd and thus L does not ramify at 2 but only at 3. Proposition 3.1 of [Lem05] shows
that L is unique and must be Q(ζ9 + ζ9). This implies that H1(SpecZ[ 16 ], C3) ∼= Z/3.

Using that 3 Br(Z[
1
6 ])
∼= Q3/Z3, the structure of the Brauer group Br(M

Z[
1
6 ]
)[3] follows

from Theorem 7.1. The description of θ follows directly from the last lemma (where we have
modified the section by an element of 3 Br(Z[

1
6 ]) for convenience).

Last we need to show that [(χ, 6)3] is non-zero in Br(Z[ 16 ])[3]
∼= Z/3. It suffices to check

that (χ, 6) is ramified at the prime (2). Note that the minimal polynomial of ζ9 + ζ9 is
w3 +w+1. By Proposition 2.16, the ramification at (2) in H1(F2, C3) ∼= Z/3 is the class of
the extension w3 + w + 1 over F2. Since this polynomial is irreducible (it has no solutions
in F2 and it has degree 3), it follows that the ramification is non-zero.

Corollary 7.6. Let R = Z[ 12 ] or R = Z. Then the order of 3 Br(MR) is either 1 or 3.

Proof. Using the injectivity of Br(M) → Br(M
Z[

1
2 ]
), it suffices to prove this when R =

Z[ 12 ]. Now, we claim that no non-zero class α ∈ 3 Br(Z[
1
6 ]) ⊆ 3 Br(M

Z[
1
6 ]
) extends to
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M
Z[

1
2 ]
. Indeed, we can take the Legendre curve y2 = x(x− 1)(x− 2), which defines a point

SpecZ[ 12 ]→M. Using the commutative diagram

SpecZ[ 16 ]
//

��

M
Z[

1
6 ]

//

��

SpecZ[ 16 ]

SpecZ[ 12 ]
// M

Z[
1
2 ]
,

we see that if α ∈ 3 Br(Z[
1
6 ]) did extend to M

Z[
1
2 ]
, then it would be zero in the Brauer group

of SpecZ[ 16 ], as it would extend to 3 Br(Z[
1
2 ]) = 0. However, these classes are all non-zero

in Br(Z[ 16 ]) since the composition at the top of the commutative diagram is the identity for
any Z[ 16 ]-point of the moduli stack.

Now, if α = β+mθ extends, where β ∈ 3 Br(Z[
1
6 ]), then 3α = 3β also extends. Hence, it

must be that α has order at most 3. In particular, this means that every class of 3 Br(M
Z[

1
2 ]
)

is actually 3-torsion and hence this group is a subgroup of (Z/3)2. But, we have already
seen that σ does not extend. So, it is a proper subgroup, and hence it has order at most
3.

Proposition 7.7. Suppose there are Legendre curves Ei : y2 = x(x − 1)(x − ti) over
SpecZ3[ζ3] for i = 1, 2 such that

[(χ, t1(t1 − 1))] 6= 0 and [(χ, t2(t2 − 1))] = 0

in Br(Q3(ζ3))[3] = Z/3, where χ denotes the pullback of the Galois extension Q(ζ9 + ζ9) of
Q to Q3(ζ3). Then 3 Br(M[ 12 ]) = 0.

Proof. Suppose that α = aσ+bθ is a linear combination of the classes found in Corollary 7.5
where we can assume that b ∈ {1, 2} since σ does not extend. Suppose that α extends to
Br(M

Z[
1
2 ]
). We can pull back α along the two Q3(ζ3)-points ofM defined by Ei and compute

the ramifications in Br(Q3(ζ3)). Let k = [(χ, t1(t1 − 1))]. For i = 1, we get a + bk and for
i = 2 we get a. Since k is non-zero, these cannot be simultaneously zero modulo 3. But
the two maps Br(M

Z[
1
2 ]
)→ Br(Q3(ζ3)) factor over Br(Z3[ζ3]) = 0, which is a contradiction.

Thus, α cannot extend to Br(M
Z[

1
2 ]
).

8 The ramification of the 3-torsion

Our aim in this section is to show that 3 Br(M[ 12 ]) = 0 using Proposition 7.7.

Lemma 8.1. The natural inclusion Q(ζ9 + ζ9, ζ3)→ Q(ζ9) is an isomorphism.

Proof. The left hand side is a subfield of Q(ζ9) that is strictly larger than Q(ζ9 + ζ9) and
thus is equal to Q(ζ9).

We will need the following lemma to aid our Hilbert symbol calculations below.

Lemma 8.2. Consider the cyclotomic field Q(ζ) with ζ = ζ3 and π = 1 − ζ and denote by
Tr the trace for Q(ζ) over Q. Then

Tr(π6k+l) =





(−1)3k · 33k · 2 if l = 0

(−1)3k · 33k+1 if l = 1

(−1)3k · 33k+1 if l = 2

0 if l = 3

(−1)3k+1 · 33k+2 if l = 4

(−1)3k+1 · 33k+3 if l = 5
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Proof. We have π2 = (1 − ζ)2 = −3ζ and thus π6k = (−3)3k. Therefore, we have just to
compute Tr(πl) for l = 0, . . . , 5, which is easily done.

We come to a key arithmetic point in our proof, where we compute the Hilbert symbol
at the prime 3 of certain degree 3 cyclic algebras. By Proposition 2.17, this will allow us to
check whether certain cyclic algebras are zero in the Brauer group.

Lemma 8.3. Consider the cyclotomic field Q3(ζ) with ζ = ζ3 and π = 1−ζ the uniformizer.
Then we have (

ζ, t(t− 1)

π

)
= ζ1−b2

in µ3(Q3(ζ)), where t = 2 + bπ with b ∈ Z3.

Proof. We use the formula of Artin–Hasse (see [Neu99, Theorem V.3.8]) to compute this
Hilbert symbol. By this formula, we have

(
ζ, a

π

)
= ζTr(log a)/3,

where a ∈ 1 + p (for p ⊂ Z3[ζ3] the maximal ideal) and Tr the trace for Q3(ζ) over Q3.
This formula directly applies to t− 1 = 1 + bπ. We have

log(t− 1) =

∞∑

i=1

(−1)i+1 (bπ)
i

i
.

Again, it follows easily from Lemma 8.2 that Tr(πi)
i is divisible by 9 for i ≥ 3. Thus,

Tr(log(t− 1))

3
≡ Tr(bπ)

3
− Tr(b2π2)

6
≡ b − b2

2
mod 3

and
(
ζ,t−1

π

)
= ζb−

b2

2 .

To compute
(
ζ,t
π

)
note that

(
ζ,t
π

)
=

(
ζ,−t
π

)(
ζ,−1
π

)
=

(
ζ,−t
π

)
. Indeed,

(
ζ,−1
π

)2
= 1 and hence

also
(
ζ,−1
π

)
= 1 (in µ3(Q3(ζ3))). We have −t = 1 + (−3− bπ). Thus,

log(−t) =
∞∑

i=1

(−1)i+1 (−3− bπ)i

i
.

It follows easily from Lemma 8.2 that Tr((−3−bπ)i))
i is divisible by 9 for i ≥ 3. Thus,

Tr(log(−t))
3

≡ Tr(−3− bπ)

3
− Tr((−3− bπ)2)

6
≡ −2− b− b2

2
mod 3.

Thus,
(
ζ,t
π

)
=

(
ζ,−t
π

)
= ζ−2−b− b2

2 . It follows that

(
ζ, t(t− 1)

π

)
=

(
ζ, t

π

)(
ζ, t− 1

π

)
= ζ−2−b2 = ζ1−b2 ,

as desired.

Theorem 8.4. We have

3 Br(M) =3 Br(MZ[ 12 ]
) = 0.

Proof. By Proposition 7.7 and Proposition 2.17, it suffices to find two Legendre curves E1

and E2 over Z3[ζ3] with corresponding classes [(χ, t1(t1 − 1))] 6= 0 and [(χ, t2(t2 − 1))] = 0.

The associated condition on the Hilbert symbols is
(
ζ,t1(t1−1)

π

)
6= 1 and

(
ζ,t2(t2−1)

π

)
= 1.

(Recall here that χ is the character associated with adjoining ζ9 + ζ9 which over Q3(ζ3) is
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isomorphic to Q3(ζ9) by Lemma 8.1.) Take ti = 2+ biπ, where b1 = 0 and b2 = 1. Consider
the two elliptic curves

E1 : y2 = x(x − 1)(x− 2)

and
E2 : y2 = x(x − 1)(x− (2 + π)).

The previous lemma says that we have
(
ζ, t1(t1 − 1)

π

)
=

(
ζ, 2(2− 1)

π

)
= ζ 6= 1

and (
ζ, t2(t2 − 1)

π

)
=

(
ζ, (2 + π)(1 + π)

π

)
= ζ0 = 1.

This completes the proof.

9 The 2-primary torsion in Br(MZ[ 12 ]
)

Throughout this section, let S denote a connected regular noetherian scheme over SpecZ[ 12 ].

Given a stack X over S, let Br
′
(X) = coker(Br′(S)→ Br′(X)).

Theorem 9.1. Let S be a regular noetherian scheme over Z[ 12 ] with Pic(S) = 0. There is
a natural exact sequence

0→ Gm(S)/2→ 2Br
′
(MS)→ G→ 0,

where G ⊂ Gm(S)/2 is the subgroup of all those u with [(−1, u)] = 0 ∈ Br(S).

We will prove the theorem after several preliminaries. Figure 3 shows a small part of
the 2-local Leray–Serre spectral sequence (5.1) for the S3-Galois cover M(2)S → MS. The
description follows from Lemmas 5.2, 5.3, 5.7 and Proposition 5.14.

2 Br
′(S)⊕ Pic(S)[2]⊕G

..❭❭❭❭❭❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭

Pic(S)(2) ⊕ µ2(S)

..❭❭❭❭❭❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭

Pic(S)[2]⊕ µ2(S)

--❭❭❭❭❭
❭

❭
❭
❭

❭
❭
❭

❭
❭
❭

❭
❭
❭
❭

❭
❭
❭

❭
❭
❭

❭
❭

Pic(S)/2⊕ µ2(S)

Gm(S)(2) µ2(S) Gm(S)/2 µ2(S)

Figure 3: The E2-page of the Leray–Serre spectral sequence computing Hi(MS ,Gm)(2) for
i ≤ 2.

From now on, we will localize everything in this section implicitly at 2.

Proposition 9.2. Let S be a connected regular noetherian scheme over Z[ 12 ]. The differen-

tial d0,12 in the Leray–Serre spectral sequence of Figure 3 always vanishes and d0,22 and d0,23

vanish if Pic(S) = 0.

Proof. The map
Pic(MS)→ E0,1

2
∼= Pic(S)(2) ⊕ µ2(S)

is surjective as −1 ∈ µ2(S) can be realized as λ⊗6. This implies that there can be no differ-
ential originating from E0,1

2 . Moreover, 2 Br
′(S) splits off from Br′(MS), so the differentials

d0,22 and d0,33 vanish on 2 Br
′(S).

Now assume Pic(S) = 0. Then also Pic(S)[2] = 0 and Pic(S)/2 = 0. So, we are
concerned with the vanishing of d0,22 : G → µ2(S) and d0,23 : G → µ2(S). However, by
pulling back the spectral sequence to a geometric point x of S, we find G = Gm(x)/2 = 0,
while µ2(x) ∼= Z/2. This implies that d0,22 and d0,23 vanish.
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To resolve the differential d1,12 and solve possible extension issues we will first consider
schemes S over Z[ 12 , i]. In this case we can compare the Leray–Serre spectral sequence
considered above with the Leray–Serre spectral sequence for the C2-Galois cover BC2,S →
BC4,S .

Proposition 9.3. If S is a regular noetherian Z[ 12 , i]-scheme, then Br′(MS) ∼= Br′(BC4,S).

Proof. Consider the elliptic curve E : y2 = x(x− 1)(x+1) over Z[ 12 , i] with discriminant 64.
It has an automorphism η of order 4 given by y 7→ iy and x 7→ −x, which defines a map
BC4,Z[ 12 ,i]

→M
Z[

1
2 ]
. The 2-torsion points of E are (0, 0), (1, 0) and (−1, 0); taking them in

this order defines a full level 2 structure. We can base change this elliptic curve together
with its level structure to an arbitrary Z[ 12 , i]-scheme S. This results in pullback squares

∐
S3

S //

��

∐
S3/C2

BC2,S

��

// M(2)S

��

S // BC4,S
// MS.

(9.4)

Here we use that η acts on the scheme
∐

S3
S of level structures on ES by multiplication with

the cycle (2 3) ∈ S3 and in particular η2 acts trivially. Thus, the stack quotient
(∐

S3
S
)
/C4

is equivalent to
∐

S3/C2
BC2,S . More precisely, the S3-Galois cover

∐
S3/C2

BC2,S → BC4,S

is induced along an inclusion C2 → S3 from the C2-Galois cover BC2,S → BC4,S . The
right square is indeed cartesian as can be checked after base change along the étale cover
S → BC4,S .

In the Leray–Serre spectral sequence

Ep,q
2 = Hp(S3,H

q(
∐

S3/C2

BC2,S ,Gm))⇒ Hp+q(BC4,S ,Gm),

the S3-modules Hq(
∐

S3/C2
BC2,S) are all induced up from C2. Thus, the spectral sequence

is isomorphic to the Leray–Serre spectral sequence for the C2-Galois cover BC2,S → BC4,S .
The Leray–Serre spectral sequence computing Hp+q(BC4,S ,Gm) from theGm-cohomology

of BC2,S is displayed in Figure 4. The computation follows from Proposition 3.2 together
with the fact that C2 acts trivially on the cohomology of BC2,S (as indeed the morphism
t : BC2,S → BC2,S for t ∈ C2 the generator is the identity; only the natural transformation
id→ t2 is not the identity).

Br′(S)⊕ Pic(S)[2]⊕Gm(S)/2

..❭❭❭❭❭❭❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭

Pic(S)⊕ µ2(S) Pic(S)[2]⊕ µ2(S)

--❭❭❭❭❭
❭
❭
❭
❭
❭
❭

❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭
❭

❭
❭
❭
❭

Pic(S)/2⊕ µ2(S)

Gm(S) µ2(S) Gm(S)/2 µ2(S)

Figure 4: Part of the Leray–Serre spectral sequence for BC2,S → BC4,S .

By the considerations above, the pullback square (9.4) induces a map

Hp(S3,H
q(M(2)S ,Gm))→ Hp(C2,H

q(BC2,S ,Gm)).

Note first that G = Gm(S)/2 in our case as −1 is a square. If we identify M(2)S with
BC2,XS

this map on cohomology groups is induced by the maps S → XS (classifying the
Legendre curve ES) and C2 → S3. This induces an isomorphism of spectral sequences for
p+ q ≤ 3 and q ≤ 1 for p+ q = 3 by Figure 3.
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Corollary 9.5. Let S be a regular noetherian scheme over Z[ 12 ]. The restriction of the

differential d1,12 to µ2(S) in the Leray–Serre spectral sequence for M(2)S → MS defines an

isomorphism µ2(S)
∼=−→ µ2(S), while d0,23 = 0.

Proof. Consider S′ = SpecZ[ 12 , i]. By Proposition 3.2, we see that

Br′(BC4,S′) ∼= Br′(S′)⊕ Pic(S′)[4]⊕Gm(S′)/4 ∼= Gm(S′)/4,

since the Brauer and Picard groups of Z[ 12 , i] are zero. Hence, Br′(BC4,S′) ∼= Z/4 ⊕ Z/4,
with generators given as i and 1+ i. In Figure 4, we see that the only way to have a group of
order 16 in the abutment Br′(BC4,S′) is that d1,12 : µ2(S

′)→ µ2(S
′) is an isomorphism, both

in the Leray–Serre spectral sequence for H∗(BC4,S′ ,Gm) and for H∗(MS′ ,Gm). It follows
that this differential is already an isomorphism in the Leray–Serre spectral sequence for
H∗(M

Z[
1
2 ]
,Gm) by naturality. This in turn implies by naturality that d1,12 |µ2(S) : µ2(S) →

µ2(S) in the Leray–Serre spectral sequence for H∗(MS ,Gm) is an isomorphism for any
regular noetherian Z[ 12 ]-scheme S. As the target of d0,23 is already zero on E3, the differential

d0,23 must vanish.

Finally, we prove the theorem from the beginning of the section.

Proof of Theorem 9.1. The claim follows from the determination of the differentials in the
range pictured in Figure 3.

We want to be more specific about the Brauer group classes coming from Gm(S)/2.
Recall the section ∆ ∈ H0(M, λ⊗12) from Section 7. As in Construction 2.8, we can define
the C2-torsor M(

√
∆) = SpecM

Z[
1
2 ]

(⊕
i∈Z λ⊗6i/(∆− 1)

)
→ M

Z[
1
2 ]

that adjoins a square

root of ∆ to M
Z[

1
2 ]
. For a unit u ∈ Gm(Z[ 12 ]), we denote by (∆, u) the symbol (quaternion)

algebra associated with this torsor.

Proposition 9.6. Let S denote a connected regular noetherian scheme over SpecZ[ 12 ].
Then the map

Gm(S)/2→ Br′(MS)

from the Leray–Serre spectral sequence sends u to [(u,∆)2].

Proof. We consider the Leray–Serre spectral sequence

Hp(C3,H
q(M(2)S ,Gm))(2) ⇒ Hp+q(M(2)S/C3,Gm)(2),

where M(2)/C3 denotes the stack quotient by the subgroup C3 ⊂ S3. Its E2-term is clearly
concentrated in the column p = 0. From Lemma 5.7 and Proposition 5.14, it is easy to see
that H0(C3,H

q(M(2),Gm)(2) ∼= H0(S3,H
q(M(2),Gm)(2)). We can now consider the further

Leray–Serre spectral sequence

Hp(C2,H
q(M(2)S/C3,Gm))(2) ⇒ Hp+q(MS ,Gm)(2),

and we see that it has the sameE2-term as the Leray–Serre spectral sequence for the S3-cover
M(2)S →MS in the range depicted in Figure 9.

We claim that the C2-torsor M(2)S/C3 → MS agrees with MS(
√
∆) → MS . For this

it suffices to show that ∆ becomes a square on M(2)S/C3. With p, q ∈ H0(M(2), λ⊗2) as
in the discussion after Corollary 4.6, we have ∆ = 16p2q2(p− q)2. The C3-action permutes
p, (−q) and (q−p) cyclically so that 4pq(p−q) is a C3-invariant section of λ⊗6 whose square
is indeed ∆.

Now the statement follows from Corollary 3.6.

The following is one of our main results. We recall the convention that everything is
implicitly 2-local so that Br(MR) for a ring R denotes really Br(MR)(2).
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Proposition 9.7. Let P be a set of prime numbers including 2 and denote by ZP ⊂ Q the
subset of all fractions where the denominator is only divisible by primes in P . Then

Br(MZP
) ∼= Br(ZP ) ⊕

⊕

p∈P∪{−1},
p≡3 mod 4

Z/2 ⊕
⊕

p∈P,
p6≡3 mod 4

Z/4.

Proof. First we have to compute the subgroup

G ⊂ Gm(ZP )/2 ∼=
⊕

P∪{−1}

F2.

By Proposition 2.17, a quaternion algebra (a, b) ramifies at p if and only if the Hilbert
symbol

(
a,b
p

)
equals −1. By [Neu99, Theorem V.3.6],

(
−1,−1

p

)
= −1 if and only if p = 2,∞

and
(
−1,q
p

)
= −1 if and only if q ≡ 3 mod 4 and p = 2, q (for q a prime number). We see

that G has an F2-basis given by the primes not congruent to 3 mod 4.

We obtain a diagram

0 // Gm(ZP )/2

��

// Br(MZP
) //

��

G //

��

0

0 // Gm(ZP [i])/2 // Br(MZP [i]) // Gm(ZP [i])/2 // 0.

By Proposition 9.3, Br(M
Z[

1
2 ,i]

) ∼= Gm(ZP [i])/4. As the map G→ Gm(ZP [i])/2 is injective,

we see that none of the nonzero lifts of elements of G to Br(MZP
) are 2-torsion. The

proposition follows.

This shows the 2-local part of the computation of Br(MQ) and Br(M
Z[

1
2 ]
) in Theorem

1.1, while the 3-local part was already contained in Theorems 7.1 and 8.4 and the p-local
part for p > 3 in Theorem 6.1.

Remark 9.8. We can describe all the Brauer classes in Br(MZP
) explicitly when P is again

a set of prime numbers including 2. We already saw in the last two propositions that
Br(MZP

)[2] has an F2-basis given by [(p,∆)2], where p ∈ P ∪{−1}. When p ∈ S and either
p = 2 or p ≡ 1 mod 4, we will give explicit elements of order 4 in the Brauer group of MZP

generating the Z/4-subgroups of the proposition.

To describe the 4-torsion we start with a small observation. Given a cyclic algebra (χ, υ),
where χ is a C4-torsor and υ a µ4-torsor, 2[(χ, υ)] is represented by (χ′, υ′), where χ′ and
υ′ are obtained from χ and υ via the morphisms C4 → C2 and µ4 → µ2. Concretely, this
means that χ′ are the C2-fixed points of χ and that if υ is given by adjoining the 4-th root
of a section u of L⊗4, then υ′ is given by adjoining a square root of u, a section of (L⊗2)⊗2.

For primes p ≡ 1 mod 4, we construct a C4-Galois extension L of Q whose C2-fixed
points are Q(

√
p). As

√
p is the Gauß sum

∑p−1
a=1

(
a
p

)
ζap , we see that Q(

√
p) ⊂ Q(ζp). The

Galois group of the Q-extension Q(ζp) is cyclic of order p− 1, which is divisible by 4. Thus,
it has a unique cyclic subextension L of degree 4 whose C2-fixed points are Q(

√
p). Note

that L is only ramified at p. Explicitly, L is generated by the Gauß sum
∑p−1

a=1 ϕ(a)ζ
a
p , where

ϕ : (Z/p)× → µ4(C) is a surjective character.
For p = 2, we take L = Q(ζ16+ ζ16) instead, which is the unique C4-Galois subextension

of Q(ζ16) over Q. If we denote for p = 2 or p ≡ 1 mod 4 the character of L/Q by χ, these
define C4-Galois covers of MS by pullback and we abuse notation and write χ also for these
covers. The cup product [(χ,∆)4] in Br′(MZP

) is a class such that 2[(χ,∆)4] = [(p,∆)2]
and thus has exact order 4. It follows that the classes [(χ,∆)4] give a basis of the 4-torsion
of Br(MZP

).
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10 The Brauer group of M

In this section, we will complete the computation of Br(M). In the last section, we saw that

Br(M[ 12 ])
∼= Z/2⊕Z/2⊕Z/4

with generators α = [(−1,−1)2], β = [(−1,∆)2] and
1
2γ for γ = [(2,∆)2]. We will study

the ramification of these classes for certain elliptic curves and the reader can find more
information about these curves in The L-functions and Modular Forms Database [TL].

As above, we will write
(
a,b
2

)
∈ µ2(Q2) for the Hilbert symbol in Q2 at the prime 2.

Hence,
(
a,b
2

)
= ±1. Recall from Proposition 2.17 that if χ ∈ H1(Q2, C2) ∼= H1(Q2, µ2)

corresponds to a unit v ∈ Gm(Q2)/2, then the degree 2 cyclic algebra (χ, u) has class(
u,v
2

)
in Br(Q2)[2] ∼= Z/2 ∼= µ2(Q2). Since Br(Z2) = 0, the Hilbert symbol measures the

ramification along (2) in SpecZ2.

Proposition 10.1. Every non-zero linear combination of α, β, 1
2γ is ramified along (2), so

these linear combinations are not in the image of Br(M)→ Br(M[ 12 ]).

Proof. It suffices to prove this for all seven nonzero linear combinations of α, β, γ. Indeed,
if all these linear combinations are ramified, then any linear combination rα + sβ + 1

2γ is
ramified as well. As explained in the introduction around the diagram (1.4), it suffices to
construct for each non-zero linear combination ρ an elliptic curve SpecZ2 → M such that
the pullback of ρ to SpecQ2 is non-zero in Br(Q2). Indeed, Br(Z2) = 0.

Let

E1 : y2 + y = x3 − x2,

the elliptic curve with Cremona label 11a3. This curve has discriminant −11, which is a
unit, so we get an elliptic curve over Z2, and two associated Brauer classes, (2,−11) and
(−1,−11) over Q2. We can ask what the ramification is. The Hilbert symbol in this case
is computed as follows [Ser73, Chapter III]. Given a = 2αu and b = 2βv ∈ Gm(Q2), where
u, v ∈ Gm(Z2), we have (

a, b

2

)
= (−1)ǫ(u)ǫ(v)+αω(v)+βω(u),

where ǫ(u) ≡ u−1
2 and ω(u) ≡ u2−1

8 .
Hence, (

2,−11
2

)
= (−1)ω(−11) = (−1)15 = −1.

Hence, (∆, 2) is ramified at 2. Similarly,

(−1,−11
2

)
= (−1)ǫ(−1)ǫ(−11) = (−1)6 = 1.

The curve

E2 : y2 + xy = x3 − 2x2 + x

has Cremona label 15a8 and discriminant −15. This time, the Hilbert symbols are

(
2,−15

2

)
= 1

and (−1,−15
2

)
= 1.

The curve

E3 : y2 + xy + y = x3 − x2
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has Cremona label 53a1 and discriminant −53. In this case, the Hilbert symbols are

(
2,−53

2

)
= −1

and (−1,−53
2

)
= −1.

Now, let ρ = α + kβ +mγ with k and m integers. The elliptic curve E2 gives a point
x : SpecQ2 →M where v2(x

∗ρ) = −1. It follows that all classes of the form ρ are ramified
along (2). Now, E3 proves that β and γ are ramified along (2). Finally, E1 proves that β+γ
is ramified along (2).

Theorem 10.2. Br(M) = 0.

Proof. This follows from Corollary 6.4, Theorem 8.4, and Propositions 9.7 and 10.1.

11 The Brauer group of M over Fq with q odd

As another application of our methods, we compute the Brauer group of MFq
when q =

pn and p is an odd prime. There is remarkable regularity in this case, which is possibly
surprising based on what happens for number fields.

Theorem 11.1. Let q = pn where p is an odd prime. Then, Br(MFq
) ∼= Z/12.

Proof. Recall that Br(Fq) = 0. Thus, by Theorem 9.1, there is an extension 0 → F×
q /2 →

2 Br(MFq
)→ F×

q /2→ 0. Since q is odd, F×
q /2
∼= Z/2. The remainder of Section 9, especially

Remark 9.8, implies that the extension is non-split so that in fact 2 Br(MFq
) ∼= Z/4.

Now, let ℓ ≥ 3 be a prime, which we do not assume is different from p. The possible
terms contributing to ℓ Br(MFq

) in the Leray–Serre spectral sequence for M(2)Fq
→MFq

in
Gm cohomology, besides ℓ Br(XFq

)S3 , are H1(S3,ℓ Pic(M(2)Fq
) and H2(S3,ℓ Gm(M(2)Fq

)) ∼=
H2(S3,ℓ Gm(XFq

)). The first of these is zero since ℓ Pic(M(2)Fq
) ∼= ℓ Pic(XFq

) = 0 for
ℓ odd. The second has no odd primary torsion. This follows from the exact sequence
0→ Gm(Fq)→ Gm(XFq

)→ ρ̃⊗Z→ 0 together with Lemmas 5.2 and 5.3.

Thus, we see that ℓ(Br(MFq
)) ∼= ℓBr(XFq

)
S3 for ℓ odd. So, it suffices to compute the

Brauer group ofXFq
as an S3-module. In general, our argument in the rest of the paper relies

fundamentally on Lemma 5.11, which requires ℓ to be invertible to analyze the ramification
map as in Proposition 2.14. However, in this case, XFq

is a curve over a finite field, so
the ramification theory simplifies drastically. Consider the commutative diagram of exact
ramification sequences due to [Gro68c, Proposition 2.1]

0 // Br(P1
Fq
) //

��

Br(η) //

=

��

⊕
x∈(P1

Fq
)(1) Q/Z //

��

Q/Z // 0

0 // Br(XFq
) // Br(η) //

⊕
x∈(XFq )

(1) Q/Z

where η is the generic point of XFq
. Note that the exactness at the right in the top sequence

is due to the fact (see [GS06, Corollary 6.5.4]) that
⊕

x∈(P1
Fq

)(1) Q/Z → Q/Z is given

by summation in Q/Z. Since Br(P1
Fq
) = 0 by [Gro68c, Remarques 2.5.b], we see that

Br(XFq
) ⊆ Br(η) is the subgroup consisting of classes ramified only at 0, 1,∞. Using the

top row of the diagram, it follows that Br(XFq
) fits into an exact sequence

0→ Br(XFq
)→

⊕

0,1,∞

Q/Z→ Q/Z→ 0,
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from which it follows that
Br(XFq

) ∼= ρ̃⊗Q/Z.

By Lemma 5.3, we find that ℓBr(XFq
)
S3 = 0 if ℓ ≥ 5 and 3 Br(XFq

)
S3 ∼= Z/3. This proves

the theorem.

Remark 11.2. We can again be more specific about the Azumaya algebras representing the
classes in Br(MFq

) with q odd. Let T be a Fq-scheme (or stack) with an elliptic curve E of
discriminant ∆. Let χm be the pullback of a character of the Galois extension Fqm of Fq

to T . We claim that there is a generator a ∈ Br(MFq
) such that the pullback of a to Br(T )

agrees with [(χ12,∆)]. Informally, a = [(χ12,∆)] in the universal case T = MFq
, where

more precisely we should replace here ∆ by the µ12-torsor corresponding to ∆ ∈ Γ(λ⊗12)
via Construction 2.8.

First we consider the 3-torsion. The proof of Lemma 7.2 applies here to show that
[(χ3,∆)] is indeed the pullback of a generator of Br(MFq

)[3]. Moreover, Proposition 9.6
implies that the unique 2-torsion element 6a ∈ Br(MFq

) pulls back to [(χ2,∆)] as Fq2

agrees with Fq[
√
x] for an arbitrary non-square x in Fq. As in Remark 9.8 we see that

6[(χ12,∆)] = [(χ2,∆)] 6= 0 and 4[(χ12,∆)] = [(χ3,∆)] 6= 0. Thus, [(χ12,∆)] is indeed a
generator of Br(MFq

) ∼= Z/12.

Finally, we also treat the easier case of an algebraically closed base.

Proposition 11.3. Let k be an algebraically closed field of characteristic not 2. Then
Br(Mk) = 0.

Proof. By Theorem 9.1, 2 Br(Mk) = 0. As in the last proof we see that ℓ(Br(Mk)) ∼=
ℓ Br(Xk)

S3 for ℓ an odd prime. By Tsen’s theorem, Br(η) vanishes for η the generic point
of Xk. By [Gro68c, Proposition 2.1] we obtain that Br(Xk) = 0.

Remark 11.4. In an earlier version of this paper we suggested using the GL2(Z/3)-cover
M(3) → M

Z[
1
3 ]

to determine Br(Mk) also for algebraically closed fields k of characteristic

2. Combining this approach with a new idea, Minseon Shin has proved in the meanwhile
in [Shi19] that Br(Mk) ∼= Z/2 for such fields k.
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