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PURITY IN CHROMATICALLY LOCALIZED ALGEBRAIC K -THEORY

MARKUS LAND, AKHIL MATHEW, LENNART MEIER, AND GEORG TAMME

Abstract. We prove a purity property in telescopically localized algebraic K-theory of
ring spectra: For n ≥ 1, the T (n)-localization of K(R) only depends on the T (0) ⊕ · · · ⊕

T (n)-localization of R. This complements a classical result of Waldhausen in rational K-
theory. Combining our result with work of Clausen–Mathew–Naumann–Noel, one finds that
LT (n)K(R) in fact only depends on the T (n− 1) ⊕ T (n)-localization of R, again for n ≥ 1.
As consequences, we deduce several vanishing results for telescopically localized K-theory,
as well as an equivalence between K(R) and TC(τ≥0R) after T (n)-localization for n ≥ 2.
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1. Introduction and results

It is an interesting question how algebraic K-theory interacts with the chromatic filtration
on the ∞-category of spectra, which arises through the height filtration on the moduli stack
MFG of formal groups. This paper is concerned with precisely such interactions.

The paradigmatic starting point is rationalization. Waldhausen [Wal78] proved that a
rational equivalence between connective ring spectra which is a π0-isomorphism induces an
equivalence in rational algebraic K-theory. An important example is the map S → Z from
the sphere spectrum to the integers, which hence induces an equivalence K(S)Q ≃ K(Z)Q
of rational K-theory spectra. The parametrized h-cobordism theorem [WJR13] implies that
K(S), which is canonically equivalent to Waldhausen’s A-theory of a point A(∗), controls
significant information about high-dimensional manifold topology. The above equivalence
of rational K-theory spectra then allows one to import Borel’s computation of K(Z)Q into
geometric topology, see for instance [FH78].

From the viewpoint of chromatic homotopy theory, rationalization is the first in a whole
sequence of localizations. On the category of p-local spectra, rationalization is the Bousfield

localization with respect to T (0)
def
= S[1p ]. By the periodicity theorem of Hopkins–Smith

[HS98], one can iteratively define higher analogues of multiplication by p: A self-map v1 of
S/p, a self-map v2 on S/(p, v1), and in general a self map vn+1 on S/(p, v1, . . . , vn). We denote
by T (n) = S/(p, v1, . . . , vn−1)[v

−1
n ] the colimit of a vn-self map. This defines the class of T (n)-

acyclic spectra, and one obtains a corresponding Bousfield localization functor LT (n). The
T (n)-acyclic spectra in turn can be related to the acyclic spectra for the better-known Morava
K-theories K(n) at the prime p: Every T (n)-acyclic spectrum is K(n)-acyclic. The converse
implication is known as the telescope conjecture. This conjecture is known for n = 1, for
MU -modules, and for ring spectra. We remark that the localizations at the K(n) describe
the layers of the chromatic filtration. As these layers are related to representations of the
Morava stabilizer group, a p-adic Lie group, they are also accessible by arithmetic means.

The main result, proved jointly between this paper and the related work [CMNN20a],
concerns the behavior of algebraic K-theory with respect to T (n)-localizations, and yields
the following purity statement.

Theorem A. Let n ≥ 1, and let A→ B be a map of ring spectra which is a T (n−1)⊕T (n)-
equivalence. Then K(A)→ K(B) is a T (n)-equivalence.

In this paper, we prove, as Theorem 3.8, that if A → B is a T (0) ⊕ T (1) ⊕ · · · ⊕
T (n)-equivalence, then K(A) → K(B) is a T (n)-equivalence;1 this answers a question from
an earlier version of this paper, and suffices for many, but not all applications explored
here. Using Theorem 3.8, the work [CMNN20a] proves the complementary statement that
LT (i)K(LT (j)S) = 0 for i ≥ j+2. Theorem A then follows by combining these two assertions,
as we explain in the body of the text.

For n = 1 and a K(1)-acyclic ring spectrum A, Theorem A (or Theorem 3.8) implies that
the natural map induces an equivalence

LK(1)K(A)
≃
−→ LK(1)K(A[1p ]).

In the case where A is an HZ-algebra, this was previously shown by Bhatt–Clausen–Mathew
[BCM20] using arithmetic techniques, in particular the theory of prismatic cohomology and

1Moreover, if n ≥ 2 then one can drop T (0).
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its relationship with topological cyclic homology, [BMS19, BS19]. Our results give a differ-
ent proof of this fact, purely relying on tools from K-theory and homotopy theory, and a
generalization to higher chromatic heights.

To put Theorem A into further context, we recall what is known about telescopically
localized algebraic K-theory. By work initiated by Thomason [Tho85, TT90] in the case of
schemes and generalized and amplified by Clausen, Mathew, Naumann, and Noel [CMNN20b,
CM19], T (n)-local K-theory satisfies étale descent on E2-spectral algebraic spaces for every
n. In fact, the T (1)-local K-theory of discrete rings is closely related to p-adic étale K-theory
(the p-complete étale sheafification of K-theory). Hence, by the proven Quillen–Lichtenbaum
conjecture, it is often isomorphic to p-adic K-theory in high enough degrees; see [CM19] for
precise statements. In contrast, Mitchell [Mit90] proved that the K-theory of schemes and
discrete rings (which are T (1)-acyclic) vanishes T (n)-locally for every n ≥ 2 and every prime
p. For ring spectra or spectral schemes, conjectures of Ausoni–Rognes [AR02, AR08] predict
higher chromatic analogs of these statements and suggest to study the T (n+1)-local K-theory
of K(n)-local ring spectra.

Many results follow quite quickly from Theorem A. We list a few of them here, and refer
to the body of the text for more applications and explanations:

(1) Let A be an E∞-ring and B be an A-algebra. For m ≥ n + 1, LT (n)A = 0 implies
LT (m)K(B) = 0; see [CMNN20a, Theorem A].

(2) For positive integers m 6= n, n+ 1, the spectrum K(K(n)) is T (m)-acyclic.
(3) The map K(BP 〈n〉) → K(E(n)) is a T (m)-equivalence for m ≥ n + 1, and both

terms vanish T (m)-locally for m ≥ n+ 2.
(4) For any n ≥ 0 and m ≥ 2, the spectrum K(τ≤nS) is T (m)-acyclic.
(5) K(1)-local K-theory of discrete rings satisfies excision, nilinvariance and cdh-descent.

In addition, it is A1-homotopy invariant and thus identifies with theK(1)-localization
of Weibel’s homotopy K-theory.2

(6) For any ring spectrum A and n ≥ 2, there are T (n)-local equivalences between K(A),
K(τ≥0A), and TC(τ≥0A).

(7) The assembly map in algebraic K-theory for the family of cyclic subgroups

colim
G/H∈OC(G)

K(RH) −→ K(RG)

is a T (n)-local equivalence for n ≥ 2, any ring spectrum R, and any group G.

Statements (1)–(3) use the full strength of Theorem A, whereas (4)–(7) rely only on The-
orem 3.8.

We remark that some cases of (1) in the above list appear in work of Ausoni–Rognes and
Angelini-Knoll–Salch [AR02, AR12, AKS20], and that (7) is an immediate consequence of (6)
and results of [LRRV17, CMM18].

A special case of (1) in the above list is that the K-theory of any Lp,f
n -local ring spectrum

is T (m)-acyclic for m ≥ n + 2. This, however, is used in order to deduce Theorem A from
Theorem 3.8, and is due to [CMNN20a]. We indicate their argument in Remark 3.9 for the
reader’s convenience.

Conventions. We fix a prime number p which will be the implicit prime in all Morava
K-theories K(i) and T (i) below. We adopt the convention that K(0) = HQ. Whenever we
speak of a ring spectrum, we mean an E1-ring spectrum, i.e. an algebra in the symmetric

2From this fact, excision, nilinvariance, and cdh-descent also follow.
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monoidal ∞-category Sp of spectra. By a module over a ring spectrum we mean a right
module. Given an Ek-ring spectrum R for k ≥ 2, an R-algebra is an algebra in the monoidal
∞-category RMod(R) of R-modules. For a spectrum E, we denote by LE the Bousfield
localization functor at E. For a spectrum X and a pointed space Y , we write X ⊗ Y for the
smash product X ⊗Σ∞Y .

Acknowledgements. We are very grateful to Dustin Clausen for generously sharing his
ideas and numerous helpful discussions, and to Ben Antieau for his input and interest. Finally,
we thank Gijs Heuts, Niko Naumann, and George Raptis for valuable discussions and Ulrich
Bunke and Lars Hesselholt for helpful comments on a previous version.

2. Preliminaries

2.1. Preliminaries from chromatic homotopy theory. For an integer n ≥ 1, we denote
by Vn a type n-complex, i.e. a pointed finite CW-complex with K(i) ⊗ Vn = 0 for i < n and
K(n)⊗Vn 6= 0. We denote by vn a vn-self map of Vn, i.e. a map ΣdVn → Vn for some positive
integer d inducing an isomorphism on K(n)-homology and nilpotent maps on K(i)-homology
for i 6= n. Such maps exist by [HS98].

IfX is a pointed space or a spectrum, we define its vn-periodic homotopy groups v−1
n π∗(X;Vn)

by the formula

v−1
n π∗(X;Vn) = Z[v±1

n ]⊗Z[vn] π∗Map∗(Vn,X).

Definition 2.1. We call a map of pointed spaces or spectra a vn-periodic equivalence (with
n ≥ 1) if it induces an isomorphism on vn-periodic homotopy groups. A map of spectra or
simple spaces is a v0-periodic equivalence if it becomes an equivalence after inverting p, and
the v0-periodic homotopy groups are by definition the homotopy groups with p inverted. For
a spectrum E, we say that another spectrum X is E-acyclic if E⊗X = 0 and say that a map
is an E-equivalence if its fibre is E-acyclic.

For a fixed pair (Vn, vn) we denote by T (n) = Σ∞Vn[v
−1
n ] the telescope of vn. We adopt

the convention that T (0) = S[1p ]. We recall that the Bousfield class of a spectrum E is the

full subcategory of Sp consisting of the E-acyclic spectra. For the convenience of the reader
not familiar with chromatic homotopy theory, we note the following well-known properties.

Lemma 2.2. Let X be a spectrum and Y be a pointed space.

(i) We have v−1
n π∗(X;Vn) ∼= v−1

n π∗(Ω
∞X;Vn).

(ii) The maps τ≥kX → X and τ≥kY → Y are vn-periodic equivalences for all k and all

n ≥ 1.
(iii) The spectra K(m) are T (n)-acyclic for n 6= m.

(iv) Any T (n)-acyclic spectrum is K(n)-acyclic.
(v) A spectrum which is S/p-acyclic is also T (n)-acyclic for all n ≥ 1.
(vi) The map X → X∧

p is a T (n)-equivalence for all n ≥ 1.
(vii) The Bousfield class of T (n) does not depend on the choice of (Vn, vn).
(viii) A spectrum is T (n)-acyclic if and only if its vn-periodic homotopy groups vanish.

Proof. Part (i) follows immediately from the definitions and the equivalence Map∗(Vn,X) ≃
Map∗(Vn,Ω

∞X). Assertion (ii) follows from the observation that the vn-periodic homotopy
groups of a bounded above spectrum or space vanish. This in turn follows from the fact that
the degree d of the self map vn is positive. Claim (iii) follows from the fact thatK(m)⊗T (n) ≃
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(K(m) ⊗ Vn)[v
−1
n ] which vanishes as vn is nilpotent on Morava K-homology if n is different

from m. To see (iv), assume that X is T (n)-acyclic. Then we have 0 = K(n)⊗T (n)⊗X. But
K(n) ⊗ T (n) 6= 0, so, since K(n) is a field spectrum (any module is a direct sum of shifted
copies of K(n)), we must have K(n)⊗X = 0.

For part (v) observe that some power of p, say pk, is zero on Vn and hence on T (n). Given
an S/p-acyclic spectrum X, we have X/pk = 0. Thus we see that

0 = X/pk ⊗ T (n) ≃ X ⊗ T (n)/pk ≃ X ⊗ (T (n)⊕ ΣT (n)),

and the latter term has X⊗T (n) as a retract. Thus X is T (n)-acyclic. Statement (vi) follows
from (v), since the fibre of X → X∧

p is S/p-acyclic.
For (vii), as in [MS95, Lemma 2.1], we fix a pair (Vn, vn) and consider the full subcategory

of finite p-local spectra consisting of those Y which admit a vn-self map y and such that
T (n) ⊗ Z = 0 implies that Y [y−1] ⊗ Z = 0 as well. This is a thick subcategory, as follows
from [HS98, Corollary 3.8]. Since it contains Vn, this thick subcategory is given by the thick
subcategory of finite spectra of type at least n, see [HS98, Theorem 7]. Hence if T (n)⊗Z = 0
and (V ′

n, v
′
n) is another choice, also T (n)′ ⊗Z = 0. Running the same argument also with V ′

n

instead of Vn gives the claim.
To see (viii), consider a spectrum X and observe that we may calculate its vn-periodic

homotopy groups using the mapping spectrum map(Vn,X) instead of the mapping space
Map(Vn,X) due to the positivity of the degree of the self-map vn. Thus, the vn-periodic
homotopy groups of X are isomorphic to the homotopy groups of the spectrum (DVn ⊗
X)[Dv−1

n ], where DVn denotes the dual of the finite spectrum Σ∞Vn (which is again of type
n). This spectrum is equivalent to T (n)⊗X where T (n) is the telescope of Dvn. The claim
then follows from (vii). �

We remark that the converse of statement (iv) (for n ≥ 1) is known as the telescope
conjecture. It is known [Mah81, Mil81] to be true in height n = 1 but is open in general, see
e.g. [Bar19] for a survey. We thank Dustin Clausen for help with the following lemma, which
is a consequence of the nilpotence theorem.

Lemma 2.3. Let R be a ring spectrum, and n ≥ 1 an integer. Then R is K(n)-acyclic if and

only if it is T (n)-acyclic.

Proof. The “if”-part follows from Lemma 2.2(iv). To see the “only if” statement, we argue
first that one can assume that T (n) is a ring spectrum. Indeed, by replacing Vn by Wn =
Vn⊗DVn ≃ End(Σ∞Vn), we can assume that the suspension spectrum of our type n-complex
is an E1-ring spectrum. Moreover, the vn-self-map of Vn defines an element w ∈ π∗(Wn),
multiplication with which is a vn-self map again. By [HS98, Theorem 11] a power of w lies
in the center of π∗(Wn). Thus the localization Wn[w

−1] admits the structure of an E1-ring
spectrum. As the Bousfield class of T (n) does not depend on the choice of the type n complex,
we can thus indeed assume that T (n) is a ring spectrum. We then observe that a ring spectrum
like T (n) ⊗ R is zero if and only if its unit is nilpotent. By the nilpotence theorem [HS98,
Theorem 3], this is the case if and only if K(m)⊗(T (n)⊗R) = 0 for all 0 ≤ m ≤ ∞. If m 6= n
then K(m)⊗ T (n)⊗R = 0 as K(m)⊗ T (n) = 0 by Lemma 2.2(iii). Since R is K(n)-acyclic,
also K(n)⊗ T (n)⊗R = 0. We thus conclude that T (n)⊗R vanishes. �

Remark 2.4. In the proof above, it was not used that R is an algebra in the ∞-category of
spectra. It suffices that R is a unital magma in the homotopy category of spectra.
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2.2. Some localization functors. We recall that the functor Lf
n on spectra is defined as

Bousfield localization at the spectrum HQ⊕T (1)⊕· · ·⊕T (n). To formulate our main result,
we will use the following variant.

Definition 2.5. We denote by Lp,f
n the Bousfield localization at T (0)⊕ T (1)⊕ · · · ⊕ T (n).

Recall that a Bousfield localization functor L : Sp → Sp is called smashing if it preserves
colimits or, equivalently, if it is of the form LX ≃ X ⊗ LS. If every L-acyclic spectrum is a
colimit of compact, L-acyclic spectra, then L is called finite and is in particular smashing, see

[Mil92] or [Lur10, Lecture 20, Example 12]. For example, Lf
n is smashing. The same proof

also shows that Lp,f
n is smashing. For convenience, we recall this proof below. Write C>n

for the ∞-category of p-local, finite spectra which are of type greater than n, i.e. which are
K(0)⊕ · · · ⊕K(n)-acyclic.

Lemma 2.6. The category of Lp,f
n -acyclic spectra coincides with Ind(C>n). In particular,

Lp,f
n is a smashing localization.

Proof. The Bousfield class 〈T (0)⊕ T (1)⊕ · · · ⊕ T (n)〉 has as complement the Bousfield class
〈Σ∞Vn+1〉 of a type (n + 1)-spectrum: every spectrum is acyclic for (T (0) ⊕ T (1) ⊕ · · · ⊕
T (n))⊗Vn+1 and 0 is the only spectrum which is T (0)⊕T (1)⊕· · · ⊕T (n)⊕Σ∞Vn+1-acyclic.
Indeed, this follows easily from the inductive construction of a type (k+1)-complex as Vk/v,
where Vk is a type k-complex with vk-self map v. It follows from [MS95, Proposition 3.3] that

every Lp,f
n -acyclic spectrum is a colimit of finite Lp,f

n -acyclic spectra. The thick subcategory

theorem implies that the category of finite Lp,f
n -acyclic spectra is precisely C>n. �

Lemma 2.7. For integers 0 ≤ m < n and a spectrum X there is a pullback diagram

Lp,f
n X LT (m+1)⊕···⊕T (n)X

Lp,f
m X Lp,f

m LT (m+1)⊕···⊕T (n)X

natural in X.

Proof. This is a special case of the following well known lemma. �

Lemma 2.8. Let E and F be spectra. Assume that LE preserves F -acyclic spectra. Then

there is a pullback diagram

LE⊕FX LFX

LEX LELFX

natural in X.

We note that the assumptions of the lemma are for instance satisfied if LE is smashing, or
if LF annihilates E-local objects.

Proof. Denote the pullback of the diagram LEX → LELFX ← LFX by P (X). There is a
canonical map X → P (X); it is easy to show that this map is an (E ⊕ F )-local equivalence,
and that P (X) is (E ⊕ F )-local. �

As a consequence of Lemma 2.8 we note that
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(i) for p-local spectra X, the canonical map Lp,f
n X → Lf

nX is an equivalence, and

(ii) for T (1)-acyclic spectra X, the canonical map Lp,f
1 X → X[1p ] is an equivalence.

We will use the following criterion to detect T (i)-local equivalences, which was indicated
to us by Gijs Heuts.

Proposition 2.9. Let f : X → Y be a map of spectra, and let i ≥ 1 be an integer. If Σ∞Ω∞f
is a T (i)-local equivalence, then so is f . In other words, the functor Σ∞Ω∞ : Sp→ Sp detects

T (i)-local equivalences.

Proof. We note that the canonical composite

Ω∞ −→ Ω∞Σ∞Ω∞ −→ Ω∞

is an equivalence. It is an insight of Bousfield and Kuhn that the T (i)-localization functor
LT (i) factors through Ω∞ via the Bousfield–Kuhn functor Φi from pointed spaces to spectra.
There is thus an equivalence Φi ◦Ω

∞ ≃ LT (i); see [Kuh08, Theorem 1.1]. Applying Φi to the
above composite shows that the composite

LT (i) −→ LT (i)Σ
∞Ω∞ −→ LT (i)

is also an equivalence. This implies that LT (i)(f) is a retract of LT (i)(Σ
∞Ω∞f) which proves

the lemma. �

Remark 2.10. Restricted to connective spectra, the functor Σ∞Ω∞ also detects T (0)-local
equivalences.

It is, however, not true that the functor Σ∞Ω∞ preserves T (i)-local equivalences. For
example, HZ is T (i)-acyclic, whereas Σ∞Z is not: It contains the sphere spectrum as a sum-

mand. Nevertheless, Σ∞Ω∞ preserves suitably connective Lp,f
n -equivalences, as the following

result shows. We say that a space is m-connective if it has trivial homotopy groups in degrees
less than m, i.e., is (m−1)-connected. We call a map m-connective if its fibre is m-connective,
i.e. if it induces an isomorphism on πk for k < m and a surjection on πm.

Proposition 2.11. Let n ≥ 1 be an integer. Then there exists m ≥ 2 such that the following

hold:

(i) Let F be an m-connective pointed space whose vi-periodic homotopy groups vanish

for 0 ≤ i ≤ n. Then F is T (i)-acyclic for 0 ≤ i ≤ n.
(ii) Let f : X → Y be an m-connective map between spaces. If f is a vi-periodic equiva-

lence for 0 ≤ i ≤ n, then Σ∞f : Σ∞X → Σ∞Y is an Lp,f
n -equivalence.

(iii) The functor Σ∞Ω∞ preserves m-connective Lp,f
n -equivalences.

Proof. Part (i) follows from a result of Bousfield ([Bou01, Corollary 4.8], [BHM18, The-
orem 3.1]) together with [BHM18, Lemma 3.3], which gives an integer m such that any
m-connective space with trivial vi-periodic homotopy groups for 0 ≤ i ≤ n has trivial T (i)-
homology for 0 ≤ i ≤ n. Note that in Bousfield’s convention T (0) is HQ, but it is well-known
that a simply connected space such that (π∗X)[1p ] vanishes is also acyclic for HZ[1p ] and hence

for T (0) = S[1p ].

To prove (ii), let F be the fibre of f . By assumption, F is an m-connective space whose
vi-periodic homotopy groups vanish for i ≤ n. Thus F is T (i)-acyclic for 0 ≤ i ≤ n by (i).
The Serre spectral sequence in T (i)-homology associated to the fibre sequence F → X → Y
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then implies that the map Σ∞X → Σ∞Y is a T (i)-local equivalence for 0 ≤ i ≤ n and thus

an Lp,f
n -equivalence.

Finally, to see (iii) one applies Ω∞ to an m-connective Lp,f
n -equivalence. The resulting map

of spaces satisfies the assumptions of (ii), so the proposition follows. �

The following remark will not be used in the sequel.

Remark 2.12. In fact, we can take m = n + 1 in Proposition 2.11. Indeed, using what we
have proven already, it suffices to show that any (n+1)-connective space F is T (i)-acyclic for
0 ≤ i ≤ n if its homotopy groups are p-primary torsion and vanish in sufficiently high degrees.
By an induction over the Postnikov tower, it hence suffices to show that T (i) ⊗ K(π, r) =
0 if r > i and π is a finite group, as T (i)-homology commutes with filtered colimits and
every torsion group is the filtered colimit of its finite subgroups. It is shown in [CSY18,
Theorem E] that for a p-local ring spectrum R the following two conditions are equivalent:
(1) R⊗K(π, r) = 0 for all r > i and (2) R⊗K(r) = 0 for all r > i. Statement (2) applies to
R = T (i) by Lemma 2.2(iii), so part (i) and hence also (ii) and (iii) of the proposition follow
with m = n+ 1.

2.3. Localizing invariants and K -theory. In this short subsection we recall some notions
and facts about algebraic K-theory which we will use throughout this paper.

A localizing invariant is a functor Catperf∞ → Sp which sends exact sequences to fibre
sequences. Here Catperf∞ refers to the∞-category of small, idempotent complete, and stable∞-
categories and exact sequences are those sequences which are both fibre and cofibre sequences
in Catperf∞ , see [BGT13, §5] for details.3 Examples of localizing invariants are non-connective
K-theory [BGT13, §9], topological Hochschild homology, topological cyclic homology, etc.
For a localizing invariant E and a ring spectrum A, we will write E(A) for E(Perf(A)), where
Perf(A) denotes the ∞-category of perfect A-modules, which coincides with the compact
objects of RMod(A).

For a connective ring spectrum A, the space Ω∞τ≥1K(A) can be described as a plus-con-
struction [BGT13, Lemma 9.39]: We denote by GL(A) the E1-space GL(A) = colimGLn(A),
where GLn(A) denotes the invertible components in the E1-space Ω

∞End(An). In particular,
π0(GL(A)) ∼= GL(π0(A)), where the right-hand side denotes the group of invertible matrices
over the discrete ring π0(A). There is a canonical map BGL(A) → Ω∞τ≥1K(A) which
exhibits the target as the plus construction BGL(A)+. In particular, this map is a homology
equivalence, and hence the map of spectra Σ∞BGL(A)→ Σ∞Ω∞τ≥1K(A) is an equivalence.

For an arbitrary C ∈ Catperf∞ , we will also need the explicit description of the K-theory
space Ω∞K(C), which arises via the Waldhausen S•-construction, cf. [BGT13, Sec. 7.1]. The
S•-construction produces a simplicial object S•C ∈ Fun(∆op,Catperf∞ ) such that there is a
natural equivalence of spaces

(1) Ω∞K(C) ≃ Ω|S•(C)
≃|,

where (−)≃ denotes the underlying space of an ∞-category; moreover, we have for each
n ≥ 0 a natural equivalence Sn(C) ≃ Fun(∆n−1, C). Note that both sides have the canonical
structure of E∞-spaces since Catperf∞ is semiadditive, i.e. it has finite biproducts as in [GGN15,
Definition 2.1]; In fact, the equivalence 1 is one of E∞-spaces, therefore, we can deloop both
sides to obtain

(2) Ω∞(τ≥0K(C)[1]) ≃ |S•(C)
≃|.

3In [BGT13] localizing invariants are further required to preserve filtered colimits.
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3. Proof of Theorem A

In this section, we will prove Theorem A in several steps, each of which will give a special
case of the result. Our first step, which we treat in the following subsection, will involve only
highly connective maps of connective ring spectra.

3.1. The highly connective case.

Proposition 3.1. Let n ≥ 1. There exists N ≥ 1 such that the following holds: let A → B

be an N -connective Lp,f
n -equivalence between connective ring spectra. Then the induced map

K(A)→ K(B) is again an Lp,f
n -equivalence.

Proof. We take N = m − 1, where m is as in Proposition 2.11. By Waldhausen’s result
(see [Wal78, Propositions 1.1, 2.2] or [LT19, Lemma 2.4]) the map K(A)→ K(B) is a T (0)-
equivalence. It hence remains to prove that the map K(A)→ K(B) is a T (i)-local equivalence
for 1 ≤ i ≤ n. By Lemma 2.2(ii), it suffices to show that τ≥1K(A)→ τ≥1K(B) is a T (i)-local
equivalence for 1 ≤ i ≤ n.

We consider the following commutative diagram, where we use the plus-construction de-
scription of algebraic K-theory for connective ring spectra as recalled in Section 2.3.

Σ∞BGL(A) Σ∞BGL(B)

Σ∞Ω∞τ≥1K(A) Σ∞Ω∞τ≥1K(B)

≃ ≃

By Proposition 2.9, it suffices to show that the lower horizontal map is a T (i)-local equivalence
for 1 ≤ i ≤ n. Since the vertical maps in the above diagram are equivalences, this is the case
if the top horizontal map is a T (i)-local equivalence. This and thus the proposition will follow
from Proposition 2.11(ii) once we have shown the following: The map BGL(A) → BGL(B)
is m-connective and induces an isomorphism on vi-periodic homotopy groups for i ≤ n.

To show this claim, we observe that the classifying space construction B increases the
connectivity of a map by 1 and preserves vi-periodic equivalences. Thus it suffices to see that
GL(A) → GL(B) is an (m − 1)-connective vi-periodic equivalence for 1 ≤ i ≤ n. Observe
that by definition the map A→ B induces an isomorphism between π0(GL(A)) = GL(π0(A))
and GL(π0(B)) = π0(GL(B)). Furthermore, τ≥1GL(A) ≃ τ≥1M(A), where M(A) is the space
of matrices colimr Ω

∞End(Ar) ≃ colimr Ω
∞Ar×r, and similarly for B. As A→ B is (m− 1)-

connective and as m ≥ 2, we thus see that GL(A) → GL(B) is (m− 1)-connective. Further,

as A→ B is an Lf
n-equivalence, it induces isomorphisms on vi-periodic homotopy groups for

i ≤ n. By Lemma 2.2(i) also M(A) → M(B) is a vi-periodic equivalence, and, finally, by
Lemma 2.2(ii) also GL(A)→ GL(B) is a vi-periodic equivalence for i ≤ n, as desired. �

3.2. A truncating property. Our next goal is to prove a version of Proposition 3.1 with
weaker connectivity hypotheses; in fact, we will only need a special case (Proposition 3.4)
below, formulated using the language of truncating invariants. To do this, we will need some
further preliminaries.

Lemma 3.2. Let

A B

A′ B′
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be a pullback square of ring spectra in which A is connective. If A→ A′ is n-connective and

A→ B is m-connective, then the induced map A′ ⊙B′

A B → B′ is (m+ n+ 2)-connective.

Here A′ ⊙B′

A B denotes the ring spectrum associated to the displayed pullback square by
[LT19, Main Theorem].

Proof. Denote by I the common fibre of the vertical maps, by J that of the horizontal maps.
From [LT19, Remark 1.16] we have an equivalence

fib(A′ ⊙B′

A B → B′) ≃ Σfib(I ⊗A B
µ
−→ I)

where the map µ is induced by the right B-module structure on I. Now µ has a section
σ : I → I ⊗A B induced by the map A → B. The fibre of σ identifies with I ⊗A J , which
is (n + m)-connective as A is connective. In other words, σ is an isomorphism in degrees
≤ m+ n− 1 and surjective in degree m+ n. Since µ ◦ σ ≃ idI and so µ is surjective in every
degree, it then follows that µ is an isomorphism in degrees ≤ m+ n and surjective in degree
m+ n+1, i.e. µ is (m+ n+1)-connective. By the above equivalence, A′ ⊙B′

A B → B′ is then
(m+ n+ 2)-connective, as desired. �

Let M be a spectrum. We say that a localizing invariant E is truncating on M -acyclic ring

spectra if for every M -acyclic connective ring spectrum R, we have E(R)
∼
−→ E(π0R). Note

that if a ring spectrum R is M -acyclic, then also τ≤kR is M -acyclic for all k as follows by
consideration of the ring map LMR→ LMτ≤kR. The following lemma also appears in similar
form in [Mat20, Lemma 3.11].

Lemma 3.3. Let E be a localizing invariant. Suppose that there exists k ≥ 0 such that

the map E(R)
∼
−→ E(τ≤kR) is an equivalence for any M -acyclic connective ring spectrum R.

Then E is truncating on M -acyclic ring spectra.

Proof. It suffices to show that if E and k > 0 are as in the statement of the lemma, then we
have in fact E(τ≤kR)

∼
−→ E(τ≤k−1R) for all M -acyclic connective ring spectra R; the result

then follows by induction on k.
To this end, recall that τ≤kR → τ≤k−1R is a square-zero extension, so there is a pullback

square of ring spectra (cf. [Lur17, 7.4.1.29]),

τ≤kR Hπ0R

τ≤k−1R Hπ0R⊕ (HπkR)[k + 1].

All ring spectra in this square are connective and M -acyclic. It follows from [LT19, Main
Theorem] that we have a pullback square of spectra

E(τ≤kR) E(Hπ0R)

E(τ≤k−1R) E
(

τ≤k−1R⊙
Hπ0R⊕(HπkR)[k+1]
τ≤kR

Hπ0R
)

.

It thus suffices to show that the right vertical map is an equivalence. But this follows because,
by Lemma 3.2, the map of connective, M -acyclic ring spectra

Hπ0R→ τ≤k−1R⊙
Hπ0R⊕(HπkR)[k+1]
τ≤kR

Hπ0R
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induces an equivalence on τ≤k and hence on E(−). �

Proposition 3.4. For n ≥ 1, LT (n)K(−) is truncating on Lp,f
n -acyclic ring spectra.

Proof. This follows from Proposition 3.1 and Lemma 3.3. �

Corollary 3.5 (Cf. also [BCM20]). For any n ≥ 1, we have LT (i)K(Z/pn) = 0 for i ≥ 1.

Proof. This follows from Proposition 3.4 since truncating invariants are nilinvariant, [LT19,
Corollary 3.5], and Quillen’s computation that K(Fp)

∧
p = HZp. �

3.3. The general case. Now we extend the results to nonconnective ring spectra, and then
complete the proof of Theorem A. Our strategy of proof is to reduce the nonconnective case
to the connective case using the S•-construction. In this we will work with a not-necessarily
stable, but additive ∞-category A, about which we make two remarks:

• We can view A as a symmetric monoidal∞-category under ⊕ and denote byKadd(A)
its group-completion K-theory, cf. [GGN15] for a modern account. If R is a connective
ring spectrum and A is the ∞-category Projω(R) of finitely generated projective R-
modules, there is an equivalence Kadd(A) ≃ τ≥0K(R).
• Given two objects X and Y in an additive ∞-category A, their mapping space has
the canonical structure of a grouplike E∞-space, giving rise to a connective spec-
trum homA(X,Y ). If A is stable, this is the connective cover of the homomorphism

spectrum HomA(X,Y ). We remark that HomA(X,X) is Lp,f
n -acyclic if and only if

homA(X,X) is Lp,f
n -acyclic.

In the following, we will assume that all ∞-categories of which we consider the K-theory are
idempotent-complete.

Proposition 3.6. Let C be an additive ∞-category. Suppose for each object X ∈ C, the ring

spectrum homC(X,X) is annihilated by Lp,f
n . Then

(i) LT (i)K
add(C) = 0 for 1 ≤ i ≤ n, and

(ii) LT (i)K(C) = 0 for 1 ≤ i ≤ n if C is stable.

Proof. For the first part, we observe that C can be written as a filtered colimit of its full
subcategories generated by finite direct sums and retracts by finitely many objects. Passing
to the direct sum of the generators, and using that K-theory commutes with filtered colimits,
we may assume that C is generated under finite direct sums and retracts by a single object
X. Hence, by the additive version of the Schwede–Shipley theorem, C ≃ Projω(homC(X,X))

is the ∞-category of finitely generated projective modules over homC(X,X), which is Lp,f
n -

acyclic by assumption. Therefore, Kadd(C) ≃ τ≥0K(homC(X,X)) is T (i)-acyclic for 1 ≤ i ≤ n
by Proposition 3.4 (together with the fact that the T (1)-local K-theory of a p-power torsion
discrete ring vanishes by Corollary 3.5).

For the second part, we assume that C is stable. The Waldhausen S•-construction gives a
simplicial stable ∞-category S•C and a natural equivalence of spaces (as in (2)):

Ω∞ ((τ≥0K(C))[1]) = |S•(C)
≃|.

Note that both sides have the structure of E∞-monoids, using the direct sum on C (which
also gives the canonical E∞-monoid structure on the left arising from Ω∞), and the map is an



12 MARKUS LAND, AKHIL MATHEW, LENNART MEIER, AND GEORG TAMME

equivalence of E∞-spaces. Therefore, we may group-complete the terms inside the geometric
realization on the right-hand-side to obtain an equivalence of connective spectra

(3) (τ≥0K(C))[1] ≃ |Kadd(S•(C))|,

where on the right we consider the additive (group-complete) K-theory as above. The

above Lp,f
n -local vanishing condition on the stable ∞-category C is stable under passage to

Fun(∆j, C) for any j ≥ 0. Therefore, by the first paragraph of the proof, we find that the
right-hand-side of (3) is T (i)-acyclic for 1 ≤ i ≤ n, hence the result. �

Lemma 3.7. For any ring spectrum A, there is an exact sequence

C>n ⊗ Perf(A) −→ Perf(A) −→ Perf(Lp,f
n A),

and the endomorphism spectrum of every object in C>n ⊗ Perf(A) is Lp,f
n -acyclic.

Proof. Lemma 2.6 and the Thomason–Neeman localization theorem [Nee92, Theorem 2.1]
imply that the sequence of small stable ∞-categories

C>n −→ Perf(S) −→ Perf(Lp,f
n S)

is exact. Tensoring the above exact sequence with Perf(A), using the fact that Lp,f
n is smash-

ing, we obtain the exact sequence

C>n ⊗ Perf(A) −→ Perf(A) −→ Perf(Lp,f
n A).

The ∞-category C>n⊗Perf(A) is generated by A-modules of the form A⊗F with F being a

finite p-local Lp,f
n -acyclic spectrum. Their endomorphism spectra DF⊗F⊗A are Lp,f

n -acyclic
as well and so are thus the endomorphism spectra of all objects of C>n ⊗ Perf(A). �

Theorem 3.8. Let A be a ring spectrum. Then the map A→ Lp,f
n A induces an equivalence

on LT (i)K(−) for 1 ≤ i ≤ n. If n ≥ 2, the map A → LT (1)⊕···⊕T (n)A induces an equivalence

on LT (n)K(−).

Proof. As K-theory is localizing, the homotopy fibre of K(A) → K(Lp,f
n A) coincides with

K(C>n ⊗ Perf(A)) by the preceding lemma. This is T (i)-acyclic for 1 ≤ i ≤ n by Proposi-
tion 3.6. For the last assertion, we consider the pullback diagram

Lp,f
n A LT (1)⊕···⊕T (n)A

A[1p ] (LT (1)⊕···⊕T (n)A)[
1
p ]

from Lemma 2.7 (note that Lp,f
0 A = A[1p ]). By [Tam18] or [LT19] and the fact that Lp,f

0 is

smashing, we deduce that the diagram

K(Lp,f
n A) K(LT (1)⊕···⊕T (n)A)

K(A[1p ]) K((LT (1)⊕···⊕T (n)A)[
1
p ])

is a pullback.4 By the first part, it suffices to prove that the top horizontal map is an
equivalence after T (i)-localization for i ≥ 2. Now each term in the bottom row is a module over

4This also follows more classically from Lemma 3.7.
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K(S[1p ]), which is p-adically equivalent to K(Z[1p ]) and hence vanishes after T (i)-localization

for i ≥ 2 by Mitchell’s result. �

We now prove Theorem A. The result is a direct consequence of Theorem 3.8 (which proves
“one half” of the result) and the results of [CMNN20a] (which proves the “other half”). We
note that the results of loc. cit. also rely on Theorem 3.8 (but not on Theorem A, so there is
no circularity).

Proof of Theorem A. It suffices to show that the map A→ LT (n−1)⊕T (n)A induces an equiv-

alence on LT (n)K(−). As in the proof of Theorem 3.8, using that Lp,f
n−2 is a smashing local-

ization (or Lemma 3.7), the diagram

K(Lp,f
n A) K(LT (n−1)⊕T (n)A)

K(Lp,f
n−2A) K(Lp,f

n−2(LT (n−1)⊕T (n)A))

is a pullback. By Theorem 3.8, it suffices to prove that the top horizontal map is an equivalence

after T (n)-localization. Now each term in the bottom row is a module over K(Lp,f
n−2S), which

vanishes T (n)-locally by [CMNN20a, Theorem C], so we deduce the claim. �

Remark 3.9. In [CMNN20a], the vanishing of LT (n+2)K(Lp,f
n S) is deduced as a special case

of a more general result. For the convenience of the reader, we summarize their argument
for the exact vanishing that we use here. We wish to show the claim by induction over
n. The case n = 0 follows from Mitchell’s theorem, as in the proof of the second part of
Theorem 3.8. By the strengthening of Hahn’s result [Hah16] obtained in [CMNN20a, Lemma

4.5], it suffices to show that K(Lp,f
n S)tCp is T (n + 1)-acyclic. Now, given any commutative

algebra in genuine Cp-spectra whose underlying spectrum with Cp-action is K(Lp,f
n S) with

trivial Cp-action, there is a ring map from its geometric fixed points to K(Lp,f
n S)tCp . An

example is the K-theory of the Borel complete categorical Mackey functor, where the genuine

fixed points are K(Fun(BCp,Perf(L
p,f
n S))). The transfer for this genuine Cp-spectrum is the

composite

(4) K(Lp,f
n S)hCp

−→ K(Lp,f
n S[Cp]) −→ K(Fun(BCp,Perf(L

p,f
n S))),

and by definition the geometric fixed points are the cofibre of this composite. It hence
suffices to show that each of the above two maps is a T (n + 1)-local equivalence. For the

second, one uses that the Verdier quotient Fun(BCp,Perf(L
p,f
n S))/Perf(Lp,f

n S[Cp]) is linear

over (Lp,f
n S)tCp . Indeed, calling this quotient Q and writing R = Lp,f

n S, Theorem I.3.3ii
and an analogue of Lemma I.3.8iii from [NS18] imply that EndQ(R) ≃ RtCp . By Theorem
I.3.6 in op. cit., Q has a canonical symmetric monoidal structure and we obtain a symmetric

monoidal functor Perf(RtCp)→ Q. The spectrum (Lp,f
n S)tCp is itself an algebra over Lp,f

n−1S by
Kuhn’s blueshift result [Kuh04]. Thus, by induction, the second map in (4) is a T (n+1)-local
equivalence.
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For the first map one uses Corollary 4.29 (whose proof relies only on Theorem 3.8) to obtain
a diagram which is cartesian after T (i)-localization, i ≥ 2,

K(Lp,f
n S)hCp

K(Lp,f
n S[Cp])

TC(τ≥0(L
p,f
n S))hCp

TC(τ≥0(L
p,f
n S)[Cp]).

Now, by [HN19, Theorem 1.4.1], the cofibre of the lower horizontal map belongs to the

localizing subcategory of spectra generated by τ≥0(L
p,f
n S), and hence vanishes T (n+1)-locally

as well.

Question 3.10. For a ring spectrum A and for n ≥ 2, does the map A → LK(n−1)⊕K(n)A
induce an equivalence on K(n)-local K-theory?

The above question reduces to proving an analog of Theorem 3.8 for Ln-localization: that
is, for n ≥ 2, it would suffice to show that A→ LnA induces an equivalence on LK(n)K(−).

4. Consequences and examples

In this section we discuss some consequences and examples of our main result.

4.1. Direct consequences. To begin with, we record some immediate corollaries of Theo-
rem A.

Corollary 4.1. Let R be a ring spectrum which is T (n)⊕ T (n− 1)-acyclic for some n ≥ 1.
Then LT (n)K(R) = 0. �

Corollary 4.2. Let n ≥ 2. Then for any ring spectrum R, we have that the canonical map

LT (n)K(τ≥0R)→ LT (n)K(R) is an equivalence. �

In the case of E∞-rings we furthermore find the following redshift phenomenon:

Corollary 4.3. Let A be an E∞-ring spectrum, B an A-algebra, and let n ≥ 0. Then

LT (n)A = 0 implies LT (n+i)K(B) = 0 for every integer i ≥ 1.

Proof. If A is T (n)-acyclic, then A, and hence also B, is T (n + j)-acyclic for all j ≥ 0 by
[Hah16] and Lemma 2.3. Thus, the result follows from Theorem A. �

Next, we include the following slight variants of Theorem A in the connective case, and an
analog for topological cyclic homology.

Corollary 4.4. Let A→ B be a T (1)⊕· · ·⊕T (n)-equivalence between connective ring spectra

which induces a surjection on π0 whose kernel is nilpotent. Then K(A) → K(B) is again a

T (1)⊕ · · · ⊕ T (n)-equivalence.

Proof. By Theorem A, only the case n = 1 requires a further argument, but the argument
for it works equally well in the general case: Consider the pullback diagram

P B

A[1p ] B[1p ]
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Since P → A[1p ] is a T (0)-localization, applying K-theory to the diagram yields again a

pullback, e.g. by [LT19, Main Theorem]. Furthermore, the map K(A[1p ]) → K(B[1p ]) is a

p-adic equivalence, as p-adic K-theory is truncating on S[1p ]-algebras [LT19, Lemma 2.4] and

hence also nilinvariant [LT19, Corollary 3.5]. Hence, K(P ) → K(B) is a T (i)-equivalence
for all i ≥ 1. Furthermore, A → P is a T (0) ⊕ T (1) ⊕ · · · ⊕ T (n)-equivalence. Theorem 3.8
together with the already established results thus implies that K(A) → K(B) is also a
T (1)⊕ · · · ⊕ T (n)-equivalence. �

Corollary 4.5. Let A→ B be a T (1)⊕· · ·⊕T (n)-equivalence between connective ring spectra

which induces a surjection on π0 whose kernel is nilpotent. Then TC(A) → TC(B) is again

a T (1)⊕ · · · ⊕ T (n)-equivalence.

Proof. By the Dundas–Goodwillie–McCarthy theorem [DGM13, Theorem VII.0.0.2], there is
a cartesian square

K(A) TC(A)

K(B) TC(B).

So we deduce the corollary from Corollary 4.4. �

Remark 4.6. If A → B is a T (0)-equivalence between connective ring spectra inducing a
surjection on π0 whose kernel is nilpotent, then it is also true that the map K(A)→ K(B) is
a T (0)-equivalence. Thus, the same also holds true for TC(A)→ TC(B).

Remark 4.7. One can also deduce some consequences for i-fold iterated algebraic K-theory
K(i). For example, the canonical maps K(i)(Z/pk) → K(i−1)(Z), where the latter is induced
by the truncation map K(Z/pk)→ Z, are HQ⊕ T (1)⊕ T (2)⊕ . . . -equivalences for all i ≥ 1.

Indeed, the case i = 1 follows directly from Corollary 4.3 and the fact thatKj(Z/p
k)⊗Q = 0

for j > 0. We use also that the non-positive K-groups of a ring are invariant under quotients
by a nilpotent ideal, as non-positive K-theory is truncating by [BGT13, Theorem 9.53]. In

general, we assume inductively thatK(i)(Z/pk) andK(i−1)(Z) are connective, π0K
(i)(Z/pk) =

π0K
(i−1)(Z) = Z, and K(i)(Z/pk)→ K(i−1)(Z) is an equivalence after HQ⊕T (1)⊕T (2)⊕. . . -

localization. We have just seen the case i = 1. Given the statement for some i ≥ 1, we can
deduce the statement for i+1, using again [BGT13, Theorem 9.53] and Corollary 4.4 (as well
as [LT19, Lemma 2.4] for the rationalization). The result thus follows by induction.

4.2. Examples of vanishing results. We give various examples showing that Theorem A
(or Corollary 4.1) implies vanishing statements for suitable telescopic localizations of the
K-theory of ring spectra; this recovers a number of existing results in the literature.

First, we begin with the case of K(n), cf. also [AKS20] in the case n = 2, p = 2, 3.

Corollary 4.8. The spectrum K(K(n)) vanishes T (m)-locally for every m 6= 0, n, n+1. �

Remark 4.9. Using the dévissage result [AGH19, Proposition 4.4] (preceded by [BL14] for
connective K-theory) we can also understand the T (0)-localization of K(K(m)). There is a
fibre sequence

(5) K(Fp) −→ K(k(m)) −→ K(K(m))

where k(m) is the connective cover of K(m) and the first map is induced by the functor
Perf(Fp) → Perf(k(m)) given by restriction of scalars along the canonical map k(m) → Fp.
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As K(−)[1p ] is truncating on S[1p ]-acyclic ring spectra, the canonical map K(k(m))→ K(Fp)

is a T (0)-equivalence. The composite

K(Fp) −→ K(k(m)) −→ K(Fp)

is induced by the functor Perf(Fp)→ Perf(k(m))→ Perf(Fp) sending X to X⊗k(m)Fp, which

is equivalent to id⊕ Σ2pm−1 as there is a fibre sequence

Σ2pm−2k(m)
vm−→ k(m) −→ HFp.

Upon applying any localizing invariant, this gives the zero map. From (5) we thus obtain a
fibre sequence

K(Fp)[
1
p ]

0
−→ K(Fp)[

1
p ] −→ K(K(m))[1p ]

and hence an equivalence

K(K(m))[1p ] ≃ K(Fp)[
1
p ]⊕ ΣK(Fp)[

1
p ].

Corollary 4.10. For any n ≥ 0, we find that LT (i)K(τ≤nS) = 0 for i ≥ 2. �

Ben Antieau has already shown previously that a certain quantitative version of Proposi-
tion 3.1 implies LT (n)K(τ≤mS) = 0 at least for all n such that 4p − 4 ≥ n, where p is the
implicit prime in T (n), and conjectured that Corollary 4.10 is true.

Corollary 4.11. The map K(BP 〈n〉) → K(E(n)) is a T (i)-equivalence for i ≥ n + 1.
Furthermore, both vanish T (i)-locally for i ≥ n+ 2. �

Remark 4.12. The chromatic bound for K(BP 〈n〉) has been proved previously by Angelini-
Knoll–Salch in the case where BP 〈n〉 admits an E∞-structure, [AKS20].

The above result implies that the sequence

K(BP 〈n− 1〉) −→ K(BP 〈n〉) −→ K(E(n))

becomes a fibre sequence after T (i)-localization for i ≥ n+ 1. Whether or not this sequence
is a fibre sequence (after replacing the rings with their p-completions) was asked by Rognes,
the n = 1 case being a theorem of Blumberg–Mandell [BM08], and the n = 0 case being a
classical theorem of Quillen’s. It was then shown by Antieau–Barthel–Gepner that for n ≥ 2,
the above is not a fibre sequence after rationalization, see [ABG18].

The following is an example that arose from a discussion with George Raptis. Recall that for
a connected space X its Waldhausen A-theory is given by A(X) = K(S[ΩX]) = K(Σ∞

+ΩX).
In particular, A(∗) = K(S). In the following corollary we assume that n ≥ 1; the case n = 0
is due to Waldhausen.

Corollary 4.13. Let W be a connected space. If Σ∞W is T (n)⊕ T (n− 1)-acyclic, then the

canonical maps A(∗) ⇆ A(ΣW ) are mutually inverse T (n)-equivalences.

For instance, W could be a connected type m-complex for m > n.

Proof. The James splitting (see [Ada72, Chapter 10, Theorem 5]) gives an equivalence

Σ∞ΩΣW ≃ Σ∞
∨

k≥1

W∧k,

which implies that Σ∞ΩΣW is T (n)⊕ T (n − 1)-acyclic. The claim thus follows from Theo-
rem A. �
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Likewise, we can reprove and extend a recent theorem of Angelini-Knoll and Quigley
[AKQ19] about the chromatic localization of the K-theory of certain Thom spectra y(m)
considered in [MRS01, Section 3]. To explain the setup, we recall that for a fixed prime p,
there is an essentially unique map of E2-spaces

Ω2Σ2S1 −→ BGL1(S
∧

p)

sending a generator of π1 to the element 1 − p ∈ π1(BGL1(S
∧
p))
∼= Z×

p . It is a theorem of
Mahowald (for p = 2) and Hopkins (for odd primes) that its Thom spectrum is HFp [Mah79];
see also [ACB19]. We note that Ω2Σ2S1 ≃ Ω(ΩS3) and that ΩS3 has a canonical cell structure
with one cell in every even dimension; see [Mil63, Corollary 17.4]. Let us denote by Fm(ΩS3)
the 2m-skeleton of this cell structure. One then obtains maps of E1-spaces

ΩFpm−1(ΩS
3) −→ Ω2S3 −→ BGL1(S

∧

p)

whose Thom spectra are denoted by y(m), leaving the prime p implicit as always. One has
y(0) = S∧

p and y(∞) = HFp. The above filtration of ΩS3 can also be described as the James

filtration on ΩΣS2, compare [MRS01, Section 3.1].

Lemma 4.14. The spectrum y(m) is Lp,f
m−1-acyclic.

Proof. We need to show that y(m) is T (n)-acyclic for n < m. For n = 0 this follows because
π0(y(m)) = Fp (see the paragraph preceding [MRS01, Equation 3.7] for odd p and [AKQ19,
Lemma 2.7] for p = 2). We now discuss the case where n > 0. Again, we distinguish the
cases of even and odd primes. For p = 2 this follows from [AKQ19, Proposition 2.22] and
Lemma 2.3. For odd primes, it is explained in [MRS01] that for a finite type n spectrum
Vn, the Adams spectral sequence for the spectrum Vn ⊗ y(m) has a vanishing line of slope

1
2pm−2 , because this is true for y(m). On the other hand, the element vn acting on Vn gives

an element of slope 1
|vn|

for the Adams spectral sequence. Hence, if n < m, it follows that the

element vn is nilpotent on Vn ⊗ y(m), so that T (n)⊗ y(m) vanishes as claimed. �

Corollary 4.15. The map K(y(m))→ K(Fp) is an Lp,f
m−1-equivalence. In particular, K(y(m))

vanishes T (n)-locally for 0 < n < m.

Proof. The vanishing follows immediately from Theorem A and Lemma 4.14. The map is
also a T (0)-equivalence, as T (0)-local K-theory is truncating on T (0)-acyclic ring spectra by
a result of Waldhausen (see also [LT19, Lemma 2.4]). �

Remark 4.16. This corollary implies the corresponding statement with the T (i) replaced by
the Morava K-theories K(i). For p = 2, the latter was previously obtained by Angelini-Knoll
and Quigley [AKQ19, Theorem 1.3] using trace methods.

We obtain a similar result for the integral versions z(m) of y(m) which appear in [AKQ19]
when p = 2. Again, there are versions for odd primes, but we refrain from spelling them out
here.

Corollary 4.17. The map K(z(m))→ K(Z(2)) is a T (n)-equivalence for 0 < n < m.

Proof. By [AKQ19, Proposition 2.22], z(m) is K(n)-acyclic for 1 ≤ n < m, and hence also
T (n)-acyclic for 1 ≤ n < m, again by Lemma 2.3. The corollary then follows from Corol-
lary 4.4. �
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4.3. Examples of purity. We list some further examples of purity statements, special cases
of which have been studied in the literature before.

Corollary 4.18. Let A be a ko-algebra. Then the natural map K(A)→ K(A[ 1β ]) is a T (n)-

local equivalence for all n ≥ 2.

Proof. This follows immediately from Theorem A, as the map ko → ko[β−1] = KO is a
T (n)-equivalence for all n ≥ 1, hence so is A→ A[ 1β ] for every ko-algebra. �

Remark 4.19. By work of Blumberg–Mandell [BM08], there is a fibre sequence of connective
K-theory spectra

Kcn(Z) −→ Kcn(ku) −→ Kcn(KU)

and likewise for ko and KO in place of ku and KU . Together with Mitchell’s result this
implies Corollary 4.18 in the case where A is ko or ku. Note also that for ko-algebras A, we
have that K(A) is T (n)-acyclic for n ≥ 3; this follows from Corollary 4.1, but was shown for
A = ku and p ≥ 5 already in [AR02] and in general in [CMNN20a]. Thus Corollary 4.18 is a
useful statement only at height 2.

We get a similar result for algebras over the connective spectrum of topological modular
forms tmf , see [DFHH14, Beh19] for introductions. Recall that tmf is by definition the
connective cover of an E∞-ring spectrum Tmf that arises as the global sections of a sheaf Otop

of E∞-ring spectra on the étale site of the compactified moduli stack of elliptic curvesMell.
The evaluation of Otop on the uncompactified moduli stack Mell is the periodic spectrum
TMF . Of the following corollary, the first statement was already proven in [CMNN20a].

Corollary 4.20. Let A be a tmf -algebra.

(i) The spectrum K(A) vanishes T (n)-locally for all n ≥ 4.
(ii) The map K(A)→ K(A⊗tmf Tmf) is a T (n)-equivalence for all n ≥ 2.
(iii) The map K(A)→ K(A⊗tmf TMF ) is a T (3)-equivalence.

(iv) At the prime 2, there is a T (3)-local equivalence K(tmf) ≃ K(TMF ) ≃ K(E2)
hGL2(F3),

where E2 denotes the Lubin–Tate spectrum for a supersingular elliptic curve over F4.

Replacing GL2(F3) by the group of automorphisms over F3 of a supersingular elliptic

curve over F9, the analogous statement holds at the prime 3 as well.

Proof. By [Rav84, Theorem 2.1], the spectrum BP [v−1
n ] has the same Bousfield class as

K(0)⊕ · · · ⊕K(n) and is thus Ln-local. Thus, every p-local complex oriented ring spectrum
whose formal group law has height at most n is Ln-local. Evaluated on any affine, Otop is
even and hence complex orientable; moreover its formal group is isomorphic to that of the
corresponding generalized elliptic curve and thus has height at most 2 at any prime. We see
that Tmf(p) is, as a limit of L2-local spectra, itself L2-local and thus T (n)-acyclic for n ≥ 3.
As tmf → Tmf is a T (n)-equivalence for all n ≥ 1 by Lemma 2.2, we can deduce moreover
that tmf is T (n)-acyclic for all n ≥ 3. Thus the first two statements follow from our main
theorem.

For the third statement, it suffices to show that Tmf → TMF is a T (n)-equivalence for
n = 2 (and hence all n ≥ 2). As taking global sections of quasi-coherent Otop-modules
preserves colimits by [MM15], we have T (2) ⊗ Tmf ≃ Γ(T (2) ⊗ Otop); hence it suffices to
show that T (2)⊗Otop(SpecA)→ T (2)⊗Otop(SpecA)[∆−1] is an equivalence for every étale
affine SpecA→Mell, where ∆ denotes the discriminant. As all generalized elliptic curves of
height 2 are actually smooth elliptic curves, inverting v2 (as we do in T (2)) indeed inverts ∆
as well.
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Note that K(n)-localization and T (n)-localization coincide on Ln-local spectra. Indeed,
if X is Ln-local, then the fibre of the map X → LK(n)X is Ln-local and K(n)-acyclic,
whence Ln−1-local and thus T (n)-acyclic. As LK(n)X is also T (n)-local, it follows that
LT (n)X ≃ LK(n)X. Thus, tmf → TMF → LK(2)TMF are T (2)-local equivalences and hence
induce T (3)-equivalences in K-theory by our main theorem. The faithful GL2(F3)-Galois
extension TMF(2) → TMF (3)(2) from [MM15, Theorem 7.6] localizes to the Galois extension
LK(2)TMF → LK(2)TMF (3) ≃ E2 (cf. [Beh19, Proposition 6.6.10], [HMS17, Proposition

3.6]). Thus, the map K(LK(2)TMF ) → K(E2)
hGL2(F3) is an equivalence after an arbitrary

telescopic localization by [CMNN20b, Theorems 5.6, Corollary B.4]. The statement for p = 3

is proven analogously using that here LK(2)TMF ≃ EhG24
2 , where E2 is the Lubin–Tate spec-

trum for a supersingular elliptic curve C over F9 and G24 is its group of automorphisms over
F3. �

Remark 4.21. In [BL14] Barwick and Lawson provide an analog of the Blumberg–Mandell
localization sequence (see Remark 4.19) for certain regular ring spectra. In particular, there
is a localization sequence of connective K-theory spectra

Kcn(Z) −→ Kcn(tmf) −→ Kcn(Tmf),

which implies the second part of the previous corollary for A = tmf and certain other regular
tmf -algebras. We also remark that in [AGH19] these localization sequences are extended to
non-connective K-theory spectra. However, for the present application this is irrelevant as
the difference vanishes after telescopic localization.

4.4. Consequences for K (1)-local K -theory. We now record the consequences of Theo-
rem A at height 1 (in fact, we will only use Theorem 3.8, and so the results are independent
of [CMNN20b]). Recall also that K(1) and T (1)-localization coincide.

Corollary 4.22. K(1)-local K-theory is truncating on K(1)-acyclic ring spectra. In fact, for

a K(1)-acyclic ring spectrum A, we have LK(1)K(A) = LK(1)K(A[1p ]).

Proof. Let A be a K(1)-acyclic, connective ring spectrum. By Theorem 3.8 we have an
equivalence LK(1)K(A) ≃ LK(1)K(A[1p ]). The claim follows from this as p-adic K-theory is

truncating on S/p-acyclic ring spectra by a result of Waldhausen (see also [LT19, Lemma 2.4]).
�

In the case of HZ-algebras, the last assertion of Corollary 4.29 also appears in [BCM20],
proved by different methods. From [LT19, Theorems 3.3, A.2] we then get the following. Note
that discrete rings are K(1)-acyclic.

Corollary 4.23. K(1)-local K-theory of discrete rings is nilinvariant and satisfies Milnor

excision and cdh-descent.

We also get the following consequence.

Corollary 4.24. Let A be a connective and K(1)-acyclic ring spectrum. Then the canonical

map LK(1)K(A) → LK(1)K(A[x]) is an equivalence. In other words, K(1)-local K-theory is

homotopy invariant on connective, K(1)-acyclic ring spectra.

Here, for any ring spectrum A, the symbol A[x] denotes the ring spectrum A⊗ Σ∞
+ Z≥0.
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Proof. We observe that A[x] = A ⊗ S[x] is also K(1)-acyclic and connective. Hence, by
Corollary 4.22 we may assume that A is discrete so that A[x] is the usual discrete polynomial
ring A⊗Z Z[x]. By Theorem A we may furthermore assume that p is invertible in A. In this
case, Weibel [Wei81] has shown that p is also invertible on NK(A) = fib(K(A[x]) → K(A)).
So the p-completion of NK(A) vanishes, and hence LK(1)NK(A) = 0 as well. �

Remark 4.25. For ring spectra, there are two canonical “affine lines:” The flat affine line A[x]
as above, and the smooth affine line A⊗ S{x}, where S{x} is the free E∞-ring on a degree 0
generator. Since the canonical map S{x} → S[x] is a π0 isomorphism, we also obtain homotopy
invariance with respect to the smooth affine line on connective, K(1)-acyclic ring spectra A:
Both maps K(A)→ K(A{x}) and K(A{x})→ K(A[x]) are K(1)-local equivalences.

Remark 4.26. Recall that Weibel’s homotopy K-theory KH(A) of a discrete ring A is defined
as the geometric realization of the simplicial spectrum K(A[∆•]) with

A[∆n] = A[x0, . . . , xn]/(x0 + · · ·+ xn − 1) ∼= A[x1, . . . , xn].

It follow from the above corollary that

LK(1)K(A) ≃ LK(1)KH(A).

By results of Weibel and Cisinski homotopy K-theory satisfies Milnor excision [Wei81] and
cdh-descent [Cis13]. In this way we obtain another proof of Corollary 4.23.

Remark 4.27. The analog of Corollary 4.22 for topological cyclic homology does not hold:
As THH(Z[1p ]) is a Z[1p ]-algebra, it vanishes p-adically. So TC(Z[1p ]) vanishes p-adically, and

a fortiori after T (1)-localization. However, LT (1)TC(Z) does not vanish: For odd primes p,
Bökstedt and Madsen [BM94] computed the connective cover of TC(Z)∧p ≃ TC(Zp)

∧
p to be

equivalent to j ⊕ Σj ⊕ Σ3ku∧
p where j is the connective cover of the K(1)-local sphere. In

particular, the T (1)- or equivalently K(1)-localization of TC(Z) is given by

(6) LK(1)TC(Z) ≃ LK(1)S⊕ ΣLK(1)S⊕ Σ3KU∧

p 6= 0.

For p = 2, [Rog99b, Theorem 0.5] and [Rog99a, Formula (0.2)] give a filtration of LK(1)TC(Z),
whose associated graded essentially looks like the summands in (6). Using that KU∧

p is
rationally non-trivial in infinitely many degrees, while the other two terms are rationally non-
trivial only in finitely many degrees, one obtains that LK(1)TC(Z) is non-trivial at p = 2 as
well.

Remark 4.28. We point out that, although K(1)-local TC commutes with filtered colimits of
rings [CMM18, Theorem G], it does not commute with filtered colimits of categories. In fact,
one checks that (cf. also [BCM20, Proposition 2.15]) the filtered colimit colim

k
ModZ/pk(Perf(Z))

is the∞-category of p-power torsion perfect Z-modules and we thus obtain an exact sequence

colim
k

ModZ/(pk)(Perf(Z)) −→ Perf(Z) −→ Perf(Z[1p ]).

Assuming that LK(1)TC commutes with filtered colimits we find that LK(1)TC of the fibre

vanishes, as LK(1)TC(ModZ/(pk)(Perf(Z))) is a module over LK(1)TC(Z/(p
k)) which vanishes

since LK(1)K(Z/pk) = 0 as above; this is a contradiction.
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4.5. Consequences for T (n)-local K-theory for n ≥ 2. In this subsection, we record
some further structural consequences of Theorem A at heights ≥ 2. Some further structural
features in this context are also explored in [CMNN20a].

Corollary 4.29. Let n ≥ 2. Then for any ring spectrum A, we have a natural equivalence

LT (n)K(A) = LT (n)K(τ≥0A) = LT (n)TC(τ≥0A).

Proof. Indeed, this follows because τ≥0A → A induces an equivalence on LT (n)K(−) by
Theorem 3.8. Now we use the Dundas–Goodwillie–McCarthy theorem [DGM13] combined

with Mitchell’s theorem [Mit90] to obtain LT (n)K(τ≥0A)
∼
−→ LT (n)(TC(τ≥0A)), hence the

result. �

For a T (n)-acyclic ring spectrum (with n ≥ 2), we therefore obtain an equivalence

LT (n)K(LT (n−1)A) ≃ LT (n)TC(τ≥0A).

This should be compared to the result obtained in [BCM20] that if A is a commutative,
p-adically complete ring, then

LT (1)K(A[1p ]) ≃ LT (1)TC(A).

Note by contrast that no commutativity or completeness at (p, v1, . . . , vn−1) is required in
Corollary 4.29.

Next, we record a result describing the behavior of group-complete K-theory versus Wald-
hausen K-theory; this is essentially a restatement of the above in categorical terms, and in-
formally states that for T (i)-local phenomena with i ≥ 2, it suffices simply to group-complete
(rather than split all cofibre sequences) in the definition of K-theory. Given an additive ∞-
category A, we let Kadd(A) denote the group-completion K-theory of A, which we regard as
a connective spectrum.

Corollary 4.30. Let C be a stable ∞-category, and let A ⊂ C be an additive subcategory.

Suppose A generates C as a thick subcategory. Then the natural map Kadd(A) → K(C)
induces an equivalence on T (i)-localization, for i ≥ 2.

Proof. By passage to filtered colimits, we can assume that A is generated under coproducts
by a single object X (and hence C is generated as a thick subcategory by X). In particular,
we have an equivalence τ≥1K

add(A) ≃ τ≥1K(τ≥0EndC(X)), while K(C) = K(EndC(X)). The
result then follows from Corollary 4.29. �

Corollary 4.31. Let n ≥ 2. The construction A 7→ LT (n)K(A), from ring spectra to T (n)-
local spectra, preserves sifted colimits. The same holds if we restrict to the subcategory of

T (n− 1)-local ring spectra.

Proof. We use here that the construction R 7→ TC(R)/p, from connective ring spectra to
spectra, preserves sifted colimits, cf. [CMM18, Corollary 2.15]. We prove the first claim that
A 7→ LT (n)K(A) preserves sifted colimits as A ranges over all ring spectra. Let Ai, i ∈ I be
a sifted diagram of ring spectra. Then τ≥0Ai, i ∈ I yields a sifted diagram of connective ring
spectra, and using Lemma 2.2 we find that

LT (n)

(

colim
i∈I

TC(τ≥0Ai)
) ∼
−→ LT (n)TC(colim

i∈I
τ≥0Ai).

Using that colimi τ≥0Ai → τ≥0(colimi Ai) is a T (1) ⊕ · · · ⊕ T (n)-equivalence and hence in-
duces an equivalence on LT (n)K(−) thanks to Theorem 3.8, we conclude the result from
Corollary 4.29.
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Finally, suppose Ai is a sifted diagram of T (n − 1)-local ring spectra. Then the map
colimiAi → LT (n−1)(colimAi) is a T (n− 1)⊕ T (n)-equivalence (as T (n− 1)-local spectra are
T (n)-acyclic), hence the last claim by what has already been proved and by Theorem A. �

Finally, we record the T (n)-local (for n ≥ 2) analog of the Farrell–Jones conjecture; the
following has been also observed by Marco Varisco for connective ring spectra. We refer
to the surveys [RV18, Lüc20] for an introduction to this conjecture and its applications.
This will rely on the following result about the assembly map in p-adically completed topo-
logical cyclic homology, which follows by combining a result of Lück–Reich–Rognes–Varisco
[LRRV17] and finiteness properties of TC from [CMM18]. By contrast, the assembly map
from (non-p-completed) p-typical TC need not be an equivalence for the family of cyclic
subgroups, cf. [LRRV17, Sec. 6].

Proposition 4.32. Let R be any connective ring spectrum, and let G be any group. Let

OC(G) be the subcategory of the orbit category of G spanned by G-sets of the form G/H, with

H ⊂ G cyclic. Then the assembly map

colim
G/H∈OC(G)

TC(R[H])→ TC(R[G])

is a p-adic equivalence.

Proof. By [LRRV17, Theorem 1.19], the assembly map for the family of cyclic groups for
THH is an equivalence. Since TC/p commutes with colimits as a functor from connective
cyclotomic spectra to spectra, [CMM18, Theorem 2.7], the result follows. �

Corollary 4.33. Let R be any ring spectrum, and let G be any group, and let OC(G) be as

in Proposition 4.32. Then the assembly map

colim
G/H∈OC(G)

K(R[H])→ K(R[G])

is a T (n)-equivalence for n ≥ 2.

Proof. By Corollary 4.29, we may assume R is connective, and replace K by TC. The result
follows from Proposition 4.32. �
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