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Abstract
Quarantining and contact tracing are popular ad hoc practices for mitigating epidemic outbreaks.
However, few mathematical theories are currently available to asses the role of a network in the
effectiveness of these practices. In this paper, we study how the final size of an epidemic is
influenced by the procedure that combines contact tracing and quarantining on a network null
model: the configuration model. Namely, we suppose that infected vertices may self-quarantine
and trace their infector with a given success probability. A traced infector is, in turn, less likely to
infect others. We show that the effectiveness of such tracing process strongly depends on the
network structure. In contrast to previous findings, the tracing procedure is not necessarily more
effective on networks with heterogeneous degrees. We also show that network clustering influences
the effectiveness of the tracing process in a non-trivial way: depending on the infectiousness
parameter, contact tracing on clustered networks may either be more, or less efficient than on
networks without clustering.

1. Introduction

Contact tracing is a frequently used method to control epidemic outbreaks. In this method, individuals who
show symptoms of a disease, report themselves and identify their recent contacts which are then tested for the
disease. If a contact tests positive, it is being isolated to prevent further spreading of the disease. In this way, an
epidemic may be contained in its early stages.

The effect of contact tracing has mathematically been investigated by extending compartmental mod-
els, such as the SIR model, with an additional rule that infected individuals may be detected and removed
with some rate that represents a tracing process [1, 3, 8, 15], or by other differential equation approaches
[11, 12]. However, such compartmental models simplify the structure of contact networks by representing it
with one numerical parameter. Complex networks on the other hand may have nontrivial structure, featuring
heavy tailed degree distributions, clustering, and other phenomena. For example, the contact network of the
HIV/AIDS epidemic in Cuba was found to be well-approximated by a power-law degree distribution [7], so
that the proportion of vertices with k neighbors scale as k−τ . Such degree distributions feature a large variabil-
ity of node degrees, with vertices of large degrees (also called hubs) being present along with large number of
small degree nodes. We will refer to this phenomenon as degree-heterogeneity. Furthermore, power-law degree
distributions were shown to cause important epidemiologic properties, such as vanishing epidemic thresholds
[4, 18], strong finite-size effects [19], and novel universality classes for critical exponents [9].

A recent simulation study suggested that contact tracing is more effective on networks with high degree-
heterogeneity [14]. Intuitively, high-degree vertices infect more others than low-degree vertices, so that they
are also more likely to be traced. Furthermore, quarantining high-degree vertices has a larger effect on the
spreading of epidemics than quarantining low-degree vertices. Thus, on these types of networks, contact trac-
ing is expected to be more effective than is predicted in the standard SIR-models due to degree-heterogeneity.
In [2], this expectation was made more formal by showing that the tracing process becomes more effective
when high-degree vertices are likely to install contact tracing apps.
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Figure 1. The tracing process illustrated. (a) Shows the infection tree. Every infected vertex self-reports and quarantines with
probability 1 − ps (green vertices). (b) After quarantining, a vertex loses all offspring. Furthermore, every self-reporting vertex
traces its parent with probability pt (blue arrows). (c) When a parent is traced, all its infectious contacts are removed with
probability 1 − δ.

While approaches in [2, 14] rely on networks being locally tree-like, many real-world networks violate this
condition and feature clustering: they contain a high density of triangles. Simulations suggest that network
clustering has a strong positive impact on the effectiveness of the contact tracing process in homogeneous
networks [13]. In general epidemics, clustering can either speed up, or slow down the spread of an epidemic
process [20, 21].

In this paper, we quantify the network effect on the effectiveness of contact tracing, by mapping it to a
combination of bond- and site-percolation models. We show that the extent to which contact tracing reduces
the number of infections highly depends on the exact choice of tracing model. We show that when the tracing
process is not immediate, but takes a nonzero amount of time, this drastically affects the outbreak size. We then
investigate the effect of degree-heterogeneity and clustering on the effect of contact tracing on the final out-
break size using percolation models and find that clustering can either increases or decreases the effectiveness
of tracing processes, depending on the infectiousness of the epidemic. This shows that the interplay between
the underlying network structure and the exact choice of tracing process is delicate, and important to take into
account.

We first describe the network model and define the tracing process in section 2. Then we show the relation
between the success probability of tracing and the characteristic time of the the tracing process. Section 3
analyzes the final outbreak size of our epidemic model with a generating function approach. We then study
the effect of inducing clustering in the network in section 4.

2. Network and tracing model

In this paper, we assume that the underlying network is given by the configuration model, a network model
that can generate networks with any prescribed degree distribution (qk)k�1 [5]. In the configuration model,
every vertex of degree k is equipped with k half-edges, which are paired uniformly at random. We assume
that the disease spreads on this network as a bond percolation process: it removes each edge independently
with probability 1 − π. While this is a very simple variant of an epidemic process, the final size of an SIR
epidemic with constant recovery duration can be identified as the size of the largest connected component
after bond percolation [10]. In this setting, the effective basic reproductive number R0, or the average number
of vertices infected by one infected vertex, is given by R0 = πE [D(D − 1)] /E [D], where D denotes the degree
of a uniformly chosen vertex [16].

We investigate the effect of the tracing process illustrated in figure 1 on the final size of the epidemic. The
tracing process works in three steps. In the first step, every infected vertex ‘reports’ its infection independently
with probability 1 − ps. If a vertex reports itself, it quarantines. Thus, a reported vertex is unable to infect other
vertices, as shown in figure 1(b). The second step of the tracing process takes the contact tracing into account.
In this second step, all vertices that have ‘reported’ themselves, list their recent contacts, who are being traced.
For every reported vertex, their infector is identified independently with success probability pt. In this case, we
say that the infector vertex was ‘traced’.

The third step is the quarantining of all ‘traced’ vertices. Specifically, after a vertex is ‘traced’, it quarantines,
so that it is unable to infect other vertices. However, the traced vertex may already have infected other vertices
before it was traced. We therefore model such secondary quarantining of the traced vertices by removing each
edge incident to a traced vertex with probability 1 − δ. These removed edges are the infections that have been
removed due to the traced vertex being quarantined. Thus, the tracing process is modeled as an extra layer of
bond percolation, see figure 1(c).

2.1. Immediate or delayed tracing: the impact of δ
The probability that the connection to a vertex is removed when its parent is traced, 1 − δ, depends on the
parameters ps and pt. Here we show how δ relates these parameters under two assumptions on the tracing
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Figure 2. δk as a function of k for various values of ps and pt. The solid lines plot δk for immediate tracing (equation (1)), whereas
the dotted lines plot δk for tracing with delay (equation (5)), using λ = T = 1.

process: immediate and delayed tracing, and discuss the impact of these assumptions on the effectiveness of
the tracing process.

2.2. Immediate tracing
We first assume that the tracing process is immediate: once a vertex self-reports, it immediately traces its parent
with probability pt. If successful, the traced vertex immediately quarantines and cannot infect other vertices
anymore. We now show that this assumption leads to a degree-dependent version of δ: δk.

Consider an outcome of the infection process as a tree composed of infected vertices. Tracing and self-
reporting happens with the same probability, (1 − ps)pt, for all infected vertices. Therefore, for a given infected
vertex in the tree that infects k neighbors of which d neighbors trace it, the first of these d ‘tracing’ contacts can
be viewed as the first red ball drawn without replacement from an urn with d red balls and k − d black balls.
The number of black balls drawn before the first red ball is on average (k − d)/(d + 1), which corresponds to
the average number of infectious contacts of a vertex before it is first traced. Therefore, the average fraction of
non-tracing contacts that occur before the vertex is traced equals 1/(d + 1).

The number of tracing vertices, d, is binomially distributed with parameters (k, (1 − ps)pt), where k denotes
the number of infectious contacts of the vertex. Using that E

[
(X + 1)−1

]
= p−1(1 + k)−1(1 − (1 − p)k+1)

when X is distributed as Bin(k, p), we obtain that the average fraction of contacts that appear before the first
tracing occurs, δk, equals

δk =
1 −

(
1 − (1 − ps)pt

)k+1

(1 − ps)pt(1 + k)
, (1)

so that δk is decreasing in k (see figure 2), and asymptotically, as k becomes large, we have:

δk =
1

(1 − ps)ptk
(1 + o(1)). (2)

Thus, we see that δk tends to zero when k becomes large, implying that for large values of k, only a vanishing
fraction of contacts will not be traced.

Phase transition under immediate tracing. From (2) we obtain that the expected number of edges that
remains for every vertex of degree k is asymptotically δkk ≈ 1/((1 − ps)pt). As this quantity is independent of
the vertex degree k, one might expect that the immediate tracing process removes the degree-heterogeneity.
We will now show that the immediate tracing process is indeed very effective by calculating the critical value
for the infectiousness parameter π, πc after which the epidemic outbreak becomes extensive. That is, when
π < πc, the size of epidemic outbreaks are sub-linear in the total number of nodes, and when π > πc, this
size is linear. When the outbreak size scales linearly with the total number of vertices, we call such outbreak
extensive or giant .

In appendix A, we show that there is a giant outbreak when

g′D(1 − (1 − ps)ptπ))

E [D]
< 1 − (1 − ps)pt

ps
, (3)

where the random variable D denotes the degree of a randomly chosen vertex in the network, and gD(x) its
probability generating function, gD(x) =

∑
k qkxk. Thus, the critical value of the percolation parameter πc at

which a giant outbreak occurs is such that

g′D(1 − (1 − ps)ptπc))

E [D]
= 1 − (1 − ps)pt

ps
. (4)
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Figure 3. The critical percolation value πc from (4) as a function of ps and pt in networks with (a) a power-law degree
distribution with exponent 2.65 and average degree 4, (b) a regular graph of degree 4.

Figure 3 shows the value of πc for two choices of the degree distribution: a regular graph where every
vertex has degree 4 (q4 = 1), and a power-law degree distribution with exponent 2.65 and average degree
4 (qk = Ck−2.65). Interestingly, we see a qualitative difference between the tracing and no-tracing scenarios.
Figure 3(a) shows that πc > 0 when ps, pt > 0 even for power-law distributions with degree exponent τ ∈
(2, 3). This means that under tracing, there is a regime for the infectiousness parameter π such that there are
only small outbreaks. On the other hand, without tracing, πc = 0 for power-law distributions with degree
exponent τ ∈ (2, 3) [18], showing that a giant outbreak always occurs regardless of the value of infectiousness
π. Thus, this tracing process is very effective: it can reduce an extensive outbreak to have a sub-extensive size.

In the standard SIR model, a comparable qualitative change in the size of the outbreak corresponds to
a bifurcation taking place when the basic reproduction number R0 = 1. In the regular graph, figure 3(b),
decreasing ps or increasing pt increases the critical value πc. Thus, when decreasing ps or increasing pt, there is
a wider range of values of the infectiousness parameter π such that only small outbreaks occur, or alternatively,
where the effective value of R0 remains below one.

2.3. Tracing with delay
Even though the immediate tracing can result in a significant reduction of the giant outbreak, in practice,
the tracing process may not be immediate. In what follows, we assume that there is a time-delay between
the moment when a vertex self-reports and successfully traces its infector and the moment when the infector
quarantines. We then again obtain an expression for the probability that the connection to a vertex is removed
when its parent is traced, and obtain a degree-dependent version of the parameter δ: δk.

Suppose that it takes time T for a vertex to trace its infector (the step of figure 1(c)). Furthermore, assume
that all infections from a degree-k vertex occur as independent exponential time clocks of rate λ. That is,
an infected vertex still infects its neighbors independently with probability π. Furthermore, these infections
of neighbors appear at independent, exponentially distributed time intervals with parameter λ. In the time-
window of length T (the incubation period) in which an infector is not traced and therefore not quarantined
yet, it can still infect others. Specifically, every remaining neighbor of the infector is infected independently in
this time interval with probability 1 − e−λT.

If we denote the number of neighbors of a degree-k vertex that are infected during the incubation period
by Nq, and the number of vertices that were already infected before the incubation period started by Nb, then
Nq is distributed as a Binomial(k − Nb, 1 − e−λT) variable. Thus, we obtain

E
[
Nq

]
= E

[
E
[
Nq|Nb

]]
= (1 − e−λT)E [k − Nb] .

We then use that E [Nb] = kδk with δk as in (1) to obtain

E
[
Nq

]
= (1 − e−λT )k

(
1 − 1 − (1 − (1 − ps)pt)k+1

(1 − ps)pt(1 + k)

)
Then, the average number of vertices that are infected before tracing occurs is

E
[
Nq

]
+ E [Nb] = (1 − e−λT)k + k e−λT 1 − (1 − (1 − ps)pt)k+1

(1 − ps)pt(1 + k)
,

and the average fraction of neighbors that are infected before tracing occurs is

δk(T) = 1 − e−λT

(
1 − 1 − (1 − (1 − ps)pt)k+1

(1 − ps)pt(1 + k)

)
. (5)
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Figure 4. The critical percolation value πc from (6) as a function of ps and pt in networks with a regular graph degree
distribution of degree 4 and δ = 0.9.

For large k,
δk(T) = 1 − e−λT(1 + o(1)),

which is independent of k. This implies that we can use δ = 1 − e−λT as a proxy, instead of having a
k-dependent δ.

We therefore use a k-independent value of δ throughout the rest of the paper, which assumes a tracing
process that is not immediate.

Phase transition under delayed tracing. In appendix B we show that the critical value of π beyond which
a giant outbreak occurs, satisfies

(1 − δ)g′′D(1 − πc(1 − ps)pt) + δE [D(D − 1)] =
E [D]

πcps
, (6)

Equation (6) implies that πc = 0 for power-law degree distributions with τ ∈ (2, 3), as then E
[
D2
]
, which

appears on the left-hand side, diverges, so that the corresponding plot of figure 3(a) would be all lines at
πc = 0. We therefore only plot the critical percolation value πc for regular graphs. This indicates that the
epidemic threshold in power-law networks and regular graphs behave rather differently under delayed contact
tracing. Figure 4 shows the value of πc in regular graphs. We see that the value of πc is more sensitive to ps,
the self-quarantining probability, than to pt, the tracing probability. Thus, increasing the effectiveness of the
tracing procedure barely influences the value of the epidemic threshold, though it may still influence the final
size of the epidemic.

The influence of the tracing process on the critical value beyond which an epidemic becomes extensive
is substantially more pronounced when the tracing process is immediate: under immediate tracing, even
outbreaks in scale-free networks can become sublinear, while this is not possible under delayed tracing.

3. Final outbreak size under contact tracing

We now investigate the size of the remaining outbreak after tracing using a generating function approach
under fixed δ, as described in section 2.3. In appendix C, we show that in the large-network limit, the fraction
of vertices in the giant outbreak S is given by

S = ps − psgD(1 − π + πu), (7)

where u is obtained by solving the implicit equation

u = 1 − ps + ps

[
gD∗−1(δπ(u − 1) + 1) − gD∗−1

(((
ps − 1

)
pt + 1

)
(δπ(u − 1) + 1)

)
+ gD∗−1

(
(π(u − 1) + 1)

((
ps − 1

)
pt + 1

))]
,

where gD∗−1(x) is the generating function for the excess degree distribution: gD∗−1(x) = g′D(x)/E[D].
Figure 5(a) plots the size of the giant outbreak for networks with two different degree distributions, and shows
that the analytical results of (7) match well with numerical simulations.

By comparing the outbreak size with and without tracing, we can determine the effectiveness of contact
tracing. That is,

eff = Sno tracing − Stracing, (8)

the outbreak size in an epidemic without contact tracing, minus the outbreak size in an epidemic with tracing.
Here the outbreak size without tracing can be obtained by setting ps = 1. Figure 5(b) plots the effectiveness
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Figure 5. Contact tracing with δ = 0.9, ps = 0.8, pt = 0.6. (a) The giant outbreak size before (dashed line) and after contact
tracing (solid line) obtained from (7) in networks with a power-law degree distribution with exponent 2.65, minimal degree 2 and
average degree 4, and a regular graph with degree 4. Marks are the average over 100 simulations of graphs of size n = 10 000 (b)
The effectiveness (8) of contact tracing for the power-law and the regular graph.

of contact tracing for two networks with the same average degree, but different degree distributions: a power-
law degree distribution and a regular degree distribution. In both networks, the effectiveness of the tracing
process depends on the infectiousness parameter π. In the regular network, the tracing process may shift the
critical value of πc where the giant outbreak occurs, so that tracing completely removes a giant outbreak. In
that regime, tracing is very effective. When a giant outbreak occurs in both the epidemic with tracing and in
the epidemic without tracing, the effectiveness of contact tracing deceases in π. That is, the more infectious the
disease, the less effective the tracing procedure. In the power-law network, a giant outbreak is always present
in both the traced and the non-traced version of the epidemic. In this situation, there seems to be an ‘optimal’
value of the infectiousness parameter π where the tracing process is most effective.

We see that tracing is not necessarily more effective in heterogeneous power-law networks compared to the
homogeneous regular graph, in contrast with previous studies [2, 14]. For low and high values of π, tracing
is more effective on power-law networks, while for intermediate values of π, tracing is more effective on the
regular graph. This contrast with previous findings is caused by the immediate tracing assumption discussed
in section 2.1. Under immediate tracing, most of the degree-heterogeneity is removed. Therefore, immediate
tracing is extremely effective on heterogeneous networks, which were studied in [2, 14]. However, figure 5(b)
shows the impact of contact tracing with delay. As (5) shows, tracing under delay is not as strongly influenced
by the degree-heterogeneity. This makes the process of tracing with delay more intricate to understand, causing
the non-trivial effects of figure 5(b).

The fact that for low values of π, tracing is more effective on power-law networks can be explained by
the fact that for low values of π there is a giant outbreak on power-law networks, but not in regular graphs.
Therefore, the tracing process is able to remove more infected vertices on the power-law network for low
values of π, as more infected vertices are present. The sharp increase in the effectiveness on regular networks
around π ≈ 0.35–0.4 can be explained by the fact that this is the regime where without contact tracing, a giant
outbreak would occur, but tracing reduces the giant outbreak to a small, sublinear one. Thus, in this regime,
tracing is extremely effective. The peak of the curve in figure 5(b) for regular graphs is precisely the critical
value where also under contact tracing a giant outbreak starts to occur of equation (6).

The fact that the tracing procedure on power-law networks is most effective for π ≈ 0.7 is harder to explain,
as the epidemic is extensive with and without contact tracing, but this value of the infectiveness π where the
tracing process is most effective can be calculated from equation (7).

4. The effect of clustering on tracing

The configuration model is known to be locally tree-like: the fraction of triangles in the network vanishes
asymptotically [6]. However, many real-world networks contain a non-trivial amount of triangles, which moti-
vates studying the tracing process on a configuration model with enhanced clustering [17]. In this model, each
vertex v has an edge-degree d(1)

v and a triangle degree d(2)
v , denoting the number of triangles that the vertex is

part of. Then a random graph is formed by pairing edges uniformly at random and pairing triangles uniformly
at random.

Let the degree-triangle distribution be denoted by qk,l, where k denotes the edge-degree, and l the triangle-
degree. Let g(x, y) =

∑
k,l>0 qk,lx

kyl be the generating function of the edge and triangle degrees. Furthermore,
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Figure 6. The giant outbreak size before (dashed line) and after contact tracing (solid line) obtained from (11) with δ = 0.9,
ps = 0.8, pt = 0.6 in (a) a regular graph with edge-degree 4, and triangle degree 0 (orange) and a regular graph with
triangle-degree 2 and edge-degree 0 (green) and in (b) a graph with power-law edge-degrees with exponent 2.65, minimal degree
1, average edge-degree 3.4, and triangle degree 0 (orange) and a graph with power-law triangle-degree with exponent 2.65,
average 1.7 and edge-degree 0. Marks are averages over 100 simulations of networks with n = 10 000.

let

gp(x, y) =
1

〈k〉
∑
k,l>0

kqk,lx
k−1yl, (9)

gq(x, y) =
1

〈l〉
∑
k,l>0

lqk,lx
kyl−1, (10)

with
〈s〉 :=

∑
k,l>0

kqk,l, 〈l〉 :=
∑
k,l>0

lqk,l,

be the generating functions of the number of edges and triangles that are reached by following a randomly
chosen edge and a randomly chosen triangle respectively.

In appendix D, we show that the outbreak size after tracing equals

S = ps − psg(1 − π + πu, (1 − π)2 + 2(1 − π)2πv + π2(3 − 2π)v2), (11)

where u and v are obtained by solving the system of implicit equations

u = 1 − ps + ps

(
gp(1 − π + πwu, (1 − π)2 + 2(1 − π)2πwv + 2π2(1 − π)v2w + π2w2v2)

+ gp

(
1 − πδ + πδu, (1 − πδ)2 + 2(1 − πδ)2πδv + π2δ2(3 − 2πδ)v2

)
− gp

(
1 − π + πw(1 − δ + δu), (π + π(δ − 1)w − 1)2 + 2πδw(πδ − 1)(π + π(δ − 1)w − 1)v

− wπ2δ2(2(π − 1) + w(2π(δ − 1) − 1))v2
))

and

v = 1 − ps + ps

(
gq(1 − π + πwu, (1 − π)2 + 2(1 − π)2πwv + π2(1 − π)w2v2)

+ gq

(
1 − πδ + πδu, (1 − πδ)2 + 2(1 − πδ)2πδv + π2δ2(3 − 2πδ)v2

)
− gq

(
1 − π + πw(1 − δ + δu), (π + π(δ − 1)w − 1)2 + 2πδw(πδ − 1)(π + π(δ − 1)w − 1)v

− wπ2δ2(2(π − 1) + w(2π(δ − 1) − 1))v2
))

,

where w = ps + (1 − ps)(1 − pt).
Figures 6(a) and (b) show the epidemic size in networks with the same degree distribution but with a

different amount of triangles. The analytic results for the final epidemic outbreak on networks with triangles
obtained from (11) closely matches the results obtained by numerical simulations.

Furthermore, one may conclude from figures 7(a) and (b) that the effectiveness of the contact tracing non-
trivially depends on the amount of clustering. In the regular graph, figure 7(a) shows that there is a range of the
infectiousness parameter π where the tracing procedure is more effective on clustered networks than on tree-
like networks, but there is also a range of parameters where the tracing procedure is more effective on the tree-
like networks instead. On the heterogeneous power-law networks on the other hand, figure 7(b) shows that the
effectiveness of tracing is always higher in the tree-like network than in the clustered networks. Furthermore,
the difference between the clustered and non-clustered networks is less pronounced in the power-law network.
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Figure 7. The effectiveness of contact tracing with δ = 0.9, ps = 0.8, pt = 0.6 in (a) the networks of figures 6(a) and (b) the
networks of figure 6(b).

Intuitively, introducing triangles has two effects: on the one hand they make it easier for an epidemic to
spread, as they induce multiple paths for a person i to infect another person j, but on the other hand, they
reduce the number of vertices that the epidemic can reach from a given vertex in k steps compared to a tree.
The latter effect makes it easier for the tracing process to stop the epidemic in the presence of triangles. For
power-law vertices, this is less pronounced, as in the presence of high-degree vertices, it is likely that the vertex
has already infected many other neighbors before being traced. This may intuitively explain the difference
between introducing triangles in power-law networks compared to homogeneous networks.

In general, figure 7 shows that the effectiveness of contact tracing delicately depends on the interplay
between the network degree distribution and its structure in terms of clustering.

5. Conclusion

In this paper, we have analytically studied a contact tracing process on networks with arbitrary degree distri-
butions. In this process, infected vertices self-report and quarantine with some probability 1 − ps, and they
trace their parent with probability pt. Using generating functions, we derive analytical expressions of the giant
outbreak size after the tracing process.

We investigated the effect of the network structure on the tracing process and found that degree hetero-
geneity may either enhance or diminish the effectiveness of tracing depending on the exact parameter values.
In our tracing model, we assume that there is a time-delay between the time that a person is infected and
the time that its infector is traced. This assumption makes the network heterogeneity non-trivially affect the
tracing effectiveness.

Likewise, enhancing clustering in the network has a non-trivial effect on the effectiveness of contact trac-
ing. Depending on the infectiousness of the epidemic, clustering may either increase or decrease the effec-
tiveness of contact tracing, in contrast with conclusions from simulations on homogeneous networks [13].
This underlines the importance of taking the network structure into account when investigating such tracing
processes.

In this paper, we investigated bond percolation, which can be mapped to the final size of an SIR epidemic
with constant recovery duration. In further research, it would be interesting to investigate the entire time
evolution of the number of infected vertices in the SIR process as well, and investigate the effect of the network
structure on this time evolution. This would enable to answer the question whether the network structure
affects the speed at which tracing processes slow down the spread of an epidemic.

Furthermore, our results on power-law networks suggest that there is an optimal value of the infectiousness
parameter π such that tracing is the most effective. It would be interesting to investigate the relation between
this optimal value of π and the parameters of the tracing process, to enable the design of optimally efficient
tracing processes.

Data availability statement

No new data were created or analysed in this study.
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Appendix A. Derivation of the critical value for immediate tracing

We model the infection tree as a branching process with a certain offspring distribution. A giant component
emerges when the average offspring surpasses one. Thus, we calculate the average number of non-self-reporting
offspring of a vertex Nf (as the self-reporting vertices will have zero offspring, and therefore do not contribute
to creating a giant outbreak).

Let Nt the total number of offspring of a vertex in the second tier of the branching process in the original net-
work. Then, Nt is distributed as D∗ − 1, where D∗ denotes the size-biased degree distribution: the distribution
of the degree of a vertex that is found by following a uniformly chosen edge. Let N(π)

t be the number of neigh-
bors after percolation with parameter π, so that N(π)

t = Bin(Nt,π). Let R denote the number of ‘reporting’
neighbors of the vertex, so that R = Bin(Nπ

t , 1 − ps). Finally, let Rt the number of reporting vertices that also
‘trace’ its parent vertex, so that Rt = Bin(R, pt). Given Rt, R, N(π)

t , the vertex infects N(π)
t − R non-reporting

vertices before taking tracing into account. On average, (N(π)
t − R)/(Rt + 1) of these will remain after tracing

(so when permuting randomly, and removing every neighbor after the first ‘tracing’ sibling). By the laws of
conditional expectation

E [Nf] = E

[
E

[
Nf|N(π)

t , R
]]

= E

[
E

[
E
[
Nf|Rt

]
|N(π)

t

]]

= E

[
E

[
N(π)

t − R

Rt + 1
|N(π)

t , R

]]

Using that E
[
(X + 1)−1

]
= p−1(1 + k)−1(1 − (1 − p)k+1) when X is distributed as Bin(k, p) and that R is

distributed as Bin (N(π)
t , 1 − ps), we obtain

E [Nf] = E

[
E

[
(N(π)

t − R)(1 − (1 − pt)R+1)

(R + 1)pt
|N(π)

t

]]

= E

[
ps(1 − (1 − (1 − ps)pt)N(π)

t )

(1 − ps)pt

]

= E

[
E

[
ps(1 − (1 − (1 − ps)pt)N(π)

t )

(1 − ps)pt
|Nt

]]
,

where the last equality follows again from the laws of conditional expectation. Further, as the probability gener-
ating function of a Bin(k, p) random variable Y is E[xY ] = (1 − p + px)k, and N(π)

t is distributed as Bin(Nt,π),

E[(1 − (1 − ps)pt)N(π)
t |Nt] = (1 − π + π(1 − (1 − ps)pt))Nt . Thus, we obtain

E [Nf] = E

[
ps(1 − (1 − (1 − ps)ptπ)Nt )

(1 − ps)pt

]

=
ps

(1 − ps)pt
− ps

(1 − ps)pt
E
[
(1 − (1 − ps)ptπ)Nt

]
=

ps(1 − gD∗−1(1 − (1 − ps)ptπ))

(1 − ps)pt
,

where gD∗−1(x) is the probability generating function of the size-biased degree distribution minus 1 (as Nt is
distributed as D∗ − 1), so that gD∗−1(x) = g′(x)/E [D].

A giant outbreak occurs when the expected number of offspring surpasses one, so when

g′D(1 − (1 − ps)ptπ))

E [D]
< 1 − (1 − ps)pt

ps
. (12)

Thus, the critical value of the percolation parameter πc is such that

g′D(1 − (1 − ps)ptπc))

E [D]
= 1 − (1 − ps)pt

ps
. (13)

Appendix B. Critical value under delayed tracing

We now derive the critical percolation value under delayed tracing with fixed δ. We use the same notation as
in appendix A. We use the same notation for the number of different types of offspring, see table 1. When R

9
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Table 1. Definition of the variables used in appendices A and B

Variable Definition

Nf Number of non-reporting offspring of an infected vertex after tracing
Nt Total number of offspring of an infected vertex before tracing
N(π)

t Number of infected offspring of an infected vertex before tracing
R Number of ‘reporting’ offspring of an infected vertex
Rt Number of offspring of an infected vertex that ‘trace’ their infector

vertices report themselves, the probability that their infector is not traced is (1 − pt)R. There are N(π)
t − R non-

reporting vertices. When their infector is traced, on average a fraction of δ of them remain infected. Therefore,

E [Nf] = E

[
E

[
Nf|N(π)

t , R
]]

= E

[
E

[
(1 − pt)

R(N(π)
t − R) + (1 − (1 − pt)

R)(N(π)
t − R)δ|N(π)

t

]]
= E

[
N(π)

t ps(1 − (1 − ps)pt)
N(π)

t −1

]
+ δπpsE

[
D∗ − 1

]
− δE

[
N(π)

t ps(1 − (1 − ps)pt)
N(π)

t −1

]
,

where the last step used that given N(π)
t , N(π)

t − R is binomially distributed with parameters N(π)
t and (1 − ps),

and the probability generating function of a Bin(k, p) random variable is given by (1 − p + px)k. Also, given
Nt, N(π)

t is binomially distributed with parameters Nt and π. Thus,

E [Nf] = ps(1 − δ)E
[
πNt(1 − π(1 − ps)pt)

Nt−1
]
+ δπpsE

[
D∗ − 1

]
= psπ(1 − δ)g′D∗−1(1 − π(1 − ps)pt) + δπpsE

[
D∗ − 1

]
.

Because E[YxY−1] = g′Y (x) for any random variable Y, and Nt is distributed as D∗ − 1, where D∗ is the
size-biased degree-distribution, Finally, using that gD∗−1(x) = g′D(x)/E[D] and that E[D∗ − 1] = E[D(D −
1)]/E[D], we obtain

E [Nf] =
psπ(1 − δ)g′′D(1 − π(1 − ps)pt)

E [D]
+ δπpsE [D(D − 1)] .

The critical value of π where a giant outbreak occurs, is when E[Nf] = 1, which yields equation (6).

Appendix C. The giant outbreak size

In this section, we compute the giant outbreak size after tracing. A vertex does not trace its infector if it does
not self-report, which happens with probability ps, or if it does self-report, but does not successfully trace its
infector, which happens with probability (1 − ps)(1 − pt). Thus, the probability that a vertex of degree k is
traced by none of its offspring equals

P
(
degree k vertex not traced

)
= (ps + (1 − ps)(1 − pt))k. (14)

Let

pk =
(k + 1)qk+1∑

k�1kqk

be the excess degree distribution, and p∗k be the excess degree distribution after tracing. As a vertex loses all its
offspring after self-reporting which happens with probability 1 − ps, p(0) is given by

p(0) = 1 − ps.

When a vertex is not traced, its degree remains the same. When a vertex is traced, an extra layer of percolation
occurs with parameter δ. Thus,

p∗k = ps︸︷︷︸
Not quarantined

⎛
⎜⎝ ∞∑

j=k

pδk,j(1 − (ps + (1 − ps)(1 − pt))j)︸ ︷︷ ︸
At least one offspring traces this node

+ (ps + (1 − ps)(1 − pt))k︸ ︷︷ ︸
None of the offsprings trace this node

pk

⎞
⎟⎠ , k > 0

10
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where pδk,j is the probability that a vertex of degree j has remaining degree k after percolation with bond

occupancy δ. The generating function for p∗k is then given by:

∞∑
k=0

p∗kxk = 1 − ps + ps

∞∑
k=1

∞∑
j=k

pδk,jx
k − ps

∞∑
k=1

∞∑
j=k

xk(ps + (1 − ps)(1 − pt))j) pδk,j

+ ps

∞∑
k=1

(x(ps + (1 − ps)(1 − pt)))kpk.

Now
∞∑

k=1

(x(ps + (1 − ps)(1 − pt)))kpk = gD∗−1(x(ps + (1 − ps)(1 − pt))),

where gD∗−1(x) denotes the generating function of pk. Furthermore,

∞∑
k=1

∞∑
j=k

pδk,jx
k =

∞∑
k=1

∞∑
j=k

xkpj P
(
Bin( j, δ) = k

)
=

∞∑
j=1

pj

j∑
k=0

xk
P
(
Bin(j, δ) = k

)

=
∞∑

j=1

pj(1 − δ + δx)j = gD∗−1(1 − δ + δx).

Similarly,

∞∑
k=1

∞∑
j=k

xk(ps + (1 − ps)(1 − pt))j) pδk,j = gD∗−1

(
(1 − δ + δx)(ps + (1 − ps)(1 − pt))

)
.

Thus,

∞∑
k=0

p∗kxk = 1 − ps + ps

[
gD∗−1(1 − δ + δx) − gD∗−1

(
(1 − δ + δx)

((
1 − ps

) (
1 − pt

)
+ ps

))
+ gD∗−1

(
x
((

1 − ps

) (
1 − pt

)
+ ps

))]
. (15)

This is the generating function of the degree distribution of a tracing process on a network with excess degree
distribution pk. However, before the tracing process takes place, an epidemic modeled by a bond percolation
process with occupancy π takes place. Thus, to obtain the generating function G(x) of the degree distribu-
tion after the epidemic and the tracing process, we add the bond percolation process with bond occupancy
probability π by substituting x → 1 − π + πx in (15):

G(x) = 1 − ps + ps

[
gD∗−1(δπ(x − 1) + 1)

− gD∗−1

(((
ps − 1

)
pt + 1

)
(δπ(x − 1) + 1)

)
+ gD∗−1

(
(π(x − 1) + 1)

((
ps − 1

)
pt + 1

))
.
]

We then obtain the size of the giant outbreak S = ps − psgD(1 − π + πu), where u is obtained by solving the
implicit equation u = G(u) and gD(x) is the generating function of the degree distribution.

Appendix D. Derivation of the giant outbreak size in clustered networks

Under bond percolation with probabilityπ, a triangle from a given vertex can still be connected to its two trian-
gle members, with probability π2(3 − 2π), it can connect to only one of its triangle members, with probability
2(1 − π)2π, or it can become disconnected from both other triangle members, with probability (1 − π)2. Thus,
for a vertex of triangle-degree k, the number of neighbors that are reachable through these triangles after bond
percolation, has generating function gD∗−1(z) = ((1 − π)2 + 2(1 − π)2πz + π2(3 − 2π)z2)k. Let u denote the
probability that a randomly chosen half-edge is not connected to the giant component. Similarly, let v denote
the probability that following a randomly chosen triangle does not lead to the largest component. Then, after
bond percolation with probability π,

u = gp(1 − π + πu, (1 − π)2 + 2(1 − π)2πv + π2(3 − 2π)v2), (16)

v = gq(1 − π + πu, (1 − π)2 + 2(1 − π)2πv + π2(3 − 2π)v2). (17)

11
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Figure 8. After percolation with probability π, a triangle that is reached at the red vertex has become one of these types. Thus,
when arriving at a percolated triangle at the red vertex, zero, one, or two other vertices may be reached. The labels below the types
provide the probability that a percolated triangle equals this type.

Adding site percolation with probability ps results in

u = 1 − ps + psgp(1 − π + πu, (1 − π)2 + 2(1 − π)2πv + π2(3 − 2π)v2), (18)

v = 1 − ps + psgq(1 − π + πu, (1 − π)2 + 2(1 − π)2πv + π2(3 − 2π)v2). (19)

Let w denote that a vertex of degree 1 is traced by none of its offspring, so that

P
(
degree k vertex not traced

)
= (ps + (1 − ps)(1 − pt))k = wk. (20)

When a vertex is traced, an extra layer of percolation with parameter δ takes place, so that combined, this is
percolation with parameter πδ. However, the probability of this taking place, depends on the degree of the
vertex after the first layer of percolation with parameter π. After the first layer of percolation with parameter π,
triangles are percolated into 5 possible types, as illustrated in figure 8. In the leftmost two types, the percolated
triangle contributes with two to the degree of the red vertex, the rightmost percolated triangle adds zero to
the degree of the red vertex, and in the other two types, the percolated triangle adds one to the degree of the
vertex. Thus, when we denote the number of percolated triangles of these types by k1, k2, . . . , k5, see figure 8,
the degree of the vertex from the percolated triangles equals 2(k1 + k2) + k3 + k4. The number of vertices that
are reached through these percolated triangles equals 2(k1 + k2 + k3) + k4.

Let D̂(1) and D̂(2) denote the degree of the number of edges and triangle-edges respectively after the tracing
process. Furthermore, let k6 denote the number of remaining half-edges attached to a vertex after percolating
the half-edges with probability π. As the probability of a vertex not being traced equals w to the power of the
degree after percolation with parameter π,

E

[
xD̂(1)

yD̂(2)𝟙not traced

]
= E

[
E

[
xD̂(1)

yD̂(2)𝟙not traced|k1, . . . , k5, k6

]]
= E

[
xk6 y2(k1+k2+k3)+k4w2(k1+k2)+k3+k4+k6

]
= gp

(
1 − π + πwx, (1 − π)2 + 2(1 − π)2πwy

+ 2π2(1 − π)y2w + π2w2y2
)

,

where the last step used the probabilities in figure 8, and the generating function of the multinomial
distribution. Also, when a vertex is traced, its neighbors are percolated with parameter δ. Therefore,

E

[
xD̂(1)

yD̂(2)𝟙traced

]
= E

[
E

[
xD̂(1)

yD̂(2)𝟙traced|k1, . . . , k5, k6

]]
= E

[
(1 − w2(k1+k2)+k3+k4+k6 )E

[
xD̂(1)

yD̂(2) |k1, . . . , k5, k6, traced
]]

= E

[
xD(1,πδ)

yD(2,πδ)
]
− E

[
w2(k1+k2)+k3+k4+k6E

[
xD̂(1)

yD̂(2) |k1, . . . , k5, k6, traced
]]

,

where D(1,πδ) and D(2,πδ) denote the degree and triangle-degree respectively of a vertex after percolation with
parameter πδ. Thus,

E

[
xD(1,πδ)

yD(2,πδ)
]
= gp(1 − πδ + πδx, (1 − πδ)2 + 2(1 − πδ)2πδy + π2δ2(3 − 2πδ)y2).

For the second term, we have to take into account that the percolated triangles of figure 8 are again percolated
with parameter δ. Let φt,i denote the probability that a percolated triangle of type kt reaches i neighbors after an
extra layer of percolation with probability δ. For example, φ1,0 = (1 − δ)2, the probability that a full triangle
does not reach both its neighbors after percolation with parameter δ. Furthermore, let ζ t denote the probability
that after percolation of a full triangle with probability π, the percolated triangle is of type kt. The ζ t are given

12
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in figure 8, and for example ζ2 = π2(1 − π). Then we obtain

E

[
w2(k1+k2)+k3+k4+k6E

[
xD̂(1)

yD̂(2) |k1, . . . , k5, k6, traced
]]

= E

⎡
⎣w2(k1+k2)+k3+k4+k6 (1 − δ + δx)k6

5∏
t=1

(
2∑

i=0

φt,iy
i

)kt
⎤
⎦

= gp

(
1 − π + πw(1 − δ + δx),

5∑
t=1

ζtw
at

2∑
i=0

φt,iy
i

)
,

where at = 2 for t = 1, 2, at = 1 for t = 3, 4 and at = 0 for w = 5. Plugging in the expressions for ζ t and φt,i

and simplifying, yields

E

[
w2(k1+k2)+k3+k4+k6E

[
xD̂(1)

yD̂(2) |k1, . . . , k5, k6, traced
]]

= gp

(
1 − π + πw(1 − δ + δu), (π + π(δ − 1)w − 1)2 + 2πδw(πδ − 1)(π + π(δ − 1)w − 1)v

− wπ2δ2(2(π − 1) + w(2π(δ − 1) − 1))v2
))

Thus, when we let u denote the probability that a vertex that is reached by following a randomly chosen half-
edges is not connected to the giant component, we obtain

u = 1 − ps + ps

(
gp(1 − π + πwu, (1 − π)2 + 2(1 − π)2πwv + 2π2(1 − π)v2w + π2w2v2)

+ gp(1 − πδ + πδu, (1 − πδ)2 + 2(1 − πδ)2πδv + π2δ2(3 − 2πδ)v2)

− gp

(
1 − π + πw(1 − δ + δu), (π + π(δ − 1)w − 1)2 + 2πδw(πδ − 1)(π + π(δ − 1)w − 1)v

− wπ2δ2(2(π − 1) + w(2π(δ − 1) − 1))v2
))

Similarly

v = 1 − ps + ps

(
gq(1 − π + πwu, (1 − π)2 + 2(1 − π)2πwv + π2(1 − π)w2v2)

+ gq(1 − πδ + πδu, (1 − πδ)2 + 2(1 − πδ)2πδv + π2δ2(3 − 2πδ)v2)

− gq

(
1 − π + πw(1 − δ + δu), (π + π(δ − 1)w − 1)2 + 2πδw(πδ − 1)(π + π(δ − 1)w − 1)v

− wπ2δ2(2(π − 1) + w(2π(δ − 1) − 1))v2
))

.

We can then find the remaining component size from S = ps − psg(1 − π + πu, (1 − π)2 + 2(1 − π)2πv +

π2(3 − 2π)v2).
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