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Abstract: Mobile phone data are a novel data source to generate mobility information from Call
Detail Records (CDRs). Although mobile phone data can provide us with valuable insights in human
mobility, they often show a biased picture of the traveling population. This research, therefore,
focuses on correcting for these biases and suggests a new method to scale mobile phone data to the
true traveling population. Moreover, the scaled mobile phone data will be compared to roadside
measurements at 100 different locations on Dutch highways. We infer vehicle trips from the mobile
phone data and compare the scaled counts with roadside measurements. The results are evaluated
for October 2015. The proposed scaling method shows very promising results with near identical
vehicle counts from both data sources in terms of monthly, weekly, and hourly vehicle counts.
This indicates the scaling method, in combination with mobile phone data, is able to correctly measure
traffic intensities on highways, and thereby able to anticipate calibrated human mobility behaviour.
Nevertheless, there are still some discrepancies—for one, during weekends—calling for more research.
This paper serves researchers in the field of mobile phone data by providing a proven method to
scale the sample to the population, a crucial step in creating unbiased mobility information.

Keywords: call detail record data; mobile phone data; human mobility networks; trajectory data
mining; roadside measurements; scaling method

1. Introduction

Samples are strongly influenced by the information present in the environment [1]. In practice this
means that samples are practically never truly random, which leads to biases in resulting judgements [1].
Furthermore, humans often reason through heuristics explaining a simplified version of the world [2].
Although these simplifications are useful they can result in severe systematic errors [2]. To create an
unbiased view of the population these biases have to be addressed and corrected for [1]. In this paper
we, therefore, address and provide a method for correcting structural biases in mobile phone data,
i.e., mobility data generated from Call Detail Records (CDRs) of mobile providers and scale it to the
traveling population.

Mobile phone data is a hot topic in the field of human mobility studies. A vast amount of recent
research has been performed that investigates the use of mobile phone data to gather better insights
into behaviour, social networks and mobility patterns of the masses [3–8]. Mobile phone data is
regarded a prime candidate to replace traditional mobility measurement techniques such as surveys
and roadside measurements [9,10]. Mobile phone data can provide us with mobility information
on unprecedented scale [10,11]. Where surveys provide a snapshot of the lives of a few thousand
inhabitants, mobile phone data can provide 24/7 information on millions of people [9,10]. This new
data source is already providing us with new and unique insights into human mobility [12,13].
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Provided the increasing use of this new data source, making sure the results are unbiased also
becomes more important. Studies that employ mobile phone data, however, generally pay little
attention to the bias in mobile phone data while scaling the sample to the population. The latter is
a must when comparing values on different scales. Scaling is in essence performed for the same purpose
as calibrating in any other type of measurement device. To exemplify, mercury in a thermometer
will expand when temperature increases. However, unless the thermometer is calibrated the only
conclusion can be that it became warmer or colder. We do not know by how much temperature
increased nor are we able compare with measurements of other thermometers.

Studies such as the one by Jiang, Ferreira and González [14] recognize this fact. Jiang et al., for one,
scale the sample to the population based on the ratio of sample to population for different geographic
areas. Cools, Moons and Wets [15] take a similar approach with the extension of removing users
with few events, for whom they argue no trustworthy origins and destinations can be established.
Iqbal et al. [16] built Origin Destination (OD) matrices from CDRs and calibrated their OD matrices
using road side measurements. The disadvantage of calibration is having to rely on a second source of
information limiting its use in practice, especially for areas where less information is available. In this
study we will build upon the approaches by Jiang et al. and Coole et al. by also compensating for the
bias in the sample, which requires only census data unlike the calibrations such as the one performed
by Iqbal et al. [14,16].

In the present study we address a bias identified in the mobile phone data. The bias we identified
is introduced by demographic discrepancies between the traveling population and the sample from
which mobile phone data is created. The bias is due to a difference in mobile phone possession
and travel behaviour across age groups [17]. To illustrate, young children have both less chance to
own a mobile phone as well as a lower chance to make a trip greater than 10 km, especially during
schooldays, compared to 30 to 40 year olds [17]. Without compensating for this sampling bias we would
get a biased view of the population, where especially age groups that travel less are underrepresented.
Thus, when employing mobile phone data to answer mobility questions one needs to adjust for the
bias to prevent erroneous conclusions.

We present and evaluate a method to scale the sample in mobile phone data to the population.
To validate our proposed scaling method we will estimate vehicles present on a multitude of Dutch
highways and compare the outcomes to roadside measurements. The advantage of comparing to
roadside measurements rather than Origins and Destinations (ODs) from surveys is that the roadside
measurements generally produce unbiased and highly accurate traffic counts [18–21]. The main goal
of this study is to provide a validated scaling method for mobile phone data that could be used in
future studies to get an unbiased view of the population.

This paper is structured as follows. In the next section we discuss the study area and provide
a description of the data used in this study. Next, we will elaborate upon the methodology used in
this research. Here also our scaling method is presented. Then, the results are presented followed by
a discussion of these results. Finally, the conclusions of this research are presented.

2. Materials and Methods

2.1. Study Area and Data Description

The data available for this study covers the Netherlands as a whole. The Netherlands currently
has 17 million inhabitants and spans 41.526 square km [22]. The country is approximately 200 km
wide and 300 km tall and shares borders with Germany and Belgium. In 2015 80% of the population
had a mobile phone of which the vast majority are smartphones [23,24]. The latter is relevant as the
more people connect to the network, e.g., for calling but also receiving e-mail and browsing the web,
the more events are generated and thus the more data points we have per inhabitant. This trickles
down to better mobile phone data.
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In the following sections we will elaborate on the CDRs, census data, survey data, and roadside
measurement data used in this study.

2.2. Call Detail Records & Cell Tower Network

CDRs are the basis of mobile phone data. These are records describing when a mobile phone
connected to the network by sending or receiving voice, text, or other data via a provider’s network.
The records consists of a time stamp, a cell code relating to a cell tower in the network and a one-way
hashed id created from a mobile phone number. At the time of writing about 370 million CDRs are
generated per day by 3 million subscribers.

The network of cell towers of the provider consists of approximately 50.000 unique cells covering
every part of the country. Geographic characteristics of the cell towers, i.e., their location and their
radius, angle, and orientation are also provided by the provider. These geographic properties in
combination with the CDRs enable us to pinpoint people at a certain moment in time.

The data used in this study is from one mobile network provider and covers October 2015.

2.3. Census Data & Geographic Zones

Census data forms the basis of the scaling method we present in this research. As previously
explained, there is a bias in the sample mobile phone data provides due to demographic discrepancies.
Census data provides us with crucial information about the population that allows us to assess our
sample in comparison to the true population. In the Netherlands the Central Bureau of Statistics (CBS)
reports census data. Age distribution on four digit postal code level is acquired from the CBS.

Where roadside measurement data as used by Iqbal et al. [16] might not be available everywhere,
census data nearly always is. In addition, census data is often gathered in task of the government
and is hence typically freely available [25]. As the census data is widely available and often accurate,
the scaling method, which mainly relies on this source of information, could be implemented not
only in the Netherlands, but also in many other countries all over the world. This greatly benefits the
generalizability and enhances the overall value of the proposed method.

2.4. Mobility Survey Data

In essence the mobile phone data measures the movement of mobile phones and thus the people
carrying the devices rather than the vehicles on the road. For a fair comparison, a translation is required
to go from people to vehicles.

To get a good estimate of the number of people per vehicle, survey data from 5 years of Onderzoek
Verplaatsingen in Nederland (‘Research Movements in The Netherlands’; OViN) are used, starting at
2010 and ending at 2014. OViN is chosen as it is the largest free nationwide mobility survey in the
Netherlands [26]. When combined, the surveys contain 97.432 trips that are comparable to those in the
mobile phone data. To be able to compare the data, we only selected trips 10 km or longer as we are
interested in trips on highways, which are often longer than 10 km. Furthermore, we only selected
trips with average travel velocities below 145 km/h, deeming them unrealistic and untrustworthy.
For both calculation the distance taken is the distance as the crow flies from the origin postal code to
the destination postal code.

An overview of the distribution of trips greater than 10 km per mode of transportation is shown
in Table 1. The two largest groups by a margin are car (driver) and car (passenger). The third largest
group bus (public transport) accounts for nearly 5% of all trips. The chance of being a driver for this
class (11%) and the class motor is extracted from literature on Dutch public transport [27]. Bus (private)
is assumed to be similar to bus (public transport). All other classes combined including taxi and freight
truck only account for just over 1% of all trips. The assigned chances of being a driver for these classes
are based on personal experience. Given their low share amongst all trips, the possible impact of
mistakes due to guess work is considered to be negligible.
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Table 1. Different modes of transportation, their prevalence on the Dutch roads and the chance of being
a driver (source: OViN).

Means of Transportation % of Trips Chance of being a Driver

Bus (public transport) 4.93% 11%
Bus (private) 0.57% 11%

Camper 0.05% 50%
Car (driver) 43.67% 100%

Car (passenger) 17.09% 0%
Delivery van 0.52% 95%

Motor 0.44% 87%
Taxi 0.44% 50%

Freight truck 0.06% 100%
Other / not on highway 32.23% -

We find the motive of a trip, rather than hours of the day or day of the week, can provide very
stable people per vehicle ratios. In Figure 1 the people per vehicle ratio, i.e., the inverse of the chance
of being a driver, is depicted for each of the three motives, i.e., work, business and other, and hour of
the day. As can be observed from Figure 1, the ratio people per vehicle is stable over the majority of
the day. The unstable pattern in the early morning can be attributed to the small sample size in the
early hours of the day. Note that we included the motive “other” twice, once for workdays and once
for weekends. We did so because there is a clear difference in people per vehicle between the two day
types for this motive. During the weekend there are generally more people per vehicle for non-work
and business related activities than during workdays. The people per vehicle ratios applied are 2.02
for other weekend, 1.64 for other workdays, 1.08 for business, and 1.10 for work trips.
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Figure 1. People per vehicle ratio plotted for different trip motives averaged per hour of the day
(source: OViN).

2.5. Mobile Phone Penetration

Figure 2 shows information about mobile phone penetration by age group, which was acquired
via two sources. The first being Telecompaper [17], which contains the majority of the information
used. Gaps, for people below age 12 and over 80, are filled by data from Offermans et al. [28].
The latter refers to a study by the Dutch statistical office, Statistics Netherlands (CBS), who assessed
the representativeness of the sample of the mobile phone data used in this study, though with a two
year gap. They also included information about the penetration of people having a smartphone at the



Sustainability 2020, 12, 3631 5 of 19

telecom provider by age. This information, however, is not always available and hence we chose to use
data from Telecompaper who provide a more nationwide assessment of smartphone penetration by
age group. Moreover, they also provide information on a large variety of countries [17].
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2.6. Roadside Measurement Data

In order to validate our scaling method we compared vehicles inferred from the mobile phone
data with vehicles measured on the road. The number of vehicles measured on the road is obtained
via road side measurements provided as open data by Nationale Databank Wegverkeersgegevens
(‘National Database Traffic Data’; NDW). NDW is a governmental organization in the Netherlands that
collects the measurement data from different parties such as Rijkswaterstaat. Most of the roadside
measurements are collected by using an inductive-loop measurement devices placed on or in the
road’s surface with a self-reported accuracy upwards of 99% [29,30]. An overview of the types of
roadside measurement devices, the number of occurrences on the Dutch road network, and the mean
self-reported accuracies of each type of device is shown in Table 2.

Table 2. Roadside measurement devices in the Dutch road network (source: NDW).

Measurement Device Counts Accuracy

Inductive-loop vehicle detector 21.711 99%
Automatic Number-Plate Recognition 1.484 95%

Bluetooth 1.409 Unknown
Infrared 948 100%

Floating Car Data (from navigation systems) 24 Unknown

The information represented in Table 2 covers all measurement sites in the Netherlands, including
information on the use of parking lots and gas station et cetera. Moreover, the measurements from
these measurements sites contain predominantly raw data. For major roads Rijkswaterstaat cleaned
the raw data by, for one, removing outliers. The algorithm processing the raw data is called Monibas,
an algorithm that is proven to be highly accurate (Technical University Delft, 2006). The data processed
by Monibas are also included in the raw data as a separate measurement sites. In total there are 13.693
measurement sites to which Monibas is applied, all of which employ raw data from inductive-loop
vehicle detectors.
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3. Research Approach

Our research methodology encompasses the steps taken to evaluate our scaling method. Part of
the methodology is also the scaling method we present in this research. There are two main processes
leading up to the final comparison of vehicle counts. These are represented in Figure 3. On the top are
three steps displayed regarding mobile phone data. This goes from creating the mobile phone data,
to scaling the data to the population and vehicle counts on the road. At the bottom the steps are shown
relating to processing and filtering the roadside measurement data. The latter is done to ensure only
the most trustworthy sites are used in our final comparison in which vehicle counts from both sources
are compared.
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3.1. Creating Mobility Data

The basis of the mobile phone data is the definition of a destination. A destination we define as
a place where a person resides for 30 minutes or more. Furthermore, we divided the Netherlands
in a total of 1.259 areas each of which could be a destination of a trip. These areas are created from
census data in such a way that each area is defined as a municipality. Large municipalities such as
Amsterdam are divided by hand based on four digit postal codes to provide more detailed information.
Whether a person is located within one area depends on whether that person had events with cell
towers covering the area for at least 30 straight minutes. We note, however, that during heavy traffic
the travel velocity can drop dramatically which may result in people getting a destination assigned
while actually being stuck in traffic. Nevertheless, we assume that the chance of assigning such “traffic
jam destinations” as actual destinations do not have a significant impact as with a cell of 12.5 km
in radius, and thus 25 km in diameter, it would require velocities over a 25 km stretch to be below
50 km/h, for example, to erroneously be assigned as a destination. A more detailed description of the
algorithm used to extract origins and destinations from CDR data can be found in the studies by Keij
and Van Kats [31,32].

There is, however, one noteworthy change between the algorithm Keij and Van Kats used versus
the one used to create mobile phone data for this study [31,32]. We propose to discard the CDRs
that occurred with cell towers having a radius of 12.5 km and higher. Cells with a radius larger than
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12.5 km provide only very limited information about a person’s location. In addition, due to the design
of the algorithm, tends to increase noise in recorded movements. The events handled by cells larger
than 12.5 km are the minority and as such discarding them still leaves us with 94% of the total events,
as shown in Table 3.

Table 3. Percentage of events compared to the maximum allowed cell size (source: CDR).

Cell Radius up to (km) Percentage of Events

2.5 60%
5 77%

7.5 86%
10 91%

12.5 94%
15 95%

To determine the impact of discarding cells larger than 12.5 km we compared the destinations
in the mobile phone data with a GPS trace. To make sure that the data was comparable, we created
destinations from the GPS data with a destination being defined as a circle of 5 km in diameter in
which a person has to reside for 30 minutes or more. We observed a total of 52 trips. The GPS trace
covers the entire month of February 2015. The analysis will thus cover 28 days of measurements.
Typically, there are privacy limitations that imply we can only observe aggregated trips when there
are at least 16 unique individuals involved. For the employee of Mezuro the privacy limitations are
lifted upon formal request to allow us to perform these types of analyses. In total we compared three
different sets of mobile phone data: with all events, only those with cells smaller than 12.5 km and cells
with smaller than 10 km.

By taking only cells with radii smaller than 10 km and 12.5 km we find the algorithm can correctly
determine 92% and 96% of the destinations, respectively. Using cells of all sizes we came to a mere
72% with the majority of the errors consisting of assigning a destination to a neighbouring area.
Thus, setting a threshold on cell radius helps improve accuracy. Furthermore, 12.5 km performs better
than 10km as a threshold. Plausibly this is because more events are removed with the 10 km threshold,
also those that help improve the mobile phone data’s accuracy.

When compared to OViN we see a similar distribution of the number of trips on longer distance
classes, but diverging trip counts for trips below 10 km, shown in Figure 4. The comparison with
OViN is made by setting the total trips over 26 km as a baseline (100%) and comparing this to the
total number of trips including shorter distances. 26 km is chosen as the largest destination in our
mobile phone data is 26 km in diameter. Hence, a person is able to travel at most 26 km without being
recorded traveling.

We find there are about as many trips in both datasets over 10 km, though below 10 km OViN
appears to record far more trips. Hence, we choose to only take trips over 10 km into account as we
have an underrepresentation below 10 km. This is also a bias that is hard to correct for provided it
depends on the physical cell tower infrastructure. In areas with larger reaching cell towers one might
never be able to detect short trips, whereas in cities with smaller cells one might. Hence, we only look
at trips over 10 km and focus on measuring mobility on highways, where trips are typically greater
than 10 km.
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3.2. Scaling Mobile Phone Data

The scaling method comprises both a bias correction as well as expanding the counts to approach
those in the true population. This method corrects for demographic differences in the population that
affect the probability that a person is recorded in our sample when performing a trip. The probability
of being observed traveling depends on two factors: (1) the chance of being in the sample and (2) the
chance of traveling. Both these factors are dependent upon inhabitant demography and type of day.
Children under the age of 10, for example are both less likely to own a mobile phone and to be found
traveling on highways [17]. Consequently they are both less likely to be present in the sample and less
likely to be found traveling over 10 km. Moreover, the chance children are traveling longer distances
differs between schooldays, holidays and weekends. The likelihood of a person taking a trip of at least
10 km or more for a range of age groups is shown in Figure 5.

Note we focus on trips over 10 km as trips below 10 km are underrepresented in the mobile phone
data. Hence, we choose not to use that information. From Figure 5 can be observed there are strong
differences in travel behaviour between age groups. Our scaling method is designed to take these
effects into account and adjust trip counts accordingly.

We make a distinction between four types of days. These are workdays, Saturdays, Sundays,
and workdays during holidays. These day types provide insights into the distinct travel behaviours,
with differences mainly observed for the young and old inhabitants. Further distinctions in day types
did not provide additional information and would decrease the number of observations per group to
the point where the group sizes are too small to extract stable and trustworthy values.

The proposed scaling method is formally represented in Figure 6 as a Meta-Algorithmic Model
(MAM) in Process Deliverable Diagram (PDD) notation [33]. In a PDD the processes are shown
on the left and the product of the action on the right [34]. The PDD is accompanied by two tables,
one describing the processes (Appendix A, Table A1) and one describing the products (Appendix A,
Table A2). The next paragraphs will provide a brief overview of the steps and products in the
scaling method.
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As shown in the MAM with the different colour codes there are three types of steps in the scaling
method. The first is represented with yellow concerns acquiring information about the population for
all relevant areas. In addition we also estimated the number of mobile phone users living in each area
by assigning a home location to each user. This is done using a slight variation of the home assignment
algorithm described by Toole et al. [11]. Whereas Toole et al. assigned home as the most frequent stay
location between 8 pm and 7 am on workdays we also include data about weekends, but the differences
are minor [11]. A user is assigned one home location for the month October 2015. Home locations are
key to determine the distribution of users across the country and hence the ratio mobile phones in the
sample over the inhabitants for all areas.

The second step in our method shown in red is the difference between traveling and general
population. Here we first estimated the age distribution within our sample by looking at the a-priori
information about the population distribution in the area’s population and the chance of owning
a smartphone per age group. This helped us to calculate the number of users per age group. For each
of these age groups we can predict how likely they are to be found traveling for a specific day type.

The final step is what differentiates our scaling method from those in previous studies. Here we
calculate how many inhabitants and mobile phone users in our sample are expected to travel over
10 km. In the end we divide the inhabitants we expect to be traveling by those we expect to be traveling
within our sample. The calculated ratio will be the scaling factor for a specific area on a specific day.
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3.3. Validating the Scaling Method using Roadside Measurements

There are four essential steps required to measure vehicles on highways using mobile phone
data: (1) scale the mobile phone data to the population, (2) focus on the vehicle trips, (3) select the
vehicle trips going over a specific road, and (4) convert trips into vehicles. The first step, i.e., scaling,
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was covered in the previous section and will not be discussed here. The latter three will be discussed
in the following paragraphs.

The algorithm by Keij [31] is implemented to distinguish train trips from vehicle trips. Note that
there might also be other categories, e.g., cycling, that are not included. This is a slight shortcoming,
though given our focus on longer trips in combination with highways we expect the majority not
to be cycling. The basis of the algorithm is detecting whether events occur with cells covering only
highways or only rail tracks [31]. Especially on longer distances the algorithm is shown to provide
good results [31].

We are interested solely in a subset of all car trips. These are the ones passing over specific road
section where also roadside measurement data is available. Hence, we need to make an educated
guess on the route people travel from their origin to destination. Once we got a good idea of the
routes travelled we can select all origin destination combinations that cross a specific road section.
This provides an estimate of all people who travel over the road network and plausibly cross a specific
road. Next, we will assign a time stamp to these trips defined as the middle of their trip, e.g.,
trips leaving at 8:00 AM and arriving at 9:00 AM will cross the road section at 8:30 AM. This is not very
precise, but as some trips will in reality cross the road section earlier and other later we are confident
the majority of the uncertainty will level out.

A major step in the above process is acquiring routes for origin destination pairs. There is a large
volume of published studies describing how to assigning vehicle trips from Origin Destination pairs
(OD-pairs) [35,36]. A key assumption that is often made is that people are rational and take the route
that minimizes their travel cost [35]. Travel cost can be seen as a combination of multiple factors such
as travel time, distance, cost of fuel, congestion charges, et cetera [35]. The most important factors,
explaining 60% to 80% of all route choices in practice, are travel time and distance [35]. Methods taking
the shortest path or k shortest paths as the possible route choices between OD-pairs account for the
largest group of path generation methods [36]. At the moment the dataset available for this study uses
Dijkstra’s shortest time path algorithm to link OD-pairs to road sections [37]. The shortest time path is
chosen by time rather than distance. This is done by taking into account the maximum speed allowed
on a road section based on the information from Open Street Maps (OpenStreetMap contributors, 2014).
We provided a 20% discount for travel times on highways provided people prefer to stay on highways
when the time benefits are minimal [38]. The 20% will account for this.

The conversion factor is applied as calculated in Section 2.3. Note here we said the people per
vehicle ratio depends on trip motives. Trip motives are inferred from the mobile phone data based on
trip characteristics [39]. A detailed description of the algorithm used can be found in Van Langen [39].
After applying the algorithm to our dataset we could simply use our conversion factors to go from
trips to vehicles.

3.4. Prepare Roadside Measurement Data

Raw data is provided by NDW [29] in xml format and converted to a manageable csv using
software written in Python [40]. The csv contains information about the measurement site as a whole
for 15 minute periods, e.g., the average vehicle count or average velocity. In addition, it contains
information about the minimum and maximum vehicle counts and velocities as well as information on
the number of trucks passing by. To keep data manageable, information about the independent lanes
are aggregated to a single vehicle count.

3.5. Filtering Untrustworthy Roadside Measurement Data

To ensure data quality we constructed two criteria the roadside measurement sites have to meet
before taking them in contention for the comparison with mobile phone data.

The first criterion is that a 15 minute interval may at most lack 6 minutes of erroneous data within
the roadside measurement data. Standard deviations of on average 4.5% between differences in vehicle
counts are found by comparing values from consecutive measurement sites, i.e., where no off-ramp
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or on-ramp separates the measurement points. The latter is done such that the same amount of
vehicles are destined to travel by both measurement sites. As a result the difference in reported vehicle
counts can only be explained by errors in measurement. The 4.5% is found by comparing consecutive
measurement sites at 30 locations. When the error in measurement of each site is normally distributed
and equal amongst sites, the standard deviation for each measurement site becomes approximately
3.2% following the variance sum law. This is very acceptable and provides us with a good indication
of how accurate the roadside measurements are.

The second criteria is slightly more complicated and relates to our suspicion that the location of
measurement sites are not always accurately represented in the database. To test whether sites are on
the reported location we performed a test based on the following premise: measurement sites that are
located on the same road near each other will produce more similar vehicle counts than measurement
sites further apart. The idea is to (1) cluster measurement sites based on their vehicle counts, here we
opted for k-means clustering, and (2) check if sites within each cluster are located on the same road,
e.g., the A4, as reported by the NDW [41].

For clustering we used vehicle counts of 145 hours during October 2015 where all 4.775 sites
are without missing data. The vehicle counts are then normalized per hour. For clustering we set
the number of clusters equal to 240, leaving us with approximately 20 measurement sites per cluster.
The results are shown in Figure 7. We observe the majority of the clusters have over 70% of the
measurement sites on the same road and also headed in the same direction, e.g., North. The 70% we
use as a threshold, when less than 70% of the sites on one cluster are located on different roads we
are unsure about their locations. Only the sites belonging to clusters with the majority (70%) of the
measurement sites on the same stretch of road meet our second criteria.Sustainability 2020, 12, x FOR PEER REVIEW 10 of 21 
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In the end both criteria leave us with 1.761 measurement sites. The majority are discarded for
having more than 6 minutes of erroneous data within 15 minute intervals for 95% of the recorded
hours. These measurement sites are less accurate in general and hence are not the gold standard we
are looking for. The final 140 measurement sites are discarded due to the second criteria as we are not
sufficiently confident that their reported location is correct.

3.6. Comparison of Vehicle Counts

The final comparison will compare vehicles measured from the scaled mobile phone data in
contrast to the vehicles recorded by the NDW, i.e., the roadside measurement data.
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In total 100 comparison sites are nearly randomly selected. We put one constraint on the
measurement sites to ensure we get a better sample of the Netherlands in general. As the government is
most interested in traffic intensities on busier roads, there are many more data points near and between
the larger cities in the Netherlands. If we would randomly select measurement sites, the majority
would be near and in between these cities. Hence, we ensured there are no measurement sites on the
same road, headed in the same direction, within 10 km from other measurement sites in the sample.
Sites are randomly drawn from the 1.761 measurement and added to our sample if there is no overlap
within 10 km with other sites in the sample. The resulting measurement sites are depicted in Figure 8.
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Vehicle counts will be compared on measurement site, weekday, and hour level. The main metric
using in the analysis is the ‘Extra vehicles on the road by NDW (%)’. This is a value is calculated as
described in Equation (1), where E stands for ‘Extra vehicles on the road by NDW (%)’, NDW is the
number of vehicles measured via roadside measurement devices, and M stands for vehicles inferred
from the scaled mobile phone data.

E =
NDW−M

NDW
(1)
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4. Results

The first analysis we performed is on measurement site level. In Figure 8 the extra vehicles on the
road by NDW (%) is represented for all 100 measurement sites. The majority of locations show the
vehicle counts are nearly equal between the two data sources.

Unfortunately, there are differences in vehicle counts on several locations on the Dutch highways.
The mobile phone data underestimates the number of vehicles on the road near the country’s borders.
Where the country borders Belgium and Germany we see darker bluish colours indicating there are
less vehicles measured via mobile phone data. This may be due to people switching off their phones
while being or going abroad, resulting in an underrepresentation of the sample. Furthermore, on the
left there are a few dark spots where land meets ocean. Here the routing algorithm in combination with
the relatively low spatial resolution is the culprit. There are few routes crossing roads near the country
borders and hence few trips will be assigned to these roads. With the current dataset the mobile phone
data will not provide good estimates of traffic on roads near the border, which is a limitation we have
to take into account. Nevertheless, it does work very well in the majority of the country.

Finally, we see two outliers in the form of one dark dot near Rotterdam and two yellow dots,
one near Amsterdam and one near Zwolle. Provided they are surrounded by measurement sites that
do show good results we can only imagine some bad roadside measurement sites slipped through our
filters or the routing algorithm made some very local mistakes. In the further analyses the measurement
sites where the the extra vehicles on the road by NDW (%) is over 20% or below -20% are removed
either because they are outliers or because they show deviations not related to faults in the scaling
method under investigation. This reduces our sample by 26 locations to a total of 74.

The second comparison made relates to differences between different weekdays. Each datapoint
in Figure 9 represents the extra vehicles measured by NDW (%) per weekday per comparison location.
The information is visualized in box whisker plots with outliers shown as dots outside the box whisker
plots. Outliers here are defined as values deviating more than 1.5 times the Inter Quartile Range (IQR).
For weekdays the scaled mobile phone data shows solid results. During Mondays and Tuesdays
especially the number of vehicles inferred from the mobile phone data near perfectly matches the
number of vehicles measured by roadside measurement devices. There is some variation, although
this could also be the result of deviations from the shortest time path in the applied routing algorithm.
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What is striking though, is the large deviations during weekend days. On Saturday especially the
extra vehicles measured by NDW (%) is more often than not over 20%. For this we do not yet have
a solid explanation, merely a few hypotheses. The most logical hypothesis, also in the trend of this
paper, would be a bias in our sample. We expect there are people who use their mobile phone only
for work purposes. These people might leave there phone at work or at home during the weekend.
As we would expect some of these mobile phone would be traveling we overestimate the expected
number of trips. As a result the scaling factor, i.e., the ratio expected traveling inhabitants over mobile
phones traveling, is lower than it should be during the weekend. Alternatively, this may have to do
with a mistake in our people per vehicle ratio, which is much higher during the weekend. There are
less working people, and much more recreational traffic where OViN tells us there are more people per
vehicle on average. The exact reason for the lower counts during weekends will have to be investigated
in future research.

The final comparison we made is between hourly vehicle counts. This is done to get a grasp on
how vehicle counts compare by hour. For this we selected a week in October 2015 and aggregated the
counts per data source on hourly level. The results are shown in Figure 10.
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On hourly level the vehicle counts between both data sources follow the same general pattern
indicating that not only on weekday level, but also hour level, the scaling method correctly scales
sample to the population. In fact on hour level the Pearson’s correlation coefficients are consistently
above 0.87 and are 0.95 on average. Nevertheless, there are some discrepancies. The vehicle count
during weekend days, as we know from the previous analysis, is slightly too low in the mobile phone
data. This, however, appears to primarily affect the day time. Night time values for both work and
weekend days are very evenly matched. Moreover, there appears to be a structural overestimation
of vehicle counts during workday rush hours. Rush hour peaks during workdays are higher in
the mobile phone movement data on every workday with the differences being approximately 20%.
Note, however, during hours surrounding the peaks there are more vehicles measured via roadside
measurements. Our best guess is that our time stamping technique, i.e., middle of the trip assignment,
is to blame. When people get stuck in traffic and travel times increase our time stamping technique
becomes less accurate. When people leave work at 5:00 PM and get home by 7:30 PM we guess they
passed a road section by 6:15 PM while in fact this may be much earlier or later. For each specific point
the delay may be skewed one way or the other. In our aggregation this would lead to more spread and
lower peaks in traffic intensities as observed in Figure 10.
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5. Conclusions

The results of this research are very promising. With the exception of road segments near
the country border, the vehicles inferred from trips in the mobile phone data matches those from
roadside measurements. This proves the scaling method we present and implement in this research
allows us to measure mobility patterns and traffic intensities on highways using mobile phone data.
Nevertheless, there is still some work to do with a slight underestimation of traffic intensities during
the weekend and overestimation during workday peak rush hour traffic.

In this research we aimed to complement the vast amount of studies investigating and reporting
the potential and possible applications for mobile phone data [3,14,16]. We did so by focussing
and refining a crucial step in translating the sample to the traveling population. We identified
a bias in that people more likely to travel are also more likely to own a phone, leading to potential
overestimations of the traveling population. To correct for the bias we devised and presented a new
scaling method that can be implemented in future studies. Using this scaling method showed mobile
phone data can accurately measure traffic intensities without post calibration with, for example,
roadside measurements. The latter implies the created scaling method is able to explain and account
for the majority of biases in the data.

The results of this study provided answers, but also introduced new questions to investigate.
During the daytime on weekend days, for one, the scaled mobile phone data appeared to underestimate
the roadside measurements by 5% to 25%. Our best guess is that business users will have a separate
phone for private use and will leave their work phone at home or at work during the weekend.
This might explain why we underestimate trips during the weekend. Alternatively, the scaling method
might be correct and the people per vehicle ratio extracted from OViN, which is much higher during
the weekend, might cause this. How to correct for the bias in the weekend is to be answered by future
research. Furthermore, mobile phone data has an underrepresentation of trips on shorter distances.
Hence, we focused on highways and only included trips over 10 km. Although some research has
been performed on this topic, we think it is worthwhile to further investigate this and add the required
steps to correct for the bias in the scaling method proposed in this research.

The proposed and evaluated scaling method presented in this research can help us to get a better
grasp of the traveling population. Demographic biases are accounted for leaving future researchers
and policy makers with a less biased view of the population allowing them to make better judgements.
When traffic models are created or calibrated with mobile phone data the scaling method could
help to add provide more accurate information. Furthermore, the scaling method relies solely on
information that is often widely available. When there is no other data source for calibration, e.g.,
in underdeveloped parts of the world, mobile phone data can still provide proper insights in the
population’s mobility patterns.
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Appendix A : PDD Tables for the New Scaling Method

The activity table and concept table describe the activities and deliverables, respectively, of the
new scaling method presented in the MAM using PDD notation in Figure 6.
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Table A1. Activity table associated with the Meta-Algorithmic Model shown in Figure 6.

ACTIVITY SUB-ACTIVITY DESCRIPTION
DETERMINE THE CHANCE TO
OBSERVE A PERSON BY AGE

GROUP

Divide the number of people per age group by the
total number of inhabitants in that area.

DETERMINE THE MOBILE
PHONE PENETRATION PER

AGE GROUP

Retrieve data concerning the mobile phone
penetration per age group from (a) trusted source(s).

ESTIMATE THE PROVIDER
MARKET SHARE

Calculate the inhabitants per age
group

Multiply the total number of inhabitants by the
POPULATION DISTRIBUTION. Note, the total
number of inhabitants used here is adjusted for

people being abroad, on a holiday, or on a business
trip (Geerts, 2014).

Multiply by mobile phone
penetration per age group

Multiply the INHABITANTS PER AGE GROUP by
the MOBILE PHONE PENETRATION PER

AGE GROUP.

Divide users in sample by the
number of phone users

Divide the number of users in the area by the number
of phone users in the area, i.e., the sum of the

PHONE USERS PER AGE GROUP.

DISTRIBUTE USERS ACROSS
AGE GROUPS

Calculate the chance a user is in an
age group

Multiply the POPULATION DISTRIBUTION by the
MOBILE PHONE PENETRATION PER AGE GROUP

and by the PROVIDER MARKET SHARE.

Normalize the calculated
probabilities

Divide the PROBABILITY INHABITANT IN
SAMPLE PER AGE GROUP by the sum of the

PROBABILITY INHABITANT IN SAMPLE PER
AGE GROUP.

Multiply the users by the
normalized probabilities

Multiply the users in the area by the chance of
observing a user in a certain age group, i.e., the

PROBABILITY USER IN AGE GROUP.
DETERMINE THE

LIKELIHOOD OF A PERSON
MAKING A TRIP OVER X KM

DURING WORKDAYS,
WORKDAYS DURING THE

HOLIDAY, SATURDAYS, AND
SUNDAYS PER AGE GROUP

Gather information about the chance that a person of
a certain age groups makes a trip longer than X

kilometres on a day. We use OViN to determine this
and take the differences in weekday, weekend, and

holiday separately into account.

CALCULATE THE SCALING
METHOD

Estimate inhabitants traveling
Multiply the INHABITANTS PER AGE GROUP by

the LIKELIHOOD OF TRAVELING PER
AGE GROUP.

Estimate the users traveling Multiply the USERS PER AGE GROUP by the
LIKELIHOOD OF TRAVELING PER AGE GROUP.

Divide inhabitants traveling by
users traveling

Divide the sum of the INHABITANTS TRAVELING
by the sum of the USERS TRAVELING.

Table A2. Concept table belonging to the PDD shown in Figure 6.

CONCEPT DESCRIPTION
POPULATION DISTRIBUTION The probability that an inhabitant belongs to a certain age group.

MOBILE PHONE PENETRATION PER AGE GROUP The probability that a Dutch citizen of a certain age group possesses
a mobile phone.

INHABITANTS PER AGE GROUP The absolute number of inhabitants per age group.

PHONE USERS PER AGE GROUP The absolute number of inhabitants that possess a mobile phone per
age group.

PROVIDER MARKET SHARE The market share of the network provider. Hence, in this case the
market share is equal for all age groups.

PROBABILITY INHABITANT IN SAMPLE PER AGE
GROUP The probability that an inhabitant is in our sample per age group.

PROBABILITY USER IN AGE GROUP The probability that a user in our sample is in a certain age group.
USERS PER AGE GROUP The absolute number of users per age group.

LIKELIHOOD OF TRAVELING PER AGE GROUP The probabilities that a person of a certain age group makes a trip
that is longer than X kilometers on a specific day of the week.

INHABITANTS TRAVELING The number of INHABITANTS PER AGE GROUP that is expected to
make a trip over X kilometers on a specific day of the week.

USERS TRAVELING The number of USERS PER AGE GROUP that is expected to make
a trip over X kilometers on a specific day of the week.

SCALING METHOD

The ratio between the number of INHABITANTS TRAVELING the
number of USERS TRAVELING. The scaling methods applies to

traveling people, because these are the people that are relevant for
the OD matrix.
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