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Abstract

genes involved in mitigating pathogen success.

optimal next step in predicting plant performance.

metabolite genes, Plant health

Background: Plant health is intimately influenced by the rhizosphere microbiome, a complex assembly of
organisms that changes markedly across plant growth. However, most rhizosphere microbiome research has
focused on fractions of this microbiome, particularly bacteria and fungi. It remains unknown how other microbial
components, especially key microbiome predators—protists—are linked to plant health. Here, we investigated the
holistic rhizosphere microbiome including bacteria, microbial eukaryotes (fungi and protists), as well as functional
microbial metabolism genes. We investigated these communities and functional genes throughout the growth of
tomato plants that either developed disease symptoms or remained healthy under field conditions.

Results: We found that pathogen dynamics across plant growth is best predicted by protists. More specifically,
communities of microbial-feeding phagotrophic protists differed between later healthy and diseased plants at plant
establishment. The relative abundance of these phagotrophs negatively correlated with pathogen abundance
across plant growth, suggesting that predator-prey interactions influence pathogen performance. Furthermore,
phagotrophic protists likely shifted bacterial functioning by enhancing pathogen-suppressing secondary metabolite

Conclusions: We illustrate the importance of protists as top-down controllers of microbiome functioning linked to
plant health. We propose that a holistic microbiome perspective, including bacteria and protists, provides the

Keywords: Rhizosphere, Pathogen of Ralstonia solanacearum, Protists, Predator-prey interactions, Secondary

Background

Plant pathogens can colonize the rhizosphere and have a
severe influence on plant health [1, 2]. However, patho-
gen success and plant health are ultimately controlled by
other biota, particularly the rhizosphere microbiome [3,
4]. The plant rhizosphere microbiome is a complex
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assembly of diverse microorganisms, including bacteria,
fungi, and protists that together influence plant health
[5-8]. Despite the fact that the microbiome consists of
diverse groups, most research aiming to understand the
role of the microbiome in plant health or disease sup-
pression has focused on bacteria [9-11] and fungi [12,
13]. A whole-microbiome view to decipher the main mi-
crobial determinants and their potential interactions that
determine plant performance is currently missing [14].
As such, a more complete microbiome analysis is needed
to identify the microbial groups and potential interac-
tions that help predicting plant health.
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In particular, protists that steer the taxonomic and
functional composition of the rhizosphere microbiome
through trophic predator-prey interactions have so far
rarely been included in microbiome analyses linked to
plant performance [8]. Protists, especially microbial-
feeding phagotrophs [15, 16], have various functions
within the rhizosphere [6, 17, 18]. For instance, some of
these phagotrophs can directly prey on plant pathogens
[19]. Studies using model protists have shown that pro-
tists control microbiome diversity and structure leading
to plant growth promotion [17, 18, 20]. These changes
are at least partly explained by the fact that protists feed
selectively on microbial prey taxa, which differs between
protistan species [21, 22]. Through this selective preda-
tion, protists can, for instance, increase those bacteria
that produce pathogen-suppressive secondary metabo-
lites [23, 24]. Yet, all these studies investigating potential
links of protists with plant performance were carried out
under artificial laboratory or greenhouse conditions fo-
cusing on one or few protistan species. As such, we have
yet to identify the links between a complex diversity of
protists, the microbiome and plant performance, espe-
cially in agricultural systems under field conditions.

Protists and their interactions with other microorganisms
are also subject to change throughout plant growth [14,
25]. Yet, the composition of the microbiome is often inves-
tigated only once during plant growth, usually at the time
of plant maturity or after disease has already developed.
Such approaches make it difficult to disentangle causality
between plant health and potentially underlying character-
istics in microbial communities, especially for diseased
plants that host high amounts of pathogens. Recently, it
was shown that bacterial communities at plant establish-
ment can predict plant health at maturity [26]. Yet, other
microbial groups might be even better indicators to predict
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plant health, as for instance, protist communities were
shown to respond more strongly to environmental inputs
and vary more in their composition between seasons than
bacteria and fungi [27].

To investigate potential key microbiome groups that
might predict plant health, we here used a rhizobox sys-
tem in an agricultural system under field conditions, in
which we grew tomato plants. Soils were naturally infested
with pathogenic Ralstonia solanacearum bacteria, one of
the most devastating and globally distributed soil-borne
plant pathogens that can infect a range of important crops
[28, 29]. In the rhizosphere of plants that either later de-
veloped disease symptoms or remained healthy, we tem-
porally investigated the microbiome composition,
including bacteria, fungi, and protists, as well as potential
microbial functions using metagenomics. We tested the
hypothesis that protists rather than other microbial com-
munities in the rhizosphere microbiome best predict
pathogen dynamics and plant health.

Results and discussion

Here, we show that the community structure of protists
could best predict the density of the R. solanacearum patho-
gen across plant growth in healthy and diseased datasets
(Fig. 1a). In healthy plants, the diversity and community
structure of bacteria could significantly predict pathogen
density (Fig. 1b), which is in line with previous findings that
soil bacterial composition can predetermine future plant
health [26]. In diseased plants, the community structure of
protists was the best predictor for pathogen density (Fig.
1c). At plant establishment, the community structure of bac-
teria differed (ANOSIM, P < 0.001; Table S2) between
healthy and diseased plants as shown before [26] but not
that of fungi and protists (ANOSIM, P > 0.05; Table S2).
However, we found that the community structure of
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Fig. 1 The relative importance of the main microbial parameters in predicting pathogenic Ralstonia solanacearum density across plant growth
with the combined datasets including healthy and diseased plants (a), the healthy plant dataset (b), and the diseased plant dataset (c). Diversity
(Shannon index) and structure (PCoA2) of bacterial, fungal, and protistan communities were selected as the six main microbial predictors (Fig. S2).
Asterisk means P < 0.05, two asterisks mean P < 0.01, and three asterisks mean P < 0.001 (statistical significance was calculated by multiple
regression using linear models between the microbial predictors and R. solanacearum)
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phagotrophic protists at plant establishment was indicative
for later plant health, as indicated by the differences (ANO-
SIM, P = 0.013) observed between plants developing disease
and those remaining healthy (Fig. 2a, b). The community
composition of other protistan functional and taxonomic
groups did not differ between later healthy or diseased
plants at plant establishment (Fig. 2a). Indicator analysis re-
vealed 13 protistan OTUs in healthy plants at plant estab-
lishment (with only 3 in diseased plants) that indicate later
plant health (Fig. 2c and Table S3). Seven protistan OTUs
indicative for healthy plants were identified as phagotrophs,
including one amoebozoan and six cercozoan taxa, that
likely prey entirely or as part of their diet on bacteria [30].
Of these, the protistan Pro_OTU8 (Cercozoa, Trinematidae)
was the most abundant at plant establishment (Table S3)
and across plant growth accounting for around 11% of all
protistan reads (Table S5). This taxon likely represents an
omnivorous protist that mostly feeds on bacteria [30]. Co-
occurrence network analysis revealed more negative links
between R. solanacearum and protistan OTUs in healthy
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than in diseased plants at plant establishment (Fig. 2d and
Table S4). Particularly phagotrophs (a taxon within Trine-
matidae, Flectomonas ekelundi, Proleptomonas faecicola,
and two Eocercomonas spp., all mostly bacterivorous Cerco-
zoa) but also a phototrophic Chloroidium saccharophila
were negatively linked with the pathogen at plant establish-
ment (Fig. 2d). Although those protistan OTUs were also
present in diseased plants, they did not correlate with the
pathogen in the network analysis (Table S4). Thus, we con-
clude that phagotrophic protists in general as well as specific
taxa at plant establishment can predict pathogen density
and plant health at plant maturation, as supported by the
community structure of phagotrophs, phagotrophic indica-
tor taxa, and negative links between phagotrophic protistan
OTUs and the pathogen in co-occurrence networks. This
supports the perspective that functional units rather than
taxonomic units underlie microbial functioning and as such
should be considered as better indicators [31-33], even
across different trophic levels in the microbiome. In
addition, we found that the relative abundance of total
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Fig. 2 Community structure of protistan taxonomic and functional groups explaining differences between diseased and healthy plants at plant

plant establishment, and networks of the functional groups of protistan OTUs directly associated with the R. solanacearum pathogen in healthy
and diseased plants at plant establishment (d). Correlations between the relative abundance of phagotrophic protists and R. solanacearum in
diseased and healthy plants across plant growth (e). In panel a, only abundant taxonomic and functional groups of protists were selected
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phagotrophs correlated negatively (regression analysis, P <
0.05) with the abundance of R solanacearum in diseased
plants or in healthy and diseased combined datasets across
plant growth (Fig. 2e). Interestingly, the relative abundance
of total phagotrophs significantly decreased (regression ana-
lysis, P < 0.05) with plant growth time in diseased plants
(Fig. S4). Phagotrophic protists may control pathogen devel-
opment throughout plant growth, as a decreased relative
abundance of phagotrophs in diseased plants coincided with
pathogen outbreak. Although the pathogen was present in
healthy plants, a stable relative abundance of phagotrophic
protists throughout plant development might have helped
to keep the pathogen in check. Together, these findings sug-
gest that direct trophic interactions between phagotrophic
protists and the pathogen at plant establishment and
through plant growth steer later plant performance. In con-
trast, R. solanacearum in diseased plants at plant establish-
ment was positively linked with two oomycete species
(OTU), including one likely plant-pathogenic Pythium spe-
cies (Fig. 2d). This suggests that a pathobiome forms in dis-
eased plants [34, 35], here consisting of a simultaneous
infection with different pathogens. While, a dominance of
predator-prey interactions might mitigate negative pathogen
effects and thereby stimulating plant health.

We also found that protists might determine pathogen
development and plant health through functional
changes in the bacterial microbiome. Healthy plants
showed significantly (student’s ¢ test, P < 0.05) higher
relative abundances of metabolism genes related with
carbohydrate and coenzyme functions at plant establish-
ment (Fig. S5). Strikingly, most metabolism genes had
significantly (student’s ¢ test, P < 0.05) higher relative
abundances in healthy than in diseased plants at week 5
(Fig. S5). Among the eight metabolism gene categories,
secondary metabolite biosynthesis [Q] genes were most
strongly linked (lineal model, P < 0.001) with R. solana-
cearum density (Fig. 3a). Furthermore, the relative abun-
dance of metabolism [Q] genes increased over time in
healthy plants, showing significantly (student’s ¢ test, P <
0.05) higher relative abundance in healthy than in dis-
eased plants at week 5 (Fig. 3b). Metabolism [Q] genes
did not differ between healthy and diseased plants at
weeks 0, 3, and 4 (Fig. S5). Heathy plants with a higher
(student’s ¢ test, P < 0.05) relative abundance of phago-
trophic protists (Fig. 3c) had a higher (student’s ¢ test, P
< 0.05) relative abundance of metabolism [Q] genes (Fig.
3b), a higher (student’s ¢ test, P < 0.05) relative abun-
dance of Bacillus OTUs (Fig. 3d), and a lower (student’s
t test, P < 0.01) level of pathogen density than diseased
plants at week 5 (Fig. 3e and Fig. S1). In addition, co-
occurrence networks encompassing phagotrophic pro-
tistan OTUs, bacterial OTUs, and metabolism [Q] genes
across plant growth showed that phagotrophs had more
correlations with bacteria (9 links with 7 negative) and
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functional genes (2 links) in healthy plants than in dis-
eased plants (0 links) (Fig. 3f). Especially, Pro_OTU105
(Cercozoa; Eocercomonas sp.), which also negatively cor-
related with the pathogen at plant establishment, showed
negative (Spearman’s correlation coefficient (p) < - 0.8
with P < 0.01) correlations with six bacterial OTUs
across plant growth. Among those was one bacterial
OTU (Bac_OTU17: Bacteroidetes; Terrimonas) that
positively linked with non-ribosomal peptide synthetase
gene (COG1020), one of the key genes involved in the
suppression of R. solanacearum pathogen [26, 36] (Fig.
3f and Table S5). Future targeted experiments using iso-
lated phagotrophic protists and bacterial strains are
needed to evaluate such a role. Healthy plants showed
higher numbers of phagotrophic protistan OTUs, bacter-
ial OTUs, and metabolism [Q] genes, resulting in a more
complex network (55 nodes with 90 links) than diseased
plants (41 nodes with 59 links) (Fig. 3f and Table S6).
Specific linkages within co-occurrence networks only
provide information about potential interactions, but
further mechanistic proof for the interaction needs spe-
cific co-culture experiments. In addition to individual
links, network structure and composition can provide in-
sights about system’s stability and increased potential for
providing ecosystem services [37-40], suggesting that
healthy plants benefit from the presence of a more com-
plex network, among them higher numbers of phago-
trophs (higher-trophic level organisms in general).

Our findings bridge evidence from laboratory or green-
house studies focusing on single protist model species [18,
20, 41, 42] to the community level in agricultural systems
under field conditions, showing that protists affect bacter-
ial communities and their functioning through predation,
leading to changes in plant performance. Compared with
diseased plants, healthy plants hosted higher relative
abundances of phagotrophic protists, potentially plant-
beneficial bacteria, and secondary metabolite genes likely
implicated in pathogen suppression 5 weeks after plant es-
tablishment—the time point when pathogen symptoms
first developed in diseased plants (Fig. S1). Moreover, pha-
gotrophic protists negatively correlated with bacteria that
positively linked with a pathogen-suppressing gene coding
for non-ribosomal peptides across plant growth. This find-
ing might also contribute to pathogen suppression. How-
ever, the interaction between plants and the rhizosphere
microbiome is a complex and dynamic process [43]. Fu-
ture experiments are needed to further examine how
plants affect bacterial, fungal, and protistan communi-
ties and their interactions and how those changes in
the soil microbiome in turn affects plant performance.
Together, we propose that predation-induced shifts in
microbiome composition and functioning are likely in-
volved in controlling pathogen development and there-
fore plant health.
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Fig. 3 Relative importance of the eight metabolism gene categories in predicting R. solanacearum density across plant growth in the combined
datasets including healthy and diseased plants (a). Changes in relative abundance of metabolism Q genes (secondary metabolite biosynthesis,
transport, and catabolism genes) in diseased and healthy plants at week 0 and week 5 (b). Relative abundance of phagotrophic protists in
diseased and healthy plants at week 0 and week 5 (c). Relative abundance of Bacillus OTUs in diseased and healthy plants at week 0 and week 5
(d). Abundance of R. solanacearum in diseased and healthy plants at week 0 and week 5 (e). Co-occurrence networks between abundant
phagotrophic protistan OTUs, bacterial OTUs, and metabolism Q genes for healthy and diseased plants across plant growth (f). In panel a, asterisk
means P < 0.05 and three asterisks mean P < 0.001 (statistical significance was calculated by multiple regression using linear models between
metabolism genes and R. solanacearum pathogen). In panel b, ¢, d, and e, “ns” means non-significant, asterisk means P < 0.05 and two asterisks
mean P < 0.01 under student’s t test (n = 4 for metabolism Q genes, n = 8 for phagotrophic protists, Bacillus and R. solanacearum). In panel d,
relative abundance of Bacillus OTUs combines the two Bacillus OTUs from the bacterial OTU table. In panel f, blue lines indicate positive, and red
lines indicate negative correlations; detailed annotation of bacterial OTUs and metabolism Q genes are provided in Table S5

Conclusions

Using a holistic microbiome investigation of bacteria,
fungi, and protists in the rhizosphere across plant
growth, we show that in addition to bacteria, protists
serve as key indicators that predict plant health. Particu-
larly, the community composition of phagotrophic pro-
tists during plant establishment can predict later plant
performance in the presence of pathogens. These pro-
tists might indeed protect plants by directly feeding on
the pathogen and through predation-induced shifts in
the taxonomic and functional composition of bacteria.
These results hold promise in creating tailor-made

systems to predict plant performance based on protistan
communities before a crop plant is grown. Furthermore,
our findings suggest a potential for targeted microbiome
engineering to promote plant performance through the
application of key microbiome predators: protists. This
would bring us closer to the holy grail in reaching a
more sustainable, pesticide-reduced agriculture.

Methods

Experiment description and soil samples collection

We used a semi-open mesocosm system (rhizobox) as de-
scribed previously [26], which allowed repeated collection
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of rhizosphere soil from each individual plant without
damaging the root system under field condition. Briefly,
each individual tomato plant was grown in a rhizobox
filled with the original local soil. Triplicate soil samples
were collected from the inner and outer sides of the mid-
dle sampling layer, which were thoroughly homogenized
and pooled. These soil samples were regarded as the initial
bulk soil samples (week 0). In order to track the imprint
of the tomato rhizosphere, three nylon bags from each
rhizobox were collected 3, 4, 5, and 6 weeks after trans-
plantation. We focused our analyses on the two cat-
egories that clearly differed between plants, i.e., plants
with wilt symptoms and detectable pathogen (R. sola-
nacearum) levels and no wilt symptoms with no detect-
able pathogen levels. Ten other plants that did not
show wilt symptoms, but did have detectable pathogen
levels at a later stage (latently infected plants), were not
included in further analyses [26]. Soils from the three
nylon bags (4 g soil per bag) for each tomato plant at
each time point were separately homogenized with ster-
ilized forceps and stored at — 80 °C for further use. Soil
DNA was extracted from 0.5 g soil using the MoBioPo-
werSoil™ DNA Isolation Kit (Mo Bio Laboratories Inc.,
Carlsbad, CA, USA) according to the manufacturer’s in-
structions. We used the DNA samples to determine
rhizosphere bacterial and eukaryotic communities as
well as functional genes in both healthy and diseased
tomato plants across plant growth.

lllumina MiSeq sequencing of the 16S rRNA gene and the
18S rRNA gene

The V4 region of the 16S rRNA gene was PCR-amplified
to investigate bacterial communities using the primer set
563F and 802R [44] as described previously [26]. In
addition, we selected 80 DNA samples (2 symptoms x 5
time points x 8 replicates) for eukaryotic community
profiling. For that, the V4 region of the 185 rRNA gene
was broadly targeted to investigate eukaryotes using the
primer set V4_1f (CCAGCASCYGCGGTAATWCC)
and TAReukREV3 (ACTTTCGTTCTTGATYRA) [45].
PCR was performed in a 20 pl volume consisting of 4 pl
of 5x reaction buffer, 2 ul dNTPs (2.5 mM), 0.8 pl of
each primer (10 uM), FastPfu Polymerase 0.4 ul, 10 ng
of DNA template, and the rest being ddH,O. Amplifica-
tion was performed with the following temperature re-
gime: 5 min of initial denaturation at 95 °C, followed by
30 cycles of denaturation (95 °C for 30 s), annealing (55
°C for 30 s), extension (72 °C for 45 s), and a final exten-
sion at 72 °C for 10 min. PCR products were pooled in
equimolar concentrations of 10 ng pl~ *. Paired-end se-
quencing was performed on an Illumina MiSeq sequen-
cer at Shanghai Biozeron Biological Technology Co. Ltd
(Shanghai, China).
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Bioinformatic analyses of bacteria, fungi, and protist
communities
16S rRNA gene sequence data was processed with the
UPARSE pipeline as described previously [26]. After re-
moving the reads assigned as chloroplast, mitochondria,
and unknown taxa, we obtained 9108 prokaryotic OTUs
(9051 bacteria OTUs and 57 archaea OTUs). We further
removed archaeal OTUs (accounting for less than 0.05%
of total prokaryotic reads) to generate a bacterial OTU
table. We selected 8 replicates from the 12 replicates for
bacterial community profiles which matched the 80
eukaryotic datasets (2 symptoms x 5 time points x 8
replicates). Each sample from the bacterial OTU table
was rarefied to 26,014 reads resulting in 8656 bacterial
OTUs. We extracted bacterial OTUs from Bacillus and
Pseudomonas (Fig. 3d and Fig. S6), both well-known po-
tentially biocontrol agents against various soil-borne
pathogens including R. solanacearum [46—48].
Eukaryotic sequences were processed according to previ-
ously established protocols [49, 50] with some modifications.
In short, sequences with expected errors > 1.0 or a length
shorter than 350 bp were removed. After discarding single-
tons, the remaining reads were assigned to operational taxo-
nomic units (OTUs) with a 97% similarity threshold,
followed by a removal of chimeras using UCHIME [51]. Fi-
nally, eukaryotic OTUs were matched against the PR* data-
base [52]. In order to obtain the protistan OTU table, we
removed sequences belonging to Rhodophyta, Streptophyta,
Metazoa, and Fungi, resulting in 1,475,483 reads for the 80
samples (average 18,444 reads per sample). In order to ob-
tain an equivalent sequencing depth for later analyses, all
samples were rarefied to 4537 sequences in 1926 protistan
OTUs. We further assigned the protistan OTUs into differ-
ent functional groups according to their nutrient-uptake
mode based on literature [49, 50], including parasites, pha-
gotrophs, phototrophs, plant pathogens, and saprotrophs
(Table S1). From the eukaryotic OTU table, we extracted
OTUs assigned as fungi resulting in 525,927 reads for the
80 samples (average 6574 reads per sample). Each sample
from the fungal OTU table was rarefied to 1085 reads in
234 fungal OTUs.

Functional genes from meta-genomic sequencing

We had 12 replicates (each time point) for both diseased
and healthy plants. We selected 4 of those replicates (40
samples in total: 2 symptoms x 5 time points x 4 repli-
cates) for metagenome analyses. Meta-genomic analysis
and functional annotation were performed previously [26].
In short, all reads were trimmed by the Sickle software
that removing reads quality below 20 and shorter than 50
bp. Filtered reads were assembled with SOAPdenovo. As-
sembled contigs were then predicted using MetaGene [53]
and clustered with a 0.95 similarity threshold using CD-
HIT to generate non-redundant gene catalog. The quality
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filtered reads from each sample were subsequently
mapped to the represent genes using SOAPaligner. Func-
tional gene annotation was carried out against eggNOG
database [54]. In order to focus on potentially functional
activities of the microbiome in the rhizosphere across
plants growth, we extracted microbial metabolism genes
(representing 44.85% of all functional genes, Fig. S5), in-
cluding the following eight general categories: [C] energy
production and conversion, [E] amino acid transport and
metabolism, [F] nucleotide transport and metabolism, [G]
carbohydrate transport and metabolism, [H] coenzyme
transport and metabolism, [I] lipid transport and metabol-
ism, [P] inorganic ion transport and metabolism, and [Q]
secondary metabolite biosynthesis, transport, and
catabolism.

Co-occurrence network and statistical analyses

First, we used co-occurrence networks to uncover the po-
tential interactions between the functional groups of protists
and the pathogen R. solanacearum for diseased and healthy
plants at each time point. We selected abundant functional
groups of protistan OTUs (with average relative abundance
> 0.1% across all the samples) and the abundance of R. sola-
nacearum for network constructions. Second, we used the
co-occurrence networks to uncover potential interactions
between phagotrophic protists, bacteria, and functional
genes for diseased and healthy plants across plant growth
(combined all time point samples in diseased or heathy
plants). As we selected 8 replicates from the 12 replicates
for eukaryotic community profiles with 3 metagenomic rep-
licates matching both bacterial and eukaryotic datasets, we
used the 30 samples in total (2 symptoms x 5 time points x
3 replicates) for the analyses. We further selected abundant
phagotrophic protistan OTUs (top 30), bacterial OTUs (top
30), and metabolism Q genes (top 30 genes in metabolism
Q category) for network constructions (detailed information
provided in Table S5). A pairwise Spearman correlation
matrix was calculated with the “corr.test” function in the
package “psych” in R (version 3.4.4). The P values were ad-
justed with the false discovery rate method [55]. Spearman’s
correlation coefficient (p) higher than 0.7 (or lower than -
0.7) with P values < 0.05 was selected for the networks of
“functional groups of protistan OTUs with the R solana-
cearum.” In order to select robust correlations between pha-
gotrophic protistan OTUs, bacterial OTUs, and metabolism
Q genes, Spearman’s correlation coefficients (p) higher than
0.8 (or lower than — 0.8) with P values < 0.01 were selected
for the network of “phagotrophic protists, bacteria, and
functional genes”. Network properties were characterized
via the “igraph” package in R (version 3.4.4). Finally, net-
works of “functional groups of protists directly associated
with the R solanacearum” at plant establishment for healthy
and diseased plants were visualized in Cytoscape (v3.5.1),
and co-occurrence networks of “phagotrophic protistan
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OTUs, bacterial OTUs, and metabolism Q genes” for
healthy and diseased plants were visualized via the “igraph”
package in R (version 3.4.4).

The a-diversity of bacterial, fungal, and protistan com-
munities across plant growth was estimated using the
non-parametric Shannon index [56]. A principal coordin-
ate analysis (PCoA) based on Bray—Curtis distance metrics
was performed in R (version 3.4.4) to explore the differ-
ences in bacterial, fungal, and protist community struc-
tures (Hellinger transformed) across plant growth.
ANOSIM was applied to investigate significant differences
of microbial community structures between diseased and
healthy plants at each time point. Abundant protistan
OTUs (average relative abundance > 0.1%) were used to
examine indicator species, which were assessed in LEfSe
[57] through the “lefse command” in Mothur [58]. In
addition, we used the “relaimpo” package [59] in R (ver-
sion 3.4.4) to calculate the relative importance of main mi-
crobial parameters in predicting R. solanacearum density
across plant growth in the combined dataset including
healthy and diseased plants, healthy plant dataset, and dis-
eased plant dataset. We selected the diversity (Shannon
index) and structure (PCoA2) of bacteria, fungi, and pro-
tists as the six main microbial predictors (Fig. S2) and
used multiple regression by lineal models in R (version
3.4.4) to calculate the significance of the correlation be-
tween microbial predictors and R. solanacearum (all data
was standardized by “scale” function in R). We also used
the “relaimpo” package to calculate the relative import-
ance of the eight metabolism genes for R. solanacearum
density across plant growth in the combined healthy and
diseased plant samples. Other linear regression relation-
ships were examined by the “lm” function in R (version
3.4.4). Student’s t test was used to compare the microbial
taxon and functional gene differences between diseased
and healthy plants at each time point. Normal distribution
was tested by the Shapiro-Wilk test; non-normal data
were log or log (x + 1) transformed [60].
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for healthy and diseased plants across plant growth. Figure S1. Abun-
dance of R. solanacearum pathogen in diseased and healthy plants across
plant growth. Figure S2. Shannon diversity of bacteria (a), fungi (b) and
protists (c) in diseased and healthy plants across plant growth, and over-
all community structures of bacteria (d), fungi (e) and protists (f) in dis-
eased and healthy plants across plant growth. Figure S3. Relative
abundances of the most abundant (average relative abundance over 1%
across all samples) taxonomic (a, b, ¢, d, e and f) and functional (g, h, i, j
and k) groups of protists in diseased and healthy plants across plant
growth. Figure S4. Correlation between the relative abundance of pha-
gotrophic protists and plant growth time in diseased and healthy plants.
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