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Abstract

The Antarctic Impulsive Transient Antenna (ANITA) balloon experiment was designed to detect
radio signals initiated by high-energy neutrinos and cosmic ray (CR) air showers. These signals
are typically discriminated by the polarization and phase inversions of the radio signal. The
reflected signal from CRs suffer phase inversion compared to a direct ‘tau neutrino’ event. In
this paper, we study subsurface reflection, which can occur without phase inversion, in the con-
text of the two anomalous up-going events reported by ANITA. It is found that subsurface layers
and firn density inversions may plausibly account for the events, while ice fabric layers and wind
ablation crusts could also play a role. This hypothesis can be tested with radar surveying of the
Antarctic region in the vicinity of the anomalous ANITA events. Future experiments should not
use phase inversion as a sole criterion to discriminate between down-going and up-going events,
unless the subsurface reflection properties are well understood.

1. Introduction

Cosmic ray (CR) protons and nuclei bombard the Earth at a wide range of energies. The high-
est energy CR are thought to originate outside of the Milky Way, and given the extreme dis-
tances traveled will have a high probability to scatter on the ubiquitous Big Bang relic radiation
dubbed the Cosmic Microwave Background (CMB). This proton–photon scattering process is
predicted to produce a flux of neutrinos at the EeV (1018 eV) scale.

The Antarctic Impulsive Transient Antenna (ANITA) experiment searches for neutrinos at
the EeV scale using an array of radio antennas attached to a helium balloon that flies over
Antarctica at 37 km altitude. The incoming EeV scale neutrinos produce a characteristic
radio signal via the Askaryan effect. If ANITA were to find such neutrinos, the experiment
should only observe them at shallow angles, such that the neutrino does not intersect much
of the Earth or ice. This is due to the fact that neutrinos, although weakly-interacting, suffer
severe attenuation through the Earth at these energies.

This makes the recent observation by the ANITA experiment of two steeply pointed
up-going events with energies near the EeV (1018 eV) scale very mysterious (Gorham, 2016,
2018). For reference, see Fig. 1 for the location of the two observed ANITA events. While neu-
trino interactions at high energies are uncertain (Kusenko and Weiler, 2002), the observed
events would require neutrino fluxes well in excess of upper limits from Pierre Auger
Observatory (Aab and others, 2015) and IceCube (Aartsen, 2016; Romero-Wolf, 2019). A
number of new physics explanations for the anomaly have been proposed (Cherry and
Shoemaker, 2019; Anchordoqui and others, 2018; Huang, 2018; Dudas and others, 2018;
Collins and others, 2019; Chauhan and Mohanty, 2019; Anchordoqui and Antoniadis,
2019; Heurtier and others, 2019; Hooper and others, 2019; Cline and others, 2019).

In addition to neutrino searches, ANITA is also sensitive to CR, finding ∼30 such events
(Gorham, 2016, 2018; Hoover, 2010). When a CR hits the atmosphere, they produce extensive
air showers (EAS) consisting of energetic charged particles which create a characteristic radio
signal. Most of the CR events appearing to originate from the Earth display a characteristic
phase reversal consistent with the interpretation that the signal originated from a down-going
CR-initiated EAS reflected by the Antarctic surface. However, the two anomalous up-going
EASs reported by ANITA (Gorham, 2016, 2018) lack phase inversion, and they appear to
be inconsistent with such surface reflections. Thus, the phase reversal from ice reflection is
the critical observational discriminant between neutrino and CR events.

In this paper, we consider the possibility that the mysterious events are explained by the
radio signals originating from down-going CR-initiated EAS reflected by subsurface features
in the Antarctic ice which allow for reflections without a phase inversion. Phase inversion
occurs when the radio waves traveling in a medium with a low index of refraction (air) reflect
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from an interface with a medium that has a high index of refrac-
tion (ice). Note that higher density ice has a higher index of
refraction due to the fact that higher density ice has a lowered
speed of electromagnetic wave propagation. Note further that
the continuity of electric and magnetic fields across the interface
implies that the phase inversion occurs for low-to-high index
reflection, but not for high-to-low index reflection. Thus, if the
reflection occurs from an interface of a high-density layer on
top and a low-density layer on the bottom, there is no phase
inversion. We will identify the properties of the Antarctic ice
that are required for the radio signal from an ordinary CR air
shower to undergo a reflection without a phase inversion, and
we will also identify the features known to exist in Antarctic ice
that can be responsible for such reflections capable to explain
the ANITA events.

2. General features of subsurface reflectors

ANITA reports 33 events with phases consistent with the expec-
tations from CR-induced EAS events (Gorham, 2016, 2018;
Hoover, 2010; Allison and others, 2018). We compute the number
of events above detection threshold Ethr in an observing time, T,
reflecting from either surface of subsurface features with area
coverage, Aeff, as

N ≃ AeffT ×
∫1
Ethr

F(E) dE

= AeffT × F0

(g− 1)E0

Ethr
E0

( )1−g

,

(1)

where we take the CR flux to be a power-law, Φ(E)≃Φ0(E/E0)
−γ

with γ≃ 2.7 (Blasi, 2013). This allows us to estimate the total
number of ordinary EAS events from the surface reflection
(with phase inversion):

NCR ≃ AeffT × Rsurf . × aCR, (2)

where we define αCR≡Φ0/(γ− 1) E0∼ (Ethr/E0)
1−γ, Rsurf. is the

surface reflection coefficient, and Aeff is the effective area surveyed
by ANITA in flight time T.

Similarly, we can estimate the anomalous uninverted radio
events from subsurface reflection of CR-induced events. Recall
that such events would be labeled by ANITA as ‘up-going’
based on their lack of phase reversal. The subsurface reflections

may occur only for incidence angles small enough, so that the
power transmitted into the ice at the air–ice interface is signifi-
cant. For the firn index of refraction, the power transmitted down-
ward exceeds 80% if the incidence angle is less than 70°. We note
that the incident angles of the anomalous ANITA events are well
below this upper bound and, in fact, these angles are smaller than
the average incidence angle of the CR events (Schoorlemmer,
2016). Therefore, one can estimate the rate of anomalous events as

Nanom. ≃ dAeffT × (1− Rsurf .)
2Rsub. × aCR (3)

where Rsub. is the subsurface reflection coefficient, and δAeff is the
area of the reflecting subsurface. A priori, there is no reason to
assume that δAeff is small. In general, δAeff could exceed Aeff,
especially if several layers at different depths are contributing to
the subsurface reflections. However, to explain the ANITA events,
only a small fraction of ice needs to host the reflecting features.
The estimates in Eqs. (2) and (3) imply that the subsurface
features should occupy an area

dAeff

Aeff

( )
≃ Rsurf .

(1− Rsurf .)
2Rsub.

Nanom.

NCR

( )
, (4)

where in order to account for ANITA’s observations one needs,
NCR = 33 and Nanom. = 2. We plot the requisite area estimate
from Eq. (4) in Fig. 2 as a function of the subsurface index of
refraction assuming that the top layer has n = 1.3 (Kravchenko
and others, 2004). See the Appendix for a more detailed discus-
sion of the assumptions going into this calculation.

In summary, a relevant candidate subsurface feature needs to
satisfy the following requirements:

1. In accordance with the estimate in Fig. 2, *7% of the area
should host a reflector at some depth.

2. There should not be significant attenuation for the EAS radio
pulse above the reflecting feature, since this would render the
signal undetectable. Roughly, if the detected anomalous event
was attenuated by & 0.2, the resulting field amplitude would
drop below the trigger threshold (Romero-Wolf, 2019). Since
the attenuation length for radio waves in ice is 1.2–1.5 km
(with some temperature dependence (Matsuoka and others,
2012)) for the frequencies probed by ANITA, this requirement
is satisfied by any features not obstructed by an overlying layer
of liquid water (the attenuation length in liquid water is much
shorter (Ray, 1972)).

Fig. 1. A map (Panel A) and zoom-in (Panel B) of Antarctica displaying the two anomalous upward-pointing events (red dots) observed by the ANITA experiment,
overlaid with surface ice speed (purple/blue heat map) and 500 m surface elevation contours. Event 3985267 (upper red dot) was originally reported in Gorham
(2016), while event 15717147 (lower red dot) was reported in Gorham (2018). The surface ice speed data come from Mouginot and others (2019) and the surface
elevation data come from Morlighem (2019). Both ANITA events lie in low surface ice-speed and high-elevation (3000–3500 m) regions.
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3. The reflection must occur without a phase inversion. A subsur-
face interface with a higher index of refraction above and a
lower index of refraction below can reflect a signal without a
phase inversion. Likewise, multiple layers of variable index of
refraction can reflect a signal without a phase shift
(Tikhonravov and others, 1997).

4. Given the wavelengths ANITA is sensitive to, the subsurface
layer above the reflecting interface needs to be sufficiently
thick, although the layer below the interface can be quite
thin (Cavitte and others, 2016). Similarly, the features should
be > 100 m in diameter in order to be of the first Fresnel
zone radius. Lastly, these surfaces likely need to be tilted
with respect to the surface, such that double reflections (coin-
cident surface and subsurface reflections) are rare. Note that
the relative tilt can produce total internal reflection and sup-
press the signal. Given random orientations, one can expect
this to occur roughly half the time.

Given these requirements, we now proceed to investigate
which glaciological candidates may have the correct distribution
and reflective properties.

3. Subsurface Antarctic candidates

Subsurface features that may have the right properties to account
for the anomalous ANITA events include several possibilities:

(a) Double layers: The work of Arcone and others (2005) finds
direct evidence for reflective surfaces without phase inver-
sions. In particular, they find evidence for ‘thin double layers
of ice over hoar’ which have reflection without inversion, and
conclude that they are ‘extensive’ throughout West
Antarctica. They model the observed reflections as high-
permittivity ice sitting above low-permittivity hoar. The
modeling done indicates that hoar thickness fluctuation is a
major driver of the phase of the wavelet. These results were
obtained with 400 MHz short pulse radar (ANITA is in the
200–800MHz range).

(b) Firn density inversions: Ligtenberg and others (2011) and
Kuipers Munneke and others (2014) estimate snow and firn
density (in the top 100m of depth) in Antarctica for the period
1979–2017 at a horizontal resolution of (27 × 27) km2 and a
temporal resolution of 10–15 days, using a firn model that
includes not only compaction, but also firn hydrology includ-
ing melt, percolation and refreezing. The model has not been
evaluated at the two locations of the observed ANITA events.

Although there are minor variations in density due of depend-
ence of densification on temperature following the annual
cycle, these variations are quite small, and are not large enough
to explain the ANITA observations. However, there are add-
itional firn features not accounted for in this model.

For example, ice core samples show substantial density and
permittivity variations. We show as an example in the left
panel of Fig. 3 a density profile from the East Antarctic
Plateau (Laepple and others, 2016). These density variations
are quite substantial and may constitute a plausible candidate
for the ANITA events, and they are rather common in the 500
m area sampled in Laepple and others (2016).

It is well-known that the constructive interference effects
from scattering on a medium consisting of multiple thin layers
can produce a large reflection coefficient at some wavelengths
(Vinogradov and Zeldovich, 1977) (see also Pirozhkov and
Ragozin (2015); Stearns (1989) for generalizations). The ice
core sample displayed in Fig. 3 has just this structure, consist-
ing of a number of thin layers with small index of refraction
differences. Motivated by this, we display two calculations of
the reflection coefficients in Fig. 3. In one case (the red
curve), we compute reflection from a medium consisting of
regularly spaced layers of 10 cm thickness. This results in a
sharp resonance feature, as expected (Vinogradov and
Zeldovich, 1977). In contrast, the blue curve assumes layers
whose thickness is randomly chosen between 3 and 15 cm.
In both instances, the layers have alternating refraction indices,
chosen between n1 = 1.3 and n2 = 1.6 for a 60° incidence angle.
We have explicitly computed the phase change in reflections
from regular and random layers, and found that the phase
shifts are close to zero for the range of wavelengths with max-
imal reflectivity, in agreement with the results of Tikhonravov
and others (1997) for regular layers. We note that reflections
from multiple layers will induce a time delay, impacting the
measured time profile of the pulse. This makes a multi-layer
reflection interpretation of the event reported in Gorham
(2018) unlikely, though it may be a candidate explanation
for the event in Gorham (2016). We stress that the specific
ice core sample in the left panel of Fig. 3 and the modeled
reflection coefficient in the right panel of Fig. 3 are to be
understood merely as a proof-of-principle.

(c) Wind/ablation crusts and Sastrugi: These are abundant in
megadune regions, and may create low-density regions with
large grains above higher density snow. Sastrugi are essen-
tially wind eroded snow, which make irregular ridges on
the surface (Scambos and others, 2012). Given that these
regions have a variety of slopes as well, they naturally help
explain the lack of double-reflections (simultaneous surface
and subsurface reflections). By some estimates, as much as
11% of the East Antarctic Ice Sheet is covered by the so-called
‘wind glaze’ (Scambos and others, 2012), forming a surface
with a polished appearance with nearly zero accumulation
due to persistent winds. This could produce both the needed
reflection phase and range of angles. Since these wind crusts
are denser than typical snow, they would naturally have larger
indices of refraction than typical surface snow.

(d) Ice fabric layers: Ice-sheet fabrics are formed as a result of
rheology and stress, leading to macroscopic ice crystal align-
ment. Some fabrics appear to have the right dielectric prop-
erties to produce a reflection without phase inversion even
without the index of refraction contrasts (Matsuoka and
others, 2003). In this case, it is the contrasts in crystal orien-
tation fabric that source strong reflections (Matsuoka and
others, 2003). The spatial distribution of ice-sheet fabric is
not very well known since ice cores are restricted in number
and distribution across Antarctica (Wang and others, 2018).

Fig. 2. For a two-layer model, we plot the required area coverage of a subsurface
reflector as a function of the subsurface index of refraction, nsub. Three incidence
angles (incidence angle is defined as θinc = 180− θz, where θz is the zenith angle)
are shown: incident angles of 55° (roughly corresponding to the anomalous event
(Gorham, 2018)), 70° (roughly the average angle for ANITA CRs) and 80° (which is
on the high end of incident angles for the ANITA CR events). Here it is assumed
that the surface has n = 1.3.
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There is some indication that ice fabric layers are more wide-
spread than originally believed (Wang and others, 2018;
Siegert and Fujita, 2001; Siegert and Kwok, 2000), which
makes it plausible that the distribution is sufficiently com-
mon to produce the observed reflections.

(e) Subglacial lakes: Most lakes appear to be hydrostatically
sealed, and therefore lack an air–water interface which
would otherwise provide a useful reflecting surface without
phase inversion. The bottom of the lake could in principle
work, but only rather shallow and low conductivity subglacial
lake regions (Schroeder and others, 2015) would be able to
produce a reflection without significant attenuation in
water. Exploiting the time delay and amplitude attenuation
in water, radio echo surveys provided the first direct evidence
for that subglacial lakes were at least several meters deep
(Gorman and Siegert, 1999). Recent model estimates suggest
that (0.6+ 0.2)% of the Antarctic ice/bed interface is covered
by subglacial lakes (Goeller and others, 2016). Given that sub-
glacial lakes lack a water–air boundary, and that they cover
,1% of the Antarctic area, we do not consider these espe-
cially promising candidates for ANITA. We note however
the possibility that impurities in the accreted ice above a
lake could in principle produce a higher index of refraction
layer above a lower index layer, though is likely uncommon.
We note that the ice above Lake Vostok has been found to
contain ice fabric contrasts, which could source strong reflec-
tions (MacGregor and others, 2009).

(f) Snow-covered crevasses/hollow caves/ice bridges: An
ice-to-air boundary would have the correct properties for
reflection without phase inversion. However, fumarolic and
volcanic ice caves do not seem to be sufficiently common
for the ANITA events. Crevasses are common in regions of
fast flow, but are not common in the middle of the ice
sheet where the ANITA events are observed. Note however
that drained subglacial lakes (e.g. dolines) are more wide-
spread than previously, and thereby present an additional
mechanism for the generation of air cavities within the ice
(Lenaerts and others, 2017).

(g) Englacial layers of dielectric and/or density contrasts: At
depths beyond the firn (though still &1 km), dielectric con-
trasts in the ice may be sufficiently common to explain the
events (Peters and others, 2005; Barnes and others, 2006).
Moreover, in principle, density contrasts in deep englacial

layers qualitatively similar to what is displayed in Fig. 3
may also source strong reflection coefficients. Recently,
radar has been used to detect layers of sediment within the
ice (Winter and others, 2019), which could also form a strong
englacial dielectric.

4. Future probes

We summarize the status of potential candidates in Table I.
Future probes of subsurface reflections can be designed to defini-
tively test the origin of ANITA events and to learn about the
properties of Antarctic ice. One can identify the subsurface struc-
tures causing reflections by following up with a radar observation
at the sites of anomalous events. Although this capability does not
yet exist, it may be possible to design a future ANITA-like neu-
trino experiment using two spatially separated detectors for sim-
ultaneous observations of the same reflection, which could
provide additional information about the subsurface layers. We
leave a dedicated analysis of these possibilities for future work.

If subsurface features are ultimately responsible for the ANITA
events, the distribution and extent of such features will be import-
ant for ANITA going forward. Moreover, a dedicated effort to
determine if the ANITA events originate from a subsurface
reflector may be relevant for glaciology by providing additional
information such as the extent, spatial distribution and reflective
properties of these features.

In addition, it is possible that ANITA’s ultra-high-energy CR
waveforms may contain signs (or telling absences) of sub-surface
reflections, which may produce multiple or spatially overlapping
pulses. Such overlapping pulses can be expected to occur when
both surface and sub-surface reflection occurs from the same ori-
ginating event. Although the two up-going ANITA events do not
show evidence of pulse overlap, future data may help elucidate the
viability of this hypothesis if overlapping pulses are observed.

Moreover, there are additional relevant data sets that can be
exploited in order to provide a comprehensive understanding of
surface and sub-surface reflection characteristics. For example,
digital echo models (with near total continental coverage) could
be utilized for a surface roughness analysis for possible phase
inversion (Howat and others, 2019). Second, The Center for
Remote Sensing of Ice Sheets (CReSIS) has used ultra-wideband
microwave radar to map near-surface internal layers in polar

Fig. 3. Left panel: An example Ice Core sample from the East Antarctic Plateau (Laepple and others, 2016). Here the black curve shows the density from a dielectric
profiling (DEP) technique, while the red shows the result from high-resolution X-ray computer tomography (CT). Right panel: Power reflection coefficients (in power)
for scattering from a multilayered medium as a function of wavelength. The red curve is calculated assuming regularly spaced layers of 10 cm thickness, whereas
the blue curve assumes layers whose thickness is randomly chosen between 3 and 15 cm.
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firn, which may contain information on near surface (<1 m
depths) reflections (Panzer and others, 2013). Further, the High-
Altitude Calibration (HiCal) instrument collected data which spe-
cifically targeted surface reflection characteristics (Gorham, 2019).

Additional candidates may come from subsurface features ori-
ginating from pond refreezing although these may only be limited
to ice shelves (Hubbard, 2016).

5. Conclusions

This paper has examined the possibility of the anomalous
up-going ANITA events as originating from ordinary
CR-initiated air showers. For this to be consistent with the
phase information ANITA observes, they must reflect from a sub-
surface feature without phase inversion. We have investigated a
number of glaciological candidates in order to determine which
of these may have properties consistent with ANITA’s observa-
tions. We have found that subsurface double layers and firn dens-
ity inversions are a plausible explanation of the anomalous events.
In order to conclusively test if surface/subsurface glaciological
candidates are responsible for the ANITA events, more informa-
tion is needed on candidate location, fraction of occurrence in the
area sampled by ANITA and a more detailed analysis of the
ANITA acceptance. We note that, while firn density contrasts
appear to be a plausible candidate, one or more of the other gla-
ciological features discussed here may play a sub-dominant role in
sourcing strong un-inverted reflections.

Our results have broad implications for future neutrino and
CR experiments. Given the possibility of reflections without a
phase inversion, future experiments should not use the phase
inversion in radio signals as a sole criterion for discriminating
between down-going and up-going events, unless the properties
of the subsurface reflection are well understood.
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Appendix: Acceptance of reflected cosmic rays

The number of events detected due to an isotropic flux ϕ(E), integrated over a
band of energies E, flowing through a reference area A and a range of direc-
tions given by solid angle Ω, depends on the observation time t and detection
efficiency Pdet, which, in general, are dependent on all the variables of
integration.

N =
∫1
0
dE

∫T
0
dt

∫
A
dA

∫
V

dV (r̂ · n̂) Pdet f(E). (1)

Evaluating this integral for an experiment accurately is an involved calcu-
lation requiring Monte Carlo simulations and detailed instrument response
model. For the purposes of this study, we seek only to bound the behavior
of subsurface reflection cosmic ray events in relation to the surface reflection
events. For a radio detector, the air shower geometry can be described by tak-
ing a point on the surface of the Earth (A) and a direction within solid angle Ω.
Since the cosmic ray flux is predominantly isotropic, the range of angles is uni-
form in the sky. The cosmic ray air shower produces an electric field E with
amplitude proportional to its energy E. The electric field is reflected off the
ice and induces a voltage V at the antenna terminals. A simple model of the
detection probability Pdet is that the voltage V exceeds a threshold value Vthr

so that Pdet∝Θ(V−Vthr), where Θ is the Heaviside step function. The voltage
is related to the electric field E via V = hE where h is the effective length of the
antenna, which is direction and frequency dependent.

The zeroth-order approximation is to take a characteristic value of the
effective length h≃ h0 for the range of frequencies and directions relevant to
ANITA. In this case, we can translate Pdet ≃ Q(E − Ethr) and Ethr = Vthr/h0.

The electric field is related to the energy of the cosmic ray air shower via
E ≃ E0a(E/E0)(d0/d) where E0 is a reference energy, d is the distance to
shower maximum along the reflection path, d0 is a reference distance, and
E0 is a proportionality constant. We have omitted the relation of the magnetic
field (mostly vertical in Antarctica) to the direction of the shower and assume
an average value here. The value α here is meant to capture the effects of
reflections and transmission through ice for the various cases under consider-
ation. To zeroth order, we omit the dependence on cosmic ray direction and
approximate the distance to the cosmic ray shower maximum as d≃ d0 so
that E ≃ E0a(E/E0). With this approximation, we can assume a threshold
energy Ethr = E0(Ethr/E0)/a.

The cosmic ray flux, over a limited energy band, can be approximated by a
power law ϕ(E)≃ ϕ0(E/E0)

−γ. With our zeroth-order approximations on the
direction of cosmic rays

N ≃ T〈AV〉0 f0

∫1
Ethr

dE (E/E0)
−g (2)

where the acceptance 〈AΩ〉 is the combination of points on the surface and
cosmic ray arrival directions that would trigger the detector given by

〈AV〉 =
∫
A
dA

∫
V

dV (r̂ · n̂)Pdet (3)

This value is generally energy dependent but in our zeroth-order
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approximation, we are evaluating 〈AΩ〉0 at a characteristic energy E0. With our
approximations, we arrive at

N ≃ T
〈AV〉0 f0

(g− 1)E0

Ethr
E0

( )1−g

(4)

or, in terms of the electric field threshold,

N ≃ T
〈AV〉0 f0

(g− 1)E0

1
a

Ethr

E0

( )1−g

. (5)

Now take NCR for the surface-reflected cosmic ray events and Nanom for the
anomalous events. Since the hypothesis is that the difference is due to surface
reflections and subsurface reflections, we can estimate αCR≃ rrefl where rrefl is
the electric field reflection coefficient of the surface of the ice. For the

subsurface events aanom = (1− r2refl)rsub where rsub is the electric field reflec-
tion coefficient for the subsurface interface and the factor of (1− r2refl) is
due to the electric field being transmitted in and out of the ice–air interface.

Assuming that the typical direction of surface and subsurface reflected
events is comparable (to zeroth order), then we arrive at the ratio

〈AV〉anom
〈AV〉CR

≃ Nanom

NCR

rrefl
(1− r2refl)rsub

( )g−1

(6)

Assuming a spectral index γ≃ 3 and using the power reflection coefficients
Rrefl = r2refl and Rsub = r2sub, we arrive at the result

〈AV〉anom
〈AV〉CR

≃ Nanom

NCR

Rrefl

(1− Rrefl)
2Rsub

. (7)
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