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• Two models for the participation of PV power producers in three market floors.

• Rescheduling following the characteristic of the six intraday market sessions.

• Risk-hedging map associated with the scheduling and rescheduling of the bids.
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A B S T R A C T

Optimal bidding that considers different electricity market floors can increase the financial gains of photovoltaic
(PV) power producers. However, the current approach to trading PV power essentially consists of committing to
sell the forecasted PV generation. To analyze profits and investigate new business opportunities for PV power
producers, this paper proposes two novel stochastic programming-based methods for scheduling and re-
scheduling for trading the PV generated energy in day-ahead and intraday electricity markets. Risk-hedging is
also considered in terms of co-optimizing the expected profit with the Conditional Value-at-Risk (CVaR) metric.
As a consequence of the structure and organization of the market floors and due to different market windows,
rescheduling is necessary to exploit the most recent information. Updated rescheduling progressively reveals
actual profits or losses, risk-hedging possible engagement in business transactions, and the final effect of stra-
tegic bidding. A case study in the Spanish electricity market based on actual data is presented. The analysis of the
case study shows the influence of the three market floors (day-ahead, intraday, and imbalance), the participation
in multiple intraday sessions, risk-hedging, and rescheduling on the profits of the PV producer.

1. Introduction

Electricity consumption is intrinsically associated with industrial
development and societal prosperity. Following a century of heavy re-
liance on fossil fuels, the electric power industry is currently under-
going a paradigm shift to utilizing more sustainable alternatives. Given
the environmental impact of the electricity sector, the Kyoto protocol
[1] was signed by several countries as they committed to reducing
greenhouse gas (GHG) emissions from conventional power plants and
other sources. With the approval of the first agreement in 1997, the
energy transition to more sustainable energy systems was initiated. The
energy transition in the electricity sector is characterized by the in-
creasing adoption of renewable energy sources. Wind power has been

the leading source of renewable energy production due to the maturity
of the relevant technology. The focus now is on the proliferation of
photovoltaic (PV) power, which is regarded as a real instrument to-
wards a sustainable power system; this is because it can be generated on
a large scale and locally, i.e., closer to the end user.

The success of the energy transition largely depends on the ex-
istence of viable business cases for renewable power generation and
storage technologies in a deregulated market environment. Two me-
chanisms have traditionally been used to encourage the deployment of
renewable energy installations: feed-in tariffs, or a feed-in premium on
top of the day-ahead electricity market prices.

However, the global financial crisis has led to reductions in pre-
mium payments, increasing the uncertainty of this income stream.
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Another option for renewable energy producers is to trade energy in
electricity markets. Interestingly, despite the significant reduction in
premium payments, PV power producers still prefer premium income
over the income from selling PV production in electricity markets, be-
cause the risk associated with the premium income is lower than the
risk of participating in short-term electricity markets. The main reason
for this is that PV power producers mostly rely on simple heuristics to
trade their forecasted PV generation.

Sustainability is becoming a priority for companies around the
world and is transforming into a social movement that also has financial
implications. In 2014, the RE100, a global corporate initiative of in-
dustries committing to cover their energy requirements by renewable
energy, was launched [2]. The new energy culture brought the growth
of Power Purchase Agreements (PPAs) or bilateral contracts. There are
different types of PPAs, such as the On-site PPA, the Sleeved PPA, and
the Virtual PPA. PPAs are the current alternative to wholesale markets,
premiums, and extra-payments. The added value of securing a PPA for a
PV project is increased bankability, because the certainty of future cash
flows is guaranteed. As a result, PPAs have boosted the development of
PV projects. Nonetheless, risk-hedging remains the instrument for
managing financial risks when the PV power producer participates in
the wholesale electricity market [3].

To improve the actual PV power trading process, two novel risk-
aware models are proposed in this paper for scheduling and re-
scheduling to bid the PV production in the day-ahead and intraday
markets based on stochastic mixed-integer linear programming re-
scheduling models (SMILP-RSM). As a consequence of the structure of
the considered day-ahead and intraday markets (i.e., the Spanish
electricity market [4]), the decision process of scheduling for both
markets is not sufficient to mitigate the uncertainty. By the time an
intraday session opens, the day-ahead market prices are known with
certainty and there is less uncertainty in anticipating the future PV
production as the look-ahead time decreases.

Consequently, rescheduling for the different intraday market win-
dows will reveal the real profits or losses, risk-hedging, and the final
effect of strategic bidding on profits. Considering the objectives of
maximizing the expected profit and optimizing the risk metric, PV
generation can be traded in day-ahead and intraday electricity markets.
The balancing market mechanism is used to penalize the imbalances of
the PV power producer. For the analysis of the two SMILP-RSMs, a test
case based on the organization and data of the Spanish electricity
market shows the influence of the three market floors, the risk-hedging,
and the actual rescheduling for minimizing the imbalance penalties.
The Spanish intraday electricity market has six sessions with different
time frames. Because of these different time frames, several models
with, and without, consideration for the intraday electricity
market allow the evaluation of the effects on the expected profit for the
whole day-ahead scheduling, rescheduling, and final profits.

1.1. Literature review

The fact that PV is a clean power generation technology makes it
relevant for energy transition [5]. With zero CO2 emissions, PV tech-
nology is spearheading decarbonization through different approaches
to the integration of PV power in modern power systems. Some ex-
amples of such approaches are microgrids [6] coupled with energy
storage systems, residential sector applications [7], prosumption [8],
industrial sector applications, support of electric vehicles [9], peer-to-
peer electricity trading [10], premiums and optimization of portfolios
of renewable energy sources [11], utility-scale Solar PV projects [12],
and electricity market participation [13]. Several studies investigated
the market value and cost of PV electricity production [14] and the
merit order effect of PV on wholesale electricity market prices [15,16].
The feed-in tariff system for PV producers in Germany was analyzed in
[17], while a similar subject focusing on China was discussed in
[18,19]. Apart from the feed-in tariff system, the effect of other

mechanisms such as renewable portfolio standards and renewable en-
ergy certificates have also been studied [20,21].

To the best of the authors’ knowledge [13] is the first study in which
stochastic programming was used to develop a day-ahead market par-
ticipation strategy for PV producers, also taking the balancing market
into account as a penalization mechanism. Following the approach that
was presented in [13], other authors conducted further studies in the
field of PV trading in electricity markets. Some new contributions were
presented in [22], in which virtual bidding was included along with risk
hedging. A similar approach to [13] was presented in [23], but the PV
trading optimization algorithm is similar to the methodology proposed
in [24], without considering risk hedging. Most relevant studies in the
literature consider wind power instead. There are several studies in
which risk-aware day-ahead market trading models for wind [24] and
combined wind and hydro-pump power plants [25] were based on
stochastic programming. Also, medium-term planning was considered
in [26]. From an operational perspective, risk is typically considered via
the Conditional Value-at-Risk (CVaR) [27]. Without the consideration
of CVaR, an optimal wind-PV coordinated bidding strategy shows the
effect of a single bid for uncertain wind and PV power production [28].
The participation of a wind farm coupled with energy storage in multi-
stage electricity markets was studied in [29] using dynamic program-
ming. Also, a rolling optimization model for trading the energy of a
wind farm coupled with energy storage in day-ahead and intraday
markets was presented in [30] without considering risk hedging or
rescheduling. Nonetheless, aggregators could also re-schedule dis-
tributed energy sources for market participation as proposed in [31].

Apart from the development of uncertainty and risk-aware market
participation strategies, financial instruments can also be used to
manage risks. For example, PPAs can be perceived to be risk free [32].
Other instruments including bilateral contracts [33] and options
[3,34,35] can be used to partly mitigate financial risks. A risk-aware
model for day-ahead market participation considering bilateral con-
tracts was proposed in [33]. A multi-stage stochastic optimization
model was used to determine an optimal strategy to sell the energy of a
risk-averse producer considering options, forward contracts, and pool
market trading in [3]. A market-specific seasonal trading behavior in
NASDAQ OMX electricity options was analyzed in [36]. Some energy
options were described in [37,38] studied the trading of wind power
through physically settled options and short-term electricity markets.

Another option for managing the uncertainty in PV production is to
participate in intraday markets. Trading energy in the intraday market
gives the opportunity to raise additional revenue and reduces im-
balances between the total sale/purchase bids and production. The
trading of wind power with storage was studied in [39] with a short-
term horizon; however, a two-stage stochastic programming problem
was proposed to optimize the participation of the wind and storage in
the pool market, composed of the day-ahead market, an intraday ses-
sion, and the balancing market. The stochastic model was implemented
as a stochastic convex optimization problem. To benefit from the Elbas
intraday market, a simple algorithm was developed in [40], considering
the Elspot day-ahead, Elbas intraday, and regulation power markets.
Adaptive trading in the continuous intraday electricity market for a
storage unit was introduced in [41], modeling the problem through a
Markov decision process framework. The effect of the intraday in the
balancing market was explored in [42] in balancing Germany’s elec-
tricity system. With a long-term horizon, an annual techno-economic
analysis of a PV solar power plant with storage systems was conducted
in [43]. The economic analysis considered the day-ahead and intraday
markets and secondary reserve, as well as the balancing market. In this
case, market participation was represented through a linear-program-
ming-based model predictive control approach [44].

1.2. Aims and contributions

This paper proposes and compares two short-term market
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participation models: i) the independent optimal bidding of a PV power
producer in the three market floors (SMILP-RSM-1); and ii) the optimal
bidding of a PV producer in which the scheduling and rescheduling
process reach all forward decisions in the three market floors (SMILP-
RSM-2). The scheduling and rescheduling optimization processes de-
pend on the number and timing of the intraday market sessions. Via
rescheduling, recent information on the stochastic processes is con-
sidered. Mixed-integer linear programming is used to develop two-stage
stochastic optimization models using a node-variable formulation.

The principal contributions of this paper are as follows:

• Two strategic bidding models (SMILP-RSM-1 and SMILP-RSM-2) for
the participation of PV power producers in short-term electricity
markets are proposed.

• Rescheduling following the characteristics of the intraday market
sessions to consider updated information on the stochastic processes
is introduced.

• The risk-hedging effect associated with the scheduling and re-
scheduling of the bids is mapped and analyzed.

The remainder of the paper is structured as follows: first, in Section
2 the wholesale market environment is introduced. Then, in Section 3
the mathematical models for both strategies are presented, while in
Section 4 the case study and numerical results are presented and dis-
cussed. Finally, conclusions are drawn in Section 5.

2. Wholesale electricity markets

Wholesale electricity markets allow the trading of electrical energy
in bulk. Different agents, such as producers, large consumers, and re-
tailers trade energy by accessing different market structures. The
European daily market is a clearing process that starts at noon on the
previous day D-1 and continues for the 24 h of day D. Once the Market
Operator matches the aggregate demand and supply curves of produ-
cers, consumers, and retailers, the cleared price and volume of energy
are announced. The requirement for transparency in the way that
electricity market prices are determined, and to achieve the target of a
harmonized European electricity market, has led to the utilization of a
single market-clearing tool across many countries, namely, Euphemia
[45].

Due to the significant lead time between the clearing of the day-
ahead market and the physical delivery of electrical energy, imbalances
occur at both the production and demand sides. Market participants
must balance their day-ahead market position in the balancing markets
by buying their energy deficit or selling their energy surplus in the
balancing market. In general, this implies that market participants face
either penalties or opportunity costs in case they accept the upward or
downward imbalance prices to settle their total imbalance. As a re-
medy, market agents can participate in intraday market sessions
throughout the trading day D to reduce their final imbalance.

Despite the fact that all three aforementioned wholesale market
mechanisms are generally available, their specific structure and orga-
nizational implementation differ across countries. This paper focuses on
the Spanish electricity market ([4,46]), which comprises of six intraday
sessions with different time frames and is also currently characterized
by the proliferation of PV power capacity (see Nomenclature in
Table 1).

2.1. The Spanish day-ahead market

The European prices are matched daily at 12 PM of day D-1. The
Spanish day-ahead market (DA) is cleared for the 24 hourly periods of
day D. Once the energy volume and price pairs are submitted to the
market operator by the market participants, the former aggregates them
to form the total supply and demand curves. This aggregation allows
the discovery of the intersection point of both curves considering the

simple orders. After that, the clearing algorithm matches the complex
orders [45].

2.2. The Spanish intraday market

After the day-ahead market is cleared, market participants can ac-
cess several intraday sessions to establish their positions in a similar
way to the day-ahead market. The agents can manage imbalances until
the corresponding session closes. Agents present their sale/purchase
bids during the intraday sessions, whether they participated in the day-
ahead market or executed a bilateral contract. The Spanish electricity
market hosts six intraday auctions (ID1-ID6). Table 2 presents the

Table 1
Nomenclature.

Indices and Sets

i ( )I Index (set) related to optimization processes
j ( )J Index (set) related to the intraday session
s ( )S Index (set) related to scenarios
t ( )T Index (set) related to periods t = …1, 2, 3, , 24
t1 Index related to periods t1 of the intraday window of session j = 1.

t t,1 1T = …{1, 2, 3, , 24}
t2 Index related to periods t2 of the intraday window of session j = 2.

t t,2 2T = …{1, 2, 3, , 24}
t3 Index related to periods t3 of the intraday window of session j = 3.

t t,3 3T = …{5, 6, 7, , 24}
t4 Index related to periods t4 of the intraday window of session j = 4.

t t,4 4T = …{8, 9, 10, , 24}
t5 Index related to periods t5 of the intraday window of session j = 5.

t t,5 5T = …{12, 13, 14, , 24}
t6 Index related to periods t6 of the intraday window of session j = 6.

t t,6 6T = …{16, 17, 18, , 24}
s Index related to scenarios

Parameters

An
PV Area of the PV panel [m2]

EMAX Limit of energy traded and imbalances [MWh]
G Solar irradiance [W/m2]
N Total number of arrays of the PV power plant
pt s, PV production in period t and scenario s [MWh]

PPV PV power output of the PV panels [MW]
Confidence level used for CVaR

i Weight for evaluation of multi-objective profit-CVaR for each i

n
PV Efficiency of each array

t s
BM

, Price of downward imbalance market in period t and scenario s [€/MWh]
+
t s

BM
, Price of upward imbalance market in period t and scenario s [€/MWh]

t s
DA
, Price of day-ahead market in period t and scenario s [€/MWh]

tj s
IDj
,

Price of intraday session j in period t j and scenario s [€/MWh]

s Probability of each scenario s

Decision variables

Bt s, Imbalance between the production and bids in period t and scenario s
[MWh]

Bt s, Downward imbalance between the production and bids in period t and
scenario s [MWh]

+Bt s, Upward imbalance between the production and bids in period t and
scenario s [MWh]

CVaR Conditional value-at-risk [€]
PFPV Total profits of the PV power producer [€]

PFt s
PV
, Profit of the PV power producer per period t and scenario s [€]

qt
DA Bid in the day-ahead market in period t [MWh]

qtj
IDj Bid in the intraday session j in period t j [MWh]

VaR Value at Risk [€]
s Auxiliary variable used in CVaR evaluation per scenario s

Binary variable

wt s, 0/1 variable, 0 when there is an upward imbalance and 1 when is a
downward imbalance
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timing characteristics of the six intraday market sessions.

2.3. The Spanish imbalance market

The Spanish imbalance or balancing market (BM) [47] generates an
hourly upward and downward imbalance price. Generators can have
either an upward or a downward imbalance volume. The generator’s
imbalance is calculated as the actual generator’s production minus the
generator’s bid (1). When generators produce more energy than they
submitted to all markets (excess of production), generators are said to
have upward imbalances. Hence, generators earn the upward im-
balance volume multiplied by the upward imbalance price, which is
equal to, or lower than, the day-ahead electricity market price (2).
Evidently, this constitutes an opportunity cost. In the opposite case, that
is, if generators produce less energy than is bid, the total imbalance is
moving in a downward direction. The downward imbalance cost is the
imbalance volume multiplied by the downward imbalance price (3),
which is equal to, or higher than, the day-ahead electricity market
price, thus constituting an imbalance penalty.

=imbalance generation bids (1)

=Income price imbalance·Upward Upward (2)

=Cost price imbalance·Downward Downward (3)

The mathematical models that are proposed in this study optimally
decide the PV energy volumes that are traded in the day-ahead, in-
traday, and balancing markets. These mathematical models are con-
sidered as a price taker because of the decided PV energy volumes,
which are not large enough to change any of the wholesale market
prices.

3. Mathematical formulation

Each strategy involves the solution of a set of optimization models,
such as the proposed SMILP-RSM-1 and SMILP-RSM-2. Both sets of
models have seven optimization processes; each model traded in each
market and its associated window. Several market windows have real
information that needs to be updated until the market window of the
scheduling and rescheduling is considered. In addition, the optimal
solutions of previous scheduling or rescheduling processes are also in-
troduced during the subsequent optimization process. After

rescheduling the last (sixth) intraday session, i.e., in the 7th optimiza-
tion process, a post-market evaluation calculates the actual profits be-
cause all the stochastic processes have been realized.

In each optimization process, the SMILP-RSM-1 strategy provides a
decision that is related only to the energy bidding of the market
window of that optimization process. Therefore, these sets of decision
variables can be written as: = = =q q q{ }, { }, { },t

DA
t
ID

t
ID

1 2
1

3
2

1 2
= = =q q q{ }, { }, { }t

ID
t
ID

t
ID

4
3

5
4

6
5

3 4 5
, and = q{ }t

ID
7

6
6

, where i is related
to the market bid decisions of the i-th optimization process. By contrast,
the SMILP-RSM-2 strategy provides all the forward bid decisions. The
sets of decision variables for this optimization model can be written as:

= =q q q q q q q q q q q q q{ , , , , , , }, { , , , , , },t
DA

t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

1 1
1

2
2

3
3

4
4

5
5

6
6

2 1
1

2
2

3
3

4
4

5
5

6
6

= =q q q q q q q q q{ , , , , }, { , , , },t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

3
2 3 4 5 6

4
3 4 5 6

2 3 4 5 6 3 4 5 6
= q{ ,t

ID
5 4

4

=q q q q, }, { , }t
ID

t
ID

t
ID

t
ID5 6

6
5 6

5 6 5 6
and = q{ }t

ID
7

6
6

, where i is related to the
market bid decisions of the i-th optimization process.

Tables 3 and 4 provide information about the markets that are in-
volved in each optimization process. This information includes involved
market bid decisions and updated real information. Scheduling is as-
sociated with the 1st optimization process and rescheduling occurs
from the 2nd to the 7th optimization process. The columns of Tables 3
and 4 are related to the optimization process, during which the 1st
scheduling refers to the day-ahead window, the 2nd to the 7th re-
scheduling refer to the intraday market session windows, and the 8th
represents a post-market evaluation with all of the information at hand.
In other words, during the 8th optimization process, all the decision
variables are essentially fixed to their optimal values as they were
calculated during the previous optimization processes. The post-market
evaluation allows the quantification of the actual profit achieved by
both strategies, hence, it is a proxy to their effectiveness. The rows of
Tables 3 and 4 show the market that is involved with a checkmark (✓).
Every cell shows two components inside of brackets, (market involved
[yes or no], optimal solution and real information). The optimal solu-
tions are DA∗, ID1∗, ID2∗, ID3∗, ID4∗, ID5∗, and ID6∗. The real in-
formation is related to PV production, DA prices, ID prices, and both
upward and downward balancing prices. To further clarify which
quantities are involved in each optimization process, Figs. 1 and 2
display the parameters and market bid variables in each optimization
process.

First, the parameters that are presented in Figs. 1 and 2 are prices,
PV production, and the bid that was decided during the previous
market window optimization process for both strategies (the first row in

Table 2
Intraday market sessions [4].

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

Opening time 17:00 21:00 01:00 04:00 08:00 12:00
Closing time 18:50 21:50 01:50 04:50 08:50 12:50
Matching process 18:50 21:50 01:50 04:50 08:50 12:50
Results publication 18:57 21:57 01:57 04:57 08:57 12:57
TSOs publication 19:15 22:15 02:15 05:15 09:15 13:15
Market window 27 h

(22–24&1–24)
24 h
(1–24)

20 h
(5–24)

17 h
(8–24)

13 h
(12–24)

9 h
(16–24)

Table 3
Markets, scheduling & rescheduling, and optimal and real (∗) evaluation for the set of models 1 SMILP-RSM-1.

Market/Opt. (1st,∗) (2nd,∗) (3rd,∗) (4th,∗) (5th,∗) (6th,∗) (7th,∗) (8th,∗)

DA (✓,-) (-,DA∗) (-,DA∗) (-,DA∗) (-,DA∗) (-,DA∗) (-,DA∗) (-,DA∗)
ID1 (-,-) (✓,-) (-,ID1∗) (-,ID1∗) (-,ID1∗) (-,ID1∗) (-,ID1∗) (-,ID1∗)
ID2 (-,-) (-,-) (✓,-) (-,ID2∗) (-,ID2∗) (-,ID2∗) (-,ID2∗) (-,ID2∗)
ID3 (-,-) (-,-) (-,-) (✓,-) (-,ID3∗) (-,ID3∗) (-,ID3∗) (-,ID3∗)
ID4 (-,-) (-,-) (-,-) (-,-) (✓,-) (-,ID4∗) (-,ID4∗) (-,ID4∗)
ID5 (-,-) (-,-) (-,-) (-,-) (-,-) (✓,-) (-,ID5∗) (-,ID5∗)
ID6 (-,-) (-,-) (-,-) (-,-) (-,-) (-,-) (✓,-) (-,ID6∗)
BM (✓,-) (✓,-) (✓,-) (✓,-) (✓,-) (✓,-) (✓,-) (-,BM∗)
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brackets). Second, the variables presented in the Figs. 1 and 2 are
market bids for each strategy and optimization process (the second row
in brackets). Once the key parameters and variables of the optimization
process are rendered known, they are propagated to the next optimi-
zation process. These parameters are the prices and PV production of
the previous market window, as well as bids of previous scheduling or

rescheduling. This updated information is relevant because the PV
power producer can change the market bid in the actual market
window session. The next optimization process will consider the actual
parameters of previous market windows as well as previous market bid
decisions. For this reason, there is a parameter, namely PV production,
which is updated using the hourly difference between the two session
windows. For example, =

=
p t DA ID, 1

t DA ID
W W

1W W represents the
hours of the DA windows market that are not shared with the ID1
session window according to Table 2.

Flows of information are sketched in Figs. 3 and 4 for both strategies
and each market window. Each strategy has eight optimization pro-
cesses, and each process has distinct inputs and outputs. The inputs are
PV and price forecasts, while the outputs are linked to the next opti-
mization process. The two strategies run the models before the market
window starts, and the time horizon of the decisions spans from the
opening market window of the process to the end of day D. Once day D
has ended, the 8 th optimization process is run with the output of the
7th optimization process that also gathers the outputs of the previous
optimization processes.

Finally, CVaR plays an essential role in decision making as it
quantifies the risk that the PV producer faces in each optimization
process. Decisions depend on risk aversion, which is expressed through

= …i 1,2,3, , 7, where i denotes the relevant optimization process.

Table 4
Markets, scheduling & rescheduling, and optimal and real (∗) evaluation for the set of models 2 SMILP-RSM-2.

Market/Opt. (1st,∗) (2nd,∗) (3rd,∗) (4th,∗) (5th,∗) (6th,∗) (7th,∗) (8th,∗)

DA (✓,-) (-,DA∗) (-,DA∗) (-,DA∗) (-,DA∗) (-,DA∗) (-,DA∗) (-,DA∗)
ID1 (✓,-) (✓,-) (-,ID1∗) (-,ID1∗) (-,ID1∗) (-,ID1∗) (-,ID1∗) (-,ID1∗)
ID2 (✓,-) (✓,-) (✓,-) (-,ID2∗) (-,ID2∗) (-,ID2∗) (-,ID2∗) (-,ID2∗)
ID3 (✓,-) (✓,-) (✓,-) (✓,-) (-,ID3∗) (-,ID3∗) (-,ID3∗) (-,ID3∗)
ID4 (✓,-) (✓,-) (✓,-) (✓,-) (✓,-) (-,ID4∗) (-,ID4∗) (-,ID4∗)
ID5 (✓,-) (✓,-) (✓,-) (✓,-) (✓,-) (✓,-) (-,ID5∗) (-,ID5∗)
ID6 (✓,-) (✓,-) (✓,-) (✓,-) (✓,-) (✓,-) (✓,-) (-,ID6∗)
BM (✓,-) (✓,) (✓,-) (✓,-) (✓,-) (✓,-) (✓,-) (-,BM∗)

Fig. 1. Optimization processes of SMILP-RSM-1.

Fig. 2. Optimization processes of SMILP-RSM-2.

Fig. 3. Information flows SMILP-RSM-1.
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3.1. Set of models 1: SMILP-RSM-1

This strategy focuses only on optimizing decisions in each market
floor independently (DA, ID1, ID2, ID3, ID4, ID5, ID6). BM penalizes
decisions based on the resulting imbalance. The involved optimization
processes use both optimal decisions and real information according to
Table 3 and Fig. 1.

3.1.1. First optimization process: DA market scheduling
The first optimization problem results in the DA market decisions

that might be penalized by the BM.
Objective function. The objective function (4) maximizes the ex-

pected operational profits and CVaR. The expected profit comes from
trading the PV production in the DA, penalized through BM. As (4) is
essentially a composite objective function that comprises two different
objectives, the Pareto frontier is approximated by varying 1. The main
decision for the producer is the quantity to bid in the DA market,

= q{ }t
DA

1 .

+PF CVaRMaximize(1 )· · .PV
1 1 (4)

The total expected profit PFPV is the summation of the profit in each
period t and scenario s (5). The profit in each period t and scenario s (6)
of the PV power producer comes from trading the energy qt

DA in the DA
market multiplied by the DA market price t s

DA
, . Once the PV power

producer has traded the production in the DA, an imbalance will exist
that is penalized through the BM. When the power producer has an
upward imbalance +Bt s, , it is penalized with the upward imbalance
market price +

t s
BM

, . However, if the PV power producer produces less
energy than traded, i.e., has a downward imbalance, it will, in turn,
have to pay the downward imbalance Bt s, multiplied by t s

BM
, . Note that

imbalance costs follow the Eqs. (1)–(3). As the PV production and
market prices are uncertain, the model decides the volume of energy to
submit to the DA market, depending on the risk-hedging attitude of the
decision maker.

=PF PF ;PV

s
s

t
t s
PV
,

S T (5)

= + + +PF q B
B t s

· ·
· ; , .

t s
PV

t s
DA

t
DA

t s
BM

t s

t s
BM

t s

, , , ,

, , T S (6)

The problem constraints are divided into three blocks: risk, market,
and imbalance constraints.

Risk constraints. Eqs. (7) and (8) are used to define the CVaR me-
tric. Risk hedging controls the expected value of the tail of the profit
distribution with a confidence level 1 . When the expected value of
the tail of the profit distribution is negative (negative profit is loss), the
objective function minimizes the CVaR, while if the expected value of
the tail of the profit distribution is positive, the objective function
maximizes the CVaR.

=CVaR VaR 1
1

· · ;
s

s s
S (7)

+PF CVaR s( ) 0 ; .
t

t s
PV

s, S
T (8)

Market constraints. Bids have to be non-negative as expressed by
(9), while they cannot exceed the installed capacity of the PV power
plant as dictated (10).

q t0 ; ;t
DA T (9)

q E t; .t
DA MAX T (10)

Imbalance constraints. DA market bids are based on scenarios, i.e.,
imbalances may occur. Imbalance volumes Bt s, are calculated by (11).
By definition, these imbalances are calculated as the difference between
the actual production pt s, and the DA bid quantity qt

DA. The imbalance
volume can be either positive or negative, as it is expressed by (12).
This subtraction is possible because of the disjunctive constraints (13)
and (14) that involve the binary variable wt s, that determines the di-
rection of the imbalance volume. For modelling purposes, the non-ne-
gativity of the positive and negative imbalance volumes is enforced by
(15).

=B p q t s; , ;t s t s t
DA

, , T S (11)

= +B B B t s; , ;t s t s t s, , , T S (12)

B E w t s· ; , ;t s
MAX

t s, , T S (13)

+B E w t s·(1 ) ; , ;t s
MAX

t s, , T S (14)

+B B t s0; 0 ; , .t s t s, , T S (15)

3.1.2. Second to eighth optimization processes: rescheduling ID1-ID6 and
post-market evaluation

Conceptually, optimization processes establish the evaluation of
different markets as shown in Table 3. The constraints involved in these
markets are similar to those presented in Section 3.1.1 and therefore,
for the sake of brevity, only the new variables introduced in each ses-
sions are described in this section.

Once the DA market bid qt
DA has been decided in the 1st optimi-

zation process, = q q{ },t
DA

t
DA

1 and the actual DA electricity market
prices t s

DA
, are known in the 2nd optimization process. Hence, the bid

of ID1 is included in the expected profit and imbalance equations, i.e.,
(5), (6), and (11), respectively. The bid of ID1 (ID6), qt

ID1
1

(qt
IDj
j
), can be

either a purchase or sale bid for this optimization process, with a po-
sitive and negative limit, EMAX . These limits are similar to the rest of the
intraday sessions in other optimization processes.

After the first rescheduling, the actual income from the DA market
added to the ID1 rescheduling results, = q{ }t

ID
2

1 is evaluated. SMILP-
RSM-1 features seven such optimization processes, while the 8th is used

Fig. 4. Information flows in SMILP-RSM-2.
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to calculate the actual profit, with all the information at hand.

3.2. Set of models 2: SMILP-RSM-2

In contrast with the SMILP-RSM-1 strategy, the second set of models
proposes to make decisions during each optimization process by jointly
considering all markets and intraday sessions. Rescheduling starts after
the first optimization process. An overview of this approach is given in
Table 4 and Fig. 2.

3.2.1. First optimization process: DA market scheduling
Objective function. The objective function maximizes the expected

operational profits (16). The bids in all of the intraday markets are
decision variables of the producer in SMILP-RSM-2. These market bids
are 1 = {q q q q q q q, , , , , ,t

DA
t
ID

t
ID

t
ID

t
ID

t
ID

t
ID1 2 3 4 5 6

1 2 3 4 5 6
}. In a similar way to (4),

CVaR is also optimized.

+PF CVaRMaximize(1 )· · .PV
1 1 (16)

The expected profit is defined in a similar way to (5), but the SMILP-
RSM-2 strategy also has six intraday sessions. Note that (17) and (18)
include prices and bid variables of the six intraday sessions.

=PF PF ;PV

s
s

t
t s
PV
,

S T (17)

= +
+ + +

+ + +
=

+ +PF q B B
q q q

q q q
t t j s

· · ·
· · ·

· · · ;
; ; 1, 2, 3, 4, 5, 6 ; .

t s
PV

t s
DA

t
DA

t s
BM

t s t s
BM

t s

t s
ID

t
ID

t s
ID

t
ID

t s
ID

t
ID

t s
ID

t
ID

t s
ID

t
ID

t s
ID

t
ID

j j

, , , , , ,

,
1 1

,
2 2

,
3 3

,
4 4

,
5 5

,
6 6

1 1 2 2 3 3

4 4 5 5 6 6

T T S (18)

Given the maximization of the expected profit (16), this objective
function follows the constraints of the second strategy SMILP-RSM-2.

Risk constraints. Constraints (7) and (8), which define the CVaR
metric, are also included in SMILP-RSM-2.

Market constraints. The bids are defined by (19)–(22). The DA
market (sale) bid, (19) and (20) are defined in a similar way to (9) and
(10). However, the intraday session bids are different in the sense that a
purchase bid is also available. As a result, in sessions ID1-ID6, energy
can also be bought as it is implied by (21).

q t0 ; ;t
DA T (19)

q E t; ;t
DA MAX T (20)

=q E t j; ; 1, 2, 3, 4, 5, 6;t
IDj MAX

j jj
T (21)

=q E t j; ; 1, 2, 3, 4, 5, 6.t
IDj MAX

j jj
T (22)

Imbalance constraints. The imbalance volume is defined by (23). In
SMILP-RSM-2, the imbalance volume is defined as the production in
each scenario pt s, minus the sale bid of the DA market and minus all
(purchase/sale) bids in each intraday session. It is to be noted that in-
traday session bids can be either positive or negative; it is either a sale
or a purchase bid, respectively. Constraints (24)–(27) are the same as
(12)–(15).

=

=

B p q q q q q

q q t t j s; ; ; 1, 2, 3, 4, 5, 6 ; ;
t s t s t

DA
t
ID

t
ID

t
ID

t
ID

t
ID

t
ID

j j

, ,
1 2 3 4

5 6
1 2 3 4

5 6
T T S (23)

= +B B B t s; , ;t s t s t s, , , T S (24)

B E w t s· ; , ;t s
MAX

t s, , T S (25)

+B E w t s·(1 ) ; , ;t s
MAX

t s, , T S (26)

+B B t s0; 0 ; , .t s t s, , T S (27)

3.2.2. Second to eighth optimization processes: rescheduling ID1-ID6 and
post-market evaluation

The optimization processes that determine the rescheduling in
SMILP-RSM-2 are similar to those in SMILP-RSM-1. The difference is
that each optimization process in SMILP-RSM-2 takes the decisions of
all markets and sessions into account.

If there is not a decision variable in i related to the DA market or
any of the intraday sessions (q q q q q q q, , , , , ,t

DA
t
ID

t
ID

t
ID

t
ID

t
ID

t
ID1 2 3 4 5 6

1 2 3 4 5 6
), this

means that the decisions in i are known, i.e., they are either optimal
values from previous optimization processes or updated information.

4. Case study

4.1. Input data

To test SMILP-RSM-1 and SMILP-RSM2, a PV power producer lo-
cated in the Navarra region, in the north of Spain, is considered.
Historical irradiance data were acquired from the meteorological sta-
tion of Pamplona (ETSIA) UPNA [48], and were transformed into PV
power [MW] using (28), assuming that the PV power producer has a
capacity of 50 MW. Then, the maximum PV energy capacity was
EMAX = 50 MWh. The Spanish day-ahead and intraday market price
data were extracted from [4], while imbalance market prices were
obtained from [47].

=
=

P A G( · · )/10PV

n

N

n
PV

n
PV

1

6

(28)

In (28) n
PV (=0.143) is the efficiency of the PV panels in each

array, An
PV (=1.6x12 m2) is the area of the PV panels in each array, N

(=18200) is the number of arrays, and G (W/m2) is the solar irra-
diance.

All the market prices and PV production are considered as random
variables; for this reason, the model attempts to capture the uncertainty
through a finite number of scenarios. The reference day for the simu-
lations is May 1, 2018; Figs. 5 and 6 portray the actual prices and PV
production on the reference day, respectively.

4.2. Scenario generation

The scenario trees that were used in this paper are portrayed in
Fig. 7.

4.2.1. Day-ahead market prices
To generate scenarios for the DA market prices, the path-based

approach that was presented in [49,50] was adapted by replacing the
base regression model. The methodology is based on utilizing regres-
sion models to obtain one-step-ahead predictions and perturbing their

Fig. 5. Actual prices in all the considered market sessions.
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output by sampling Gaussian white noise that is estimated by the re-
siduals during the regression model training phase. Then, the perturbed
prediction is used as a predictor in the next one-step prediction, while
this process continues until a scenario (path) for the desired lead time
has been obtained. By iteratively applying this technique, starting from
the first one-step-ahead prediction, the desired number of scenarios can
be generated.

The base regression model that was employed in this case is called
Ridge regression. To train the regression model and generate scenarios
for May 1, 2018, historical data spanning April 25, 2018 to April 30,
2018 were used. Initially, 72 consecutive lags were used as features to
perform a one-step-ahead prediction, whereas the number of features
was reduced to 24 by performing feature selection using random forest
regression [51]. Following the previously described scenario generation
procedure, 50 equiprobable DA market price scenarios were generated.

It should be noted that, in contrast with the other random variables
considered in the proposed stochastic program formulation, scenarios
for the DA market prices only need to be generated once, because after
the clearing of the DA market, the actual prices are known.

4.2.2. PV power production
For the generation of irradiance scenarios, the same approach used

for the DA market prices was applied. Evidently, PV power production
scenarios are obtained by applying (28) on generated irradiance sce-
narios.

Nonetheless, several adaptations were made to the DA market price
scenario generation approach. First, instead of Ridge regression models,
Artificial Neural Networks (ANNs) were used to perform one-step ahead

predictions. Second, the set of irradiance scenarios was updated before
the clearing of the DA market and before each rescheduling following
the program of the intraday market to account for the latest information
on actual irradiance. As a result, seven sets, comprising 50 scenarios
each, were generated in a rolling-shrinking horizon.

To train the ANNs and generate scenarios for May 1, 2018, historical
data spanning April 20, 2018 to April 30, 2018, 12:00 PM were used.
Initially, 48 consecutive lags were used as features; however, the
number of features was reduced to 12 by performing feature selection
using random forest regression.

4.2.3. Intraday market prices
As can be seen in Fig. 5, the intraday market prices are strongly

correlated with DA market prices. For this reason, a second order
polynomial fit was used to estimate the relationship between the DA
prices and the prices in each of the intraday sessions based on the
historical data (April 20, 2018 to April 30, 2018 12:00 PM). It is to be
noted that before the clearing of the DA market, six intraday price
signals were generated for each DA market price scenario; however,
after the clearing of the DA market, six intraday price signals were
generated based on the cleared DA market price.

4.2.4. Imbalance market prices
To generate scenarios for the positive and negative imbalance

prices, a different approach was used. Initially, the difference between
the DA market price and the positive imbalance prices ( 0), along with
the difference between the DA market price and the negative imbalance
prices ( 0), were obtained for the period between January 1, 2018 and
April 30, 2018, 12:00 PM and a non-parametric kernel density esti-
mator was fitted to each difference time series. Subsequently, before the
clearing of the DA market, two sets of 24 samples (one for each price
difference and period) were drawn from the non-parametric distribu-
tion and were superposed to the 50 DA market price scenarios. After the
clearing of the DA market, the samples of the differences were used to
adjust the estimation of the positive and negative imbalance market
prices based on the subsequently known DA market prices.

4.3. Results and discussion

After having run the simulations, the PV power producer’s behavior
follows the scenario profiles of PV production and market prices. The
bidding profiles in the DA market and the ID market sessions both
depend on the scenarios trees but also on the particular trading
strategy. The bids in all the markets under both SMILP-RSM-1 and
SMILP-RSM-2 strategies are shown in Tables 5–10.

The results of each of the seven optimization processes that are

Fig. 6. Actual PV production.

Fig. 7. Scenario tree before and after the DA market clearing. The scenario tree on the right is updated by incorporating newly available information before
performing rescheduling, according to the program of the intraday market.
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executed under SMILP-RSM-1 are displayed in each column of Table 5.
The behavior of the bid depends on the scenarios of prices and PV
production for the window of the scheduling or rescheduling, which is
taking the decisions. Although the imbalances also affect the bids, these
imbalances can come from previous scheduling or rescheduling.

Following the optimization processes of the SMILP-RSM-2 strategy
in Table 4, it can be seen that the 5th and 6th processes have the same
results as the 7th optimization process as shown in Table 10. For this
reason, it is important to take note when each optimization process
moves forward. The next optimization process has fewer decisions be-
cause the previous scheduling or rescheduling is now known. So some
positions in the bid come from taking advantages of the arbitrage

between market and sessions. Similar results in the 5-6th optimization
processes happen as a consequence of lower uncertainty and length of
horizon considered in the rescheduling process.

As we can observe in Tables 5–10, owing to different session win-
dows, there is a reduction of traded hours in the last rescheduling. This
reduction means that the bids in DA column span from the 6th to the
18th hours, while the ID6 column has only 4 h of bids, from the 16th to
the 19th hour. Also, between the 1st and the 5th hours and from the
20th to the 24th hours, the bid is zero due to the sunrise and sunset
times in that period of the year.

SMILP-RSM-2 presents higher bid volumes compared to SMILP-
RSM-1. SMILP-RSM-1 considers only one market and penalties through
the balancing market. Then, model SMILP-RSM-1 compensates the

Table 5
Results of the bids (MWh) for the SMILP-RSM-1 in each hour and market ses-
sions for == … 0.9i 1,2,3, , 7 , and from the 1st to the 7th optimization processes.

Hour DA ID1 ID2 ID3 ID4 ID5 ID6

1 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2 0,0 0,0 0,0 0,0 0,0 0,0 0,0
3 0,0 0,0 0,0 0,0 0,0 0,0 0,0
4 0,0 0,0 0,0 0,0 0,0 0,0 0,0
5 0,0 0,0 0,0 0,0 0,0 0,0 0,0
6 1,6 48,4 0,0 0,0 0,0 0,0 0,0
7 0,2 −0,2 0,8 1,8 0,0 0,0 0,0
8 2,5 2,0 1,4 46,8 −1,8 0,0 0,0
9 21,1 32,8 1,5 −2,3 0,6 0,0 0,0
10 31,7 27,6 0,9 −5,6 −41,7 0,0 0,0
11 28,0 35,7 −0,1 −42,0 −34,8 0,0 0,0
12 19,1 −0,9 −1,9 −27,5 3,6 35,2 0,0
13 15,9 −2,8 −1,5 −26,8 0,3 50,0 0,0
14 9,2 −6,6 −1,4 −23,7 23,0 −29,1 0,0
15 27,5 25,1 2,8 −50,0 44,7 −50,0 0,0
16 22,0 29,6 0,1 −1,7 0,0 −50,0 −46,8
17 4,4 46,0 0,3 −0,7 0,0 −50,0 −50,0
18 9,5 40,5 0,0 0,0 −50,0 −48,9 −9,8
19 0,0 1,9 −1,9 50,0 −50,0 −50,0 −12,9
20 0,0 0,0 0,0 0,0 0,0 0,0 0,0
21 0,0 0,0 0,0 0,0 0,0 0,0 0,0
22 0,0 0,0 0,0 0,0 0,0 0,0 0,0
23 0,0 0,0 0,0 0,0 0,0 0,0 0,0
24 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Table 6
Results of the bids (MWh) for the SMILP-RSM-2 in each hour and market ses-
sions for == 0.9i 1 , and the 1st optimization process.

Hour DA ID1 ID2 ID3 ID4 ID5 ID6

1 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2 0,0 0,0 0,0 0,0 0,0 0,0 0,0
3 0,0 0,0 0,0 0,0 0,0 0,0 0,0
4 0,0 0,0 0,0 0,0 0,0 0,0 0,0
5 0,0 0,0 0,0 0,0 0,0 0,0 0,0
6 0,0 −50,0 50,0 50,0 0,0 0,0 0,0
7 0,0 −50,0 0,7 50,0 0,0 0,0 0,0
8 0,0 −50,0 −47,5 50,0 50,0 0,0 0,0
9 50,0 −50,0 −50,0 50,0 16,4 0,0 0,0
10 50,0 −50,0 25,1 50,0 −50,0 0,0 0,0
11 0,0 50,0 50,0 −26,3 −50,0 0,0 0,0
12 44,3 50,0 −27,6 −50,0 −50,0 50,0 0,0
13 39,9 −24,0 50,0 −50,0 −50,0 50,0 0,0
14 0,0 50,0 50,0 −50,0 13,2 −50,0 0,0
15 0,0 50,0 50,0 −50,0 50,0 −50,0 0,0
16 0,0 50,0 50,0 3,2 50,0 −50,0 −50,0
17 0,0 0,6 50,0 50,0 50,0 −50,0 −50,0
18 7,6 50,0 50,0 50,0 −50,0 −50,0 −50,0
19 0,0 50,0 50,0 50,0 −50,0 −50,0 −50,0
20 0,0 0,0 0,0 0,0 0,0 0,0 0,0
21 0,0 0,0 0,0 0,0 0,0 0,0 0,0
22 0,0 0,0 0,0 0,0 0,0 0,0 0,0
23 0,0 0,0 0,0 0,0 0,0 0,0 0,0
24 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Table 7
Results of the bids (MWh) for the SMILP-RSM-2 in each hour and market ses-
sions for == 0.9i 2 , and the 2nd optimization process.

Hour DA ID1 ID2 ID3 ID4 ID5 ID6

1 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2 0,0 0,0 0,0 0,0 0,0 0,0 0,0
3 0,0 0,0 0,0 0,0 0,0 0,0 0,0
4 0,0 0,0 0,0 0,0 0,0 0,0 0,0
5 0,0 0,0 0,0 0,0 0,0 0,0 0,0
6 0,0 −50,0 50,0 50,0 0,0 0,0 0,0
7 0,0 −50,0 0,0 50,0 0,0 0,0 0,0
8 0,0 −50,0 −45,4 50,0 50,0 0,0 0,0
9 50,0 −50,0 −46,1 50,0 50,0 0,0 0,0
10 50,0 −40,7 50,0 50,0 −50,0 0,0 0,0
11 0,0 50,0 50,0 −30,5 −50,0 0,0 0,0
12 44,3 50,0 −26,0 −50,0 −50,0 50,0 0,0
13 39,9 −26,8 50,0 −50,0 −50,0 50,0 0,0
14 0,0 50,0 50,0 −50,0 2,6 −50,0 0,0
15 0,0 50,0 50,0 −50,0 50,0 −50,0 0,0
16 0,0 50,0 50,0 1,6 50,0 −50,0 −50,0
17 0,0 0,4 50,0 50,0 50,0 −50,0 −50,0
18 7,6 50,0 50,0 50,0 −50,0 −50,0 −50,0
19 0,0 50,0 50,0 50,0 −50,0 −50,0 −50,0
20 0,0 0,0 0,0 0,0 0,0 0,0 0,0
21 0,0 0,0 0,0 0,0 0,0 0,0 0,0
22 0,0 0,0 0,0 0,0 0,0 0,0 0,0
23 0,0 0,0 0,0 0,0 0,0 0,0 0,0
24 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Table 8
Results of the bids (MWh) for the SMILP-RSM-2 in each hour and market ses-
sions for == 0.9i 3 , and the 3rd optimization process.

Hour DA ID1 ID2 ID3 ID4 ID5 ID6

1 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2 0,0 0,0 0,0 0,0 0,0 0,0 0,0
3 0,0 0,0 0,0 0,0 0,0 0,0 0,0
4 0,0 0,0 0,0 0,0 0,0 0,0 0,0
5 0,0 0,0 0,0 0,0 0,0 0,0 0,0
6 0,0 −50,0 50,0 50,0 0,0 0,0 0,0
7 0,0 −50,0 0,7 50,0 0,0 0,0 0,0
8 0,0 −50,0 −44,0 50,0 50,0 0,0 0,0
9 50,0 −50,0 −44,6 50,0 50,0 0,0 0,0
10 50,0 −40,7 50,0 50,0 −50,0 0,0 0,0
11 0,0 50,0 50,0 −28,8 −50,0 0,0 0,0
12 44,3 50,0 −28,0 −50,0 −50,0 50,0 0,0
13 39,9 −26,8 48,5 −50,0 −50,0 50,0 0,0
14 0,0 50,0 50,0 −50,0 1,2 −50,0 0,0
15 0,0 50,0 50,0 −50,0 50,0 −50,0 0,0
16 0,0 50,0 50,0 1,7 50,0 −50,0 −50,0
17 0,0 0,4 50,0 50,0 50,0 −50,0 −50,0
18 7,6 50,0 50,0 50,0 −50,0 −50,0 −50,0
19 0,0 50,0 50,0 50,0 −50,0 −50,0 −50,0
20 0,0 0,0 0,0 0,0 0,0 0,0 0,0
21 0,0 0,0 0,0 0,0 0,0 0,0 0,0
22 0,0 0,0 0,0 0,0 0,0 0,0 0,0
23 0,0 0,0 0,0 0,0 0,0 0,0 0,0
24 0,0 0,0 0,0 0,0 0,0 0,0 0,0
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imbalances later in other rescheduling processes. Nevertheless, SMILP-
RSM-2 includes all forward markets in each scheduling and re-
scheduling process. SMILP-RSM-2 can then buy or sell more energy in
subsequent rescheduling processes because it considers all markets,
which means that penalties can be further mitigated. Nonetheless, it
should be noted that SMILP-RSM-2 could lead to more losses owing to
the exhibited arbitrage behavior. The mitigation of penalties also comes
from reducing the uncertainty because of the reducing rescheduling
horizons.

A post-market analysis allows the calculation of the actual profit,
CVaR, and the imbalances following each strategy and for each risk-
aversion level i. The actual profits and imbalances for both strategies
and for = …i 1,2,3, , 7 = 0,1 and = …i 1,2,3, , 7 = 0,9 are displayed in Table 11.
It can be observed that the highest negative imbalances occur under all
strategies and for all values of in hour 6. Owing to the high negative
imbalance, the real profit is negative during that period. However, the
negative imbalance is not the unique factor that affects profit. Profit
depends on the differences between DA and ID prices, the imbalance
prices, and PV production. Their effects on the profits also depend on
scenarios and on how well these are able to describe the future. For the
mitigation of unknown future effects on trading, different markets and
sessions are used. For this reason, the scheduling and rescheduling
present different expected profits. Also, it should be noted that the
expected profits of SMILP-RSM-2 are higher than that of SMILP-RSM-1.

Negative imbalances under SMILP-RSM-1 are the same for both i,
while the positive imbalances are higher when i is higher. These higher
positive imbalances mean that the bids in markets are lower than the
production; the income of the producer from the market is then also
lower. In other words, the lowest real profit happens when the upward
imbalance is the highest at i = 0.9 under SMILP-RSM-1. As explained
regarding the imbalance penalization, the downward imbalances re-
duce the profits, but SMILP-RSM-2 has higher actual profits despite the
higher negative imbalances in comparison to SMILP-RSM-1. In fact, the
negative imbalances happen if the bids are proven higher than the ac-
tual production. As can be seen in Table 11, this is the case in SMILP-
RSM-2 in comparison with SMILP-RSM-1. In contrast, the upward im-
balances are lower in SMILP-RSM-2. The second strategy utilizes ar-
bitrage, an effect of deciding bids in all markets jointly on each opti-
mization process with updated information. This arbitrage comes from
the market prices during each optimization process. Each optimization
process attempts to take advantage of the differences between future
market prices. It can be observed that the actual profits increase by
more than 2000 € in the 8th hour when comparing SMILP-RSM-2 with
SMILP-RSM-1. This increase is owing to the reduction in the positive
imbalance of more than 70 MW.

Figs. 8 (ai) and 9 (ai) portray the profits and CVaR in all the si-
mulations of all optimization processes. These figures also include the
different configurations regarding the i. Consider each i as an in-
dependent simulation. For instance, there are five =i 1= 0.1, 0.25, 0.5,
0.75, and 0.9 in the 1st optimization process. Later, there are two

= …i 2,3,4, , 7= 0.1, and 0.9 for the other optimization processes. Re-
scheduling only has two values of because rescheduling is less sen-
sitive to its value. For this reason we use extreme values, such as 0.1
and 0.9. As a result, in total, there are 7 optimization processes; the first
process has 5 cases, and from the second process to the seventh process,
each has an optimization process of 2 cases. In conclusion, the total
number of simulations are 5 × 2 × 2 × 2 × 2 × 2 × 2 = 320 cases with
different configurations of i.

In addition to the behavior of profits (PF) vs. CVaR for both stra-
tegies and with all the values, Figs. 8 and 9 show a zoom of some PF
vs. CVaR areas of interest. SMILP-RSM-1 starts the optimization process
with low expected profits. Later, the three following optimization
processes reduce the expected profits further as shown in Fig. 8. This
reduction can come from real updated DA bids for that market window.
The rest of the optimization processes increase the expected profits, for
which the final process (post-market), from real profit evaluation, is the
highest. Therefore, the last three intraday sessions have more expected
profits for all Pareto frontiers. Independently of , each optimization
process has a Pareto frontier in a small area. The Pareto frontier of the
first optimization process is a typical frontier of PF vs. CVaR as [25]. It
can be observed that, for all the values of the per optimization

Table 9
Results of the bids (MWh) for the SMILP-RSM-2 in each hour and market ses-
sions for == 0.9i 4 , and the 4th optimization process.

Hour DA ID1 ID2 ID3 ID4 ID5 ID6

1 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2 0,0 0,0 0,0 0,0 0,0 0,0 0,0
3 0,0 0,0 0,0 0,0 0,0 0,0 0,0
4 0,0 0,0 0,0 0,0 0,0 0,0 0,0
5 0,0 0,0 0,0 0,0 0,0 0,0 0,0
6 0,0 −50,0 50,0 50,0 0,0 0,0 0,0
7 0,0 −50,0 0,7 50,0 0,0 0,0 0,0
8 0,0 −50,0 −44,0 50,0 50,0 0,0 0,0
9 50,0 −50,0 −44,6 50,0 47,7 0,0 0,0
10 50,0 −40,7 50,0 45,2 −50,0 0,0 0,0
11 0,0 50,0 50,0 −28,5 −50,0 0,0 0,0
12 44,3 50,0 −28,0 −50,0 −50,0 50,0 0,0
13 39,9 −26,8 48,5 −50,0 −50,0 50,0 0,0
14 0,0 50,0 50,0 −50,0 0,7 −50,0 0,0
15 0,0 50,0 50,0 −50,0 50,0 −50,0 0,0
16 0,0 50,0 50,0 0,0 50,0 −50,0 −50,0
17 0,0 0,4 50,0 49,6 50,0 −50,0 −50,0
18 7,6 50,0 50,0 50,0 −50,0 −50,0 −50,0
19 0,0 50,0 50,0 50,0 −50,0 −50,0 −50,0
20 0,0 0,0 0,0 0,0 0,0 0,0 0,0
21 0,0 0,0 0,0 0,0 0,0 0,0 0,0
22 0,0 0,0 0,0 0,0 0,0 0,0 0,0
23 0,0 0,0 0,0 0,0 0,0 0,0 0,0
24 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Table 10
Results of the bids (MWh) for the SMILP-RSM-2 in each hour and market ses-
sions for == 0.9i 7 , and the 7th optimization process.

Hour DA ID1 ID2 ID3 ID4 ID5 ID6

1 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2 0,0 0,0 0,0 0,0 0,0 0,0 0,0
3 0,0 0,0 0,0 0,0 0,0 0,0 0,0
4 0,0 0,0 0,0 0,0 0,0 0,0 0,0
5 0,0 0,0 0,0 0,0 0,0 0,0 0,0
6 0,0 −50,0 50,0 50,0 0,0 0,0 0,0
7 0,0 −50,0 0,7 50,0 0,0 0,0 0,0
8 0,0 −50,0 −44,0 50,0 50,0 0,0 0,0
9 50,0 −50,0 −44,6 50,0 48,4 0,0 0,0
10 50,0 −40,7 50,0 45,2 −50,0 0,0 0,0
11 0,0 50,0 50,0 −28,5 −50,0 0,0 0,0
12 44,3 50,0 −28,0 −50,0 −50,0 50,0 0,0
13 39,9 −26,8 48,5 −50,0 −50,0 50,0 0,0
14 0,0 50,0 50,0 −50,0 0,5 −50,0 0,0
15 0,0 50,0 50,0 −50,0 50,0 −50,0 0,0
16 0,0 50,0 50,0 0,0 50,0 −50,0 −50,0
17 0,0 0,4 50,0 49,6 50,0 −50,0 −50,0
18 7,6 50,0 50,0 50,0 −50,0 −50,0 −50,0
19 0,0 50,0 50,0 50,0 −50,0 −50,0 −50,0
20 0,0 0,0 0,0 0,0 0,0 0,0 0,0
21 0,0 0,0 0,0 0,0 0,0 0,0 0,0
22 0,0 0,0 0,0 0,0 0,0 0,0 0,0
23 0,0 0,0 0,0 0,0 0,0 0,0 0,0
24 0,0 0,0 0,0 0,0 0,0 0,0 0,0
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process, this follows a linear relation of PF vs. CVaR. This linear relation
effect can be attributed to using only two values in which the profits
are in a narrow area.

SMILP-RSM-2 has a different behavior to SMILP-RSM-1, as seen in
Fig. 9. SMILP-RSM-2 has the first optimization process as the highest
expected profits. Once the 2nd optimization process re-checked the
optimal DA bids, the expected profit of the 2nd optimization process is
lower. This effect of reducing the expected profits in the 2nd optimi-
zation process is a little mitigated in the 3rd optimization process. The
next optimization process decreases the expected profit again. After the
4th optimization process, the expected profits increase as well as the
CVaR. On the contrary, the real profit (8th process in Fig. 9 is almost the
same as the 7th optimization process, but the CVaR is higher.

Comparing Figs. 8 and 9, we observe that SMILP-RSM-1 has a higher
range of PF vs. CVaR, from 500 € to 32000 € for the profits. This range
is a clear effect of deciding only a market bid ahead in each optimi-
zation process. The real profits are lower because SMILP-RSM-1 only
considers income from the electricity market. On the contrary, the
SMIL-RSM-2 has a range equal to [37000, 43000] €. The narrow range
in SMILP-RSM-2 is because each optimization process considers all
market bids in advance. From the results of both strategies, we can
observe that the speculative offer, SMILP-RSM-2, has better results. This
speculation plays with the arbitrage and rescheduling after finishing the
previous market window. Despite being a speculative strategy, SMILP-
RSM-2 cannot directly influence market prices owing to a low PV ca-
pacity compared with the total generation capacity in the power
system.

The risk-hedging map allows us to see the behaviour of profits with
the risk aversion in two different trading strategies. For both strategies,
Figs. 8 and 9 display the risk map. As a result, the first optimization
process in both strategies has a similar efficient frontier to [25]. On the
contrary, there is another novel optimization processes with a parti-
cular risk map. Zooms in Figs. 8 and 9 from the 2nd to the 7th opti-
mization process indicate that its Pareto frontiers are in a very small

area. For the first strategy, SMILP-RSM-1, the PF vs. CVaR demonstrates
linear behaviour; while the second strategy, SMILP-RSM-2, has a higher
dispersion of each PF vs. CVaR evaluation. In addition, the i tree for
the evaluation of PF vs. CVaR, has unexpected results. This means, each

i analysis of PF vs. CVaR comes from a previous i, 1i 1 . For ex-
ample, an extreme case is the lowest i as == 0, 1i 1 == 0, 1i 2

== 0, 1i 3 == 0, 1i 4 == 0, 1i 5 == 0, 1i 6 == 0, 1i 7 , which
provides the highest profits. From previous optimization processes and
, we could think that profits should follow the previous profit efficient

frontier of =i i 1, but Figs. 8 and 9 show that each optimization process
has its own PF vs. CVaR area in the results of both strategies. For this
reason, the optimization process for each session is completely in-
dependent.

Finally, Table 12 presents a ratio of the real profit divided by real PV
production. This table shows the ratios of the extreme results of the real
profits through i. The range of results is [103,72, 138,64] €/MWh for
the reference day simulated. This range can help with decisions and
comparison with feed-in tariffs and power purchase agreements (PPAs).

5. Conclusions

In this paper, two strategies were proposed for trading the energy of
a PV power producer in the day-ahead and all sessions of the intraday
market, with a final penalization through the balancing market. The
mathematical models were based on two-stage stochastic programming.
The Conditional Value-at-Risk (CVaR) metric was used to perform risk
hedging. Scheduling scenarios were also developed for both the irra-
diance and wholesale electricity market prices, while the rescheduling
scenarios were made following a rolling-shrinking horizon. As a result
of the post-market analysis, the distances of the expected and real
profits between optimization processes and post-market (8th optimi-
zation process) demonstrate how the optimization model behaves.

Based on extensive simulations, the most important conclusions can
be summarized as follows:

Table 11
Actual profits (€) and imbalances (MWh) of SMILP-RSM-1 (1) and SMILP-RSM-2 (2) for = …i 1,2,3, , 7 = 0,1 and 0,9.

Str., 1, i=0,1 1, i=0,9 2, i=0,1 2, i=0,9 1, i=0,1 1, i=0,9 2, i=0,1 2, i=0,9
Hour PF PF PF PF ( +B B, ) ( +B B, ) ( +B B, ) ( +B B, )

1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
6 −543,4 −545,1 −473,3 −473,3 −48,3 −48,3 −48,3 −48,3
7 207,5 206,7 649,7 649,7 2,8 2,8 4,7 4,6
8 711,4 736,1 1.732,8 1.732,9 −32,8 −32,8 9,9 12,1
9 12,2 12,5 774,0 774,0 −39,5 −39,5 −39,5 −39,5
10 1.332,5 1.306,6 1.840,4 1.840,4 21,7 21,7 −20,0 −20,0
11 1.472,4 1.331,8 1.788,9 1.713,8 45,1 45,1 −18,2 10,3
12 2.165,7 2.097,3 2.965,0 2.965,0 5,4 10,4 16,8 21,6
13 1.252,7 1.177,7 1.980,8 1.979,6 −15,6 −15,6 1,2 7,9
14 3.094,1 2.806,5 4.037,8 4.041,4 56,5 56,5 23,1 27,4
15 4.408,2 4.402,2 4.176,2 4.176,2 35,6 35,6 −14,4 −14,4
16 4.619,2 4.617,0 5.111,2 5.111,2 80,7 80,7 −16,1 −16,1
17 4.172,3 4.169,7 4.801,5 4.801,5 71,0 71,0 −29,0 −29,0
18 4.091,3 4.096,7 6.311,3 6.311,3 73,8 73,8 0,9 7,4
19 4.733,9 4.762,2 5.980,2 5.980,2 66,9 66,9 4,0 4,0
20 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
21 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
22 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
23 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
24 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Total 31.730,1 31.177,7 41.676,5 41.603,9 (459,4, −136,2) (464,4, −136,2) (60,5, −185,6) (95,4, −167,4)
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Fig. 8. Profit vs. CVaR of SMILP-RSM-1.
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Fig. 9. Profit vs. CVaR of SMILP-RSM-2.
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• SMILP-RSM-2 has the potential to return greater actual profits and
more favorable CVaR values than SMILP-RSM-1.

• Speculation and arbitrage in SMILP-RSM-2 reduce the total number
of imbalances. The imbalances are reduced owing to a higher
amount of energy that is traded throughout different market floors.

• The Pareto frontiers of the expected profit versus CVaR change de-
pending on the current optimization process; however, it is notable
that they are not close to the frontier that is produced during the 1st
optimization process. The risk-hedging map of expected profit
versus CVaR shows that each optimization process results in fron-
tiers that are relatively narrow.

• SMILP-RSM-2 compensates for imbalance penalties with the price
differences between market floors, resulting from considering sub-
sequent market floors in day-ahead decisions.
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Real PV production (RPV) (MWh), the highest real profit of SMILP-RSM-1 per
MWh (RHPF1) (€/MWh), the lowest real profit of SMILP-RSM-1 per MWh
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RPV RHPF1 RLPF1 RHPF2 RLPF2

300,59 105,55 103,72 138,64 138,40
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