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a b s t r a c t

Circular data are encountered throughout a variety of scientific disciplines, such as in eye movement
research as the direction of saccades. Motivated by such applications, mixtures of peaked circular
distributions are developed. The peaked distributions are a novel family of Batschelet-type distribu-
tions, where the shape of the distribution is warped by means of a transformation function. Because
the Inverse Batschelet distribution features an implicit inverse that is not computationally feasible
for large or complex data, an alternative called the Power Batschelet distribution is introduced.
This distribution is easy to compute and mimics the behavior of the Inverse Batschelet distribution.
Inference is performed in both the frequentist framework, through Expectation–Maximization (EM) and
the bootstrap, and the Bayesian framework, through MCMC. All parameters can be fixed, which may
be done by assumption to reduce the number of parameters. Model comparison can be performed
through information criteria or through bridge sampling in the Bayesian framework, which allows
performing a wealth of hypothesis tests through the Bayes factor. An R package, flexcircmix, is
available to perform these analyses.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Eye movements are commonly used to study aspects of cog-
nition and its development (Henderson, 2003; Itti & Koch, 2001).
Eye movements consist of point fixations and movements be-
tween fixations called saccades. In particular, eye movements are
of paramount importance in studying the top-down division of
attention. For a review, see Rayner (2009).

In eye movement research, a major quantity of interest is
the saccade direction, the angle between two consecutive fixa-
tions. For example, one topic of interest using saccade directions
investigates the existence of general directional biases (Tatler
& Vincent, 2009), such as a preference for saccades along the
horizontal axis (Foulsham, Kingstone, & Underwood, 2008) or a
preference for leftward saccades (Foulsham, Gray, Nasiopoulos,
& Kingstone, 2013). Another topic of interest is eye movement
behavior when reading (Rayner, 2009). Furthermore, distributions
of eye movement directions are used to assess the closeness of
algorithms to human performance on a variety of eye move-
ment tasks, such as visual search (Najemnik & Geisler, 2008)
and saccadic decision making (Engbert, Trukenbrod, Barthelmé,
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& Wichmann, 2015; Le Meur & Coutrot, 2016; Tatler, Brockmole,
& Carpenter, 2017).

Previously, it has been difficult to directly analyze a sample
of saccade directions. One pragmatic solution to the difficulty
of analyzing saccade directions is categorizing the angles in a
number of general directions, such as in Foulsham et al. (2008).
However, such analyses have reduced power, provide less precise
interpretation, and require arbitrary selection of a method of
categorization.

A natural model of saccade directions can be obtained by view-
ing saccade directions as circular data, that is, data measured in
angles. Circular data differ from linear data in the sense that circu-
lar data are measured in a periodical sample space. For example,
an angle of 1◦ is quite close to an angle 359◦, although linear
intuition suggests otherwise. Circular data are frequently encoun-
tered in scientific fields as diverse as life sciences (Mardia, 2011),
behavioral biology (Bulbert, Page, & Bernal, 2015), cognitive psy-
chology (Kaas & Van Mier, 2006), bioinformatics (Mardia, Hughes,
Taylor, & Singh, 2008), political sciences (Gill & Hangartner, 2010)
and environmental sciences (Arnold & SenGupta, 2006). In this
study, a model will be developed that leans on the field of
circular statistics (Fisher, 1995; Mardia & Jupp, 2000; Pewsey,
Neuhäuser, & Ruxton, 2013) to provide satisfying inference for
saccade direction data.

Previously, Van Renswoude, Johnson, Raijmakers, and Visser
(2016) used mixtures of von Mises distributions to model saccade

https://doi.org/10.1016/j.jmp.2019.102309
0022-2496/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jmp.2019.102309
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmp.2019.102309&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:k.t.mulder@uu.nl
mailto:i.klugkist@uu.nl
mailto:D.R.vanRenswoude@uva.nl
mailto:I.Visser@uva.nl
https://doi.org/10.1016/j.jmp.2019.102309
http://creativecommons.org/licenses/by/4.0/


2 K. Mulder, I. Klugkist, D. van Renswoude et al. / Journal of Mathematical Psychology 95 (2020) 102309

Fig. 1. A comparison of two approaches of analyzing saccade direction. Each colored distribution represents a single component of the mixture model.

direction data, using the R package movMF (Hornik & Grün, 2014).
The movMF package was developed in the more general case for
von Mises–Fisher mixtures of distributions on p-dimensional hy-
perspheres, with circular mixtures resulting as a special case. The
van Renswoude saccade direction data and the von Mises mixture
fit are displayed in Fig. 1a. It can be seen that the peakedness
of the data is not captured well. The peaked mixture model in
Fig. 1b is the final model to be introduced in this work. It naturally
incorporates peakedness and requires fewer parameters. It can
clearly be seen that using the von Mises mixture approach for
saccade direction data is not a natural fit, and as such has major
drawbacks.

In this paper, four major drawbacks of analyzing saccade di-
rections using the von Mises mixture method of Hornik and
Grün (2014) will be addressed. First, the movMF approach pro-
vides estimates for the parameters of the model by using the
Expectation-Maximization (EM) algorithm, but no measure of
their uncertainty, such as confidence intervals or standard er-
rors. Second, it can be seen that saccade direction distributions
are very often sharp-peaked or flat-topped distributions, which
are not directly modeled by this approach. Instead, the mix-
ture model will deal with peaked data by fitting multiple com-
ponents on a single mode, which precludes interpretation of
the component parameters. Third, because the mixture model
deals with peakedness by fitting multiple components for a sin-
gle mode, it is impossible to compare variances of components,
which is something of interest in many saccade direction studies,
such as in Van Renswoude et al. (2016). Fourth, there is often
a desire to fix component means (or other parameters) to pre-
specified values, in order to improve power, which is not possible
currently.

The model that will be developed in this paper for saccade
direction data has two main characteristics. First, it will be a
mixture of circular distributions. Second, it will employ flexible
distributions in order to naturally model sharp-peaked and flat-
topped components. Inference will be developed in a frequentist
framework through an EM-algorithm and the bootstrap, and in a
Bayesian framework through MCMC sampling. In order to speed
up the required computations, a new distribution will be in-
troduced that mimics the behavior of the symmetric density
introduced in Jones and Pewsey (2012).

As a motivating example, this study will rely on saccade direc-
tion data which was previously published on in Van Renswoude
et al. (2016). The main interest in this work is in describing
behavioral differences in free-viewing between adults and infants
(see also Aslin (2007)). The data consists of 12367 saccades
from adults and 4832 saccades from infants. For details on data

collection, see Van Renswoude et al. (2016). This data is plotted in
Fig. 2. Because the hypotheses of interest inform the development
of the model, they will be revisited here. First, the researchers are
interested in reaffirming a horizontal bias, that is, there are more
saccade directions along the horizontal axis than the vertical
axis. Second, infants are expected to have larger variance in their
saccade directions. Third, the researchers are interested in the
difference in the horizontal bias of infants and adults. For all of
these hypotheses, currently one would be limited to descriptive
analyses. The methods developed in this paper will allow full
statistical inference. The methods are available in the R package
flexcircmix, freely available on GitHub.

The structure of this paper will proceed as follows. In
Section 2, the base distribution of the mixture model will be
discussed, and the Power Batschelet distribution will be intro-
duced. Inference for the resulting mixture model will be discussed
in Section 3. The method will be illustrated on both synthetic
data and the van Renswoude data in Section 4. Finally, some
concluding remarks will be given in Section 5.

2. Family of Batschelet distributions

In this section, we will introduce Batschelet-type distributions.
First, the Inverse Batschelet distribution of Jones and Pewsey
(2012) will be recapped. Then, this approach will be adapted into
the Power Batschelet distribution. Lastly, a note on computing the
circular variance for such distributions will be given.

2.1. Inverse Batschelet distribution

The Inverse Batschelet distribution is a peaked or flat-topped
circular distribution. It is constructed by modifying a base dis-
tribution, for which the von Mises distribution will be used. The
von Mises distribution can be seen as a circular analogue to the
normal distribution. In the following, it will be introduced shortly.

Denote the unit circle by S1, and the set of observed angles (in
radians) by θ = θ1, . . . , θn, with θi ∈ S1. For notational simplicity,
we assume θ ∈ [−π, π ). The von Mises distribution is given by

M(θ | µ, κ) = [2π I0(κ)]−1 exp {κ cos(θ − µ)} , (1)

where θ is the observed angle, µ ∈ [−π, π ) is the mean direction,
κ ∈ R+ is a concentration parameter and I0(·) is the modified
Bessel function of the first kind and order zero. Note that this
density is periodic, so M(θ | µ, κ) = M(θ + 2kπ | µ, κ), ∀ k ∈

Z. Various von Mises densities are displayed in Fig. 1a as the
separate components of the mixture.

https://cran.r-project.org/web/packages/movMF/index.html
https://cran.r-project.org/web/packages/movMF/index.html


K. Mulder, I. Klugkist, D. van Renswoude et al. / Journal of Mathematical Psychology 95 (2020) 102309 3

Fig. 2. Plots of the example data. The top plot provides the data in polar coordinates. The bottom plot shows the data on the real line, where the left and right
sides of the plot represent the same point on the circle.

Clearly, saccade directions tend to follow more peaked densi-
ties than the von Mises density. Two approaches to incorporate
peakedness in the model are the Jones–Pewsey distribution (Jones
& Pewsey, 2005) and the Inverse Batschelet distribution (Jones &
Pewsey, 2012). Both options have the von Mises distribution as
a special case. However, the latter is of somewhat simpler form
and allows for more peaked distributions, so it will be employed
here.

The core idea of the peaked densities developed in Batschelet
(1981) is that given a circular density f (θ ), a new distribution
emerges if we take f (τ (θ )) for some bijective function τ which
maps the circle onto itself. We will refer to all distributions
obtained by this construction as Batschelet distributions, pos-
sibly with a prefix relating to the specific bijective function τ

used. Attention will be limited to using the von Mises density as
the base distribution f , such that we will work in practice with
fκ (τ (θ −µ)), with κ the concentration parameter of the von Mises
distribution.

The function originally used by Batschelet (1981) is given by

τ (θ ) = θ + λ sin θ, (2)

where the peakedness parameter λ ∈ [−1, 1] can be used to
obtain a family of flat-topped densities. Using the inverse of τ (θ )
instead results in a family of peaked densities (Abe, Shimizu, &
Pewsey, 2010; Pewsey, Shimizu, & de la Cruz, 2011). A family
of densities incorporating both flat-topped and peaked members
was developed in Jones and Pewsey (2012) and will be employed
here.

The von Mises based symmetric Inverse Batschelet density is
given by

f (θ | µ, κ, λ) = [2π I0(κ)Kκ,λ]
−1 exp{κ cos tλ(θ − µ)} (3)

where

tλ(θ ) =
1 − λ

1 + λ
θ +

2λ
1 + λ

s−1
λ (θ ) (4)

with s−1
λ (θ ) being the inverse of sλ(θ ) = θ −

1
2 (1 + λ) sin(θ ), and

Kκ,λ =
1 + λ

1 − λ
−

2λ
1 − λ

∫ π

−π

[2π I0(κ)]−1

× exp {κ cos (θ − (1 − λ) sin(θ )/2)} dθ. (5)

Note that tλ(θ ) is not available analytically because s−1
λ (θ ) is

not. Therefore, evaluation of the density requires both numerical
integration and numerical inversion. The density is plotted with
various values of λ in Fig. 3a. It can be seen that the peaked
distribution observed for the saccade data can be obtained from
this distribution when 0 < λ ≤ 1.

Although for many applications the computational burden of
numerically inverting a function for each density evaluation is
acceptable, such computations quickly become burdensome upon
incorporation of the density into a larger model, such as a mixture
model. This can similarly occur when using certain methods
for uncertainty quantification, such as MCMC or the bootstrap.
Therefore, in order to be able to employ Batschelet distributions
in a broader context of models, an alternative to tλ(θ ) will be
introduced in the following section. The major advantage will be
that the alternative will not require numerical inversion.
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Fig. 3. Two types of Batschelet distributions, based on the von Mises distribution with µ = 0, κ = 2. In order of increasing height at θ = 0, the peakedness
parameter λ = {−.8, −.4, −.1, 0, .1, .4, .8}. In each figure, λ = {−.8, .8} are dashed, while λ = 0 is a solid black line, with all others dotted. It can be seen that the
densities are extraordinarily similar.

2.2. Power Batschelet distribution

In order to improve computational efficiency in more complex
models, tλ(θ ) can be replaced by a function of similar shape, but
more appealing computational properties. We propose

t∗λ (θ ) = sign(θ )π
(

|θ |

π

)γ (λ)

, (6)

with γ (λ) ∈ R+, which has the basic properties required of it,
namely to be a mapping of the circle onto itself, so long as −π ≤

θ ≤ π is assumed. In practice, this property is generally forced
upon the original data θo by taking θ = [(θo + π ) mod 2π ] −

π . Note this does not change the angle, merely its numerical
representation.

Next, the function γ (λ) should be chosen such that changing
λ mimics the behavior of parameter λ of the Inverse Batschelet
distribution in Eq. (3). First, in order to keep the parametrization
where −1 ≤ λ ≤ 1 with negative values corresponding to
flat-topped densities, take

γ (λ) =
1 − cλ
1 + cλ

, (7)

where c is some fixed constant, chosen such that t∗λ closely
approximates tλ. In order to choose c , the difference between t∗λ
and tλ was numerically minimized over values of c ,1 resulting
in c = 0.4052284. The two functions t∗λ and tλ, are plotted
together in Fig. 4. It is clear that the functions, although they do
not exactly coincide, are strongly comparable. In practical use, the
resulting density of the Power Batschelet distribution was found
to be evaluated more than several hundred times faster than the
Inverse Batschelet distribution. The resulting density is shown in
Fig. 3b, where again, we conclude that the densities are strongly
similar.

The new continuous function t∗λ (θ ) is trivial to compute and
has several attractive properties. For example, note that the we
simply have t∗−1

λ (θ ) = t∗
−λ(θ ).

Using this function, the Power Batschelet distribution is then
defined as

fPB(θ | µ, κ, λ) = [K ∗

κ,λ]
−1 exp{κ cos t∗λ (θ − µ)}, (8)

1 To be precise, c was chosen such that for a specific λ, the mean absolute
difference between tλ(θ ) and t∗λ (θ ) evaluated at 100 points evenly spread on
the circle was minimized. The final c = 0.4052284 is the average between
the optimal c for λ = 1 and λ = −1. The two functions do not have to
coincide exactly, as being able to directly compare values for λ is only used
for interpretability.

Fig. 4. Comparison of t∗λ (blue, dashed) used for the Power Batschelet distri-
bution and tλ (red, solid) used for the Inverse Batschelet distribution, with, in
order of increasing height at π/2, peakedness parameter λ = {−.8, −.3, .5, 1}.

where

t∗λ (θ ) = sign(θ )π
(

|θ |

π

) 1−0.4052284λ
1+0.4052284λ

, (9)

and the inverse of the normalizing constant is

K ∗

κ,λ =

∫ π

−π

exp{κ cos t∗λ (θ − µ)}dθ, (10)

which must still be numerically integrated. The Power Batschelet
distribution generally shares the properties of the Inverse
Batschelet distribution, in that it is symmetric around µ and
unimodal. Several further properties of this distribution are dis-
cussed in Appendix.

A possible problem is that if 0 < λ ≤ 1, we have 0 < γ (λ) < 1,
and thus dt∗

λ
(θ )

dθ

⏐⏐⏐
θ=0

= ∞, so the function is not twice differen-
tiable for that range of λ, nor smooth. That is, the probability
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density is continuous, and so is t∗λ (·), but its derivative is not,
nor is dfPB(θ |µ,κ,λ)

dθ . As a result, not all regularity conditions for
maximum likelihood estimation are met, in very similar fashion
to the commonly used Laplace (double exponential) distribution.
In addition, due to the role of this distribution as a close approxi-
mation to the Inverse Batschelet, results for the Power Batschelet
distribution can be seen as an approximation to the results of the
Inverse Batschelet distribution.

If one is concerned about the regularity conditions for the
Power Batschelet distribution, the Inverse Batschelet distribu-
tion is an alternative which is also implemented in the package
flexcircmix. However, any analysis with that method may take
several orders of magnitude longer. In practice, we have not run
into any issues related to this, so we prefer the computational
efficiency of the Power Batschelet distribution.

2.3. Measures of circular dispersion

While for the von Mises distribution the circular variance is
known to decrease monotonically with increasing κ regardless
of the other parameters, this does not hold true for Batschelet
distributions, because the peakedness parameter λ also exerts
strong influence on the circular variance. However, it is desir-
able to compare the circular variance across components in the
mixture model discussed in the following sections. Therefore, we
compute the circular variance v, given by v = 1 − ρ, where
ρ is the population resultant length associated with the circular
density f (θ | φ), where φ denotes a vector of parameters. In the
general case, it is given by

ρ = E[cosΘ] =

∫ π

−π

cos θ p(θ | φ)dθ. (11)

If the data has the von Mises distribution, it is known that ρ =
I1(κ)
I0(κ)

(Mardia & Jupp, 2000), but in general, computing ρ will

require numerical integration. Denoting the normalizing constant
by C(κ, λ) =

[∫ π

−π
exp{κ cos tλ(θ )}dθ

]−1, we have

ρ(κ, λ) = E[cosΘ] =

∫ π

−π

cos θ p(θ | µ, κ, λ)dθ (12)

= C(κ, λ)
∫ π

−π

cos θ exp{κ cos tλ(θ )}dθ. (13)

This means we should need at most two numerical integrations.
Lastly, the circular standard deviation can be computed by σc =
√

−2 log ρ (Fisher, 1995).

3. Inference for Batschelet mixtures

The mixture of Batschelet distributions is given by

f (θ | µ, κ, λ, α) =

J∑
j=1

αjfB(θ | µj, κj, λj), (14)

where j indexes the J components in the mixture, αj are com-
ponent weights, and fB(·) is the chosen density, either Inverse
Batschelet or Power Batschelet.

First, in Section 3.1, an EM algorithm will be presented. Sec-
ond, in Section 3.2, a method for inference through MCMC is
presented. A note on identifiability is given in 3.3. Note that the
number of components will be assumed to be known initially.
In Section 3.4, model selection and hypothesis testing will be
discussed, which can be used to select the number of components
as well evaluate many types of hypotheses. For a discussion
of direct inference on mixtures with an unknown number of
components, see Richardson and Green (1997).

3.1. EM algorithm

Directly maximizing the observed data log-likelihood of a
mixture model is generally difficult. Therefore, the EM-algorithm
will be employed, which exploits the fact that the complete data
maximum likelihood, that is, with observed labels, is easier to
maximize.

The EM-algorithm consists of the following steps:

(Initialize) Define an n × J matrix W = {w1, . . . ,wJ}
T , where

wj are n-vectors. Initialize the parameters µ, κ, λ, α
at some user-specified values.

(E-step) Compute, for all i, j, the elements of W as

wi,j =
αjfB(θi | µj, κj, λj)∑J
s=1 αsfB(θi | µs, κs, λs)

. (15)

(M-step) For each component k, maximize

ℓ(µj, κj, λj, wj | θ) =

n∑
i=1

wi,j log fB(θi | µj, κj, λj). (16)

The maximization of this log-likelihood of the pa-
rameters of a Batschelet distribution may proceed
through the Nelder–Mead simplex (Nelder & Mead,
1965), as was done in Jones and Pewsey (2012).

Note that the EM algorithm is not guaranteed to find a global
maximum. Therefore, reasonable (or multiple) starting values
should be used, in order to assess the validity of the final results. If
avoiding convergence to local maxima is of particular importance,
one could consider implementing a stochastic version of the EM
algorithm (Diebolt & Ip, 1996; Nielsen et al., 2000). However,
the Bayesian MCMC approach described in Section 3.2 shares the
advantages of such methods.

In addition to obtaining estimates of the mixture model, it is
essential to infer the uncertainty around these estimates. For mix-
ture models, asymptotic standard errors obtained from inverting
the Fisher Information generally require very large datasets in
order to have desirable properties (McLachlan & Peel, 2004).
Therefore, parameter uncertainty will need to be assessed either
through bootstrapping, or through MCMC.

Bootstrapping (Efron & Tibshirani, 1994) was implemented
through a nonparametric bootstrap. In order to reduce compu-
tational burden, the EM algorithm of each bootstrap sample was
given the full data estimates as starting values.

3.2. Bayesian inference

A Bayesian analysis of the finite mixture of von Mises-based
Batschelet distributions is available through MCMC sampling
(Chib & Greenberg, 1995; Gilks, Richardson, & Spiegelhalter, 1995).
For an introduction focused on mixture models, see Frühwirth-
Schnatter (2006). Besides providing uncertainty quantification
naturally by performing inference on the posterior distribution
rather than a set of estimates, the Bayesian paradigm also pro-
vides computational advantages in this case. In particular, the
MCMC algorithm is less likely to converge to local maxima.

As is common for Bayesian sampling for mixture models, the
parameter space is augmented by a vector of latent variables z ∈

{1, . . . , J}n which contains a group label for each observation. Af-
ter randomly assigning each observation to a group during every
iteration, the remaining problem simplifies to MCMC sampling
for each component separately. First, in Section 3.2.1, priors for
this model will be discussed. Then, the MCMC algorithm will be
provided in Section 3.2.2.
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3.2.1. Priors
Although subjective priors can be chosen in practical use,

attention here will be restricted to (somewhat) non-informative
priors. Priors are required for αj, µj, κj and λj, either jointly or
separately. In principle, priors could even be set for the group
assignments.

The component weights αj are given the conjugate Dirichlet
prior distribution, with vector prior parameter n0 ∈

[
R+

]J . If
n0 = 1J , this prior is uninformative.

The mean directions µj ∈ [−π, π ) are given a circular uniform
prior, p(µj) = [2π ]

−1 which is proper.
The concentration parameters κj are given a constant prior

p(κj) ∝ 1, which is improper. In principle, the Jeffreys prior for
the von Mises distribution could also be used. The Jeffreys prior
is proportional to the square root of the determinant of the Fisher
Information Matrix I(φ), so that for the von Mises distribution it
is given by

p(φ) ∝

√
det [I(φ)] =

√
κA(κ)A′(κ), (17)

where A(κ) = I1(κ)/I0(κ) and A′(κ) =
d
dκ A(κ). However, note that

this is not the Jeffreys prior for the Inverse Batschelet distribution
(as the given I(φ) is the Fisher information of the von Mises), nor
for a mixture of any circular distributions, nor proper. However,
it can be used as a relatively diffuse default prior for cases in
which very large values of κ are deemed unlikely. For the case
of the von Mises distribution, Hornik and Grün (2013) show that
the resulting posterior is almost surely proper if n ≥ 2. A final
alternative is to use a relatively diffuse non-conjugate proper
prior, such as one from the gamma family of distributions.

The peakedness parameter λ can be given a proper uniform
prior p(λj) = 1/2, λj ∈ [−1, 1). However, Jones and Pewsey
(2012) note that in maximum likelihood estimation of the Inverse
Batschelet model, estimates often fall on the boundary of the
parameter space. Boundary avoiding priors can be used here to
prevent this behavior of the estimates. In particular, one may
posit that large values of |λj| are a priori unlikely. This belief
can be captured in a rescaled Beta(a, b) prior, so that p(λj) ∝

fBeta
(

λ+1
2 | a, b

)
. If a = 1, b = 1, this results in the uniform prior

on [−1, 1], while 1 < a, b ≤ 2 gives a range of priors which favor
smaller values for |λj|, and thus less peaked and less flat-topped
densities.

3.2.2. MCMC algorithm
In the application of MCMC sampling, only the group as-

signments in latent variable z and the mixture weights α have
known full conditional distributions. All other parameters are up-
dated using the Metropolis–Hastings algorithm (Hastings, 1970;
Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953). After
selecting starting values, the algorithm will be performed for
m = 1, . . . ,M iterations, which will constitute a sample from the
posterior distribution. One iteration m of the algorithm proceeds
as follows:

(zi) For each observation θi, sample zi ∈ 1, . . . , J with group
probabilities

P(zi = j) =
αjfB(θi | µj, κj, λj)∑J
s=1 αsfB(θi | µs, κs, λs)

.

This represents assigning this observation to one of the
possible mixture components.

(α) Sample the vector of mixture weights

α = α1, . . . , αJ ∼ Dirichlet(n + n0),

where n =
{∑n

i=1 I(zi = 1), . . . ,
∑n

i=1 I(zi = J)
}T , with I(·)

the indicator function, and n0 the vector prior parameter

for the Dirichlet, which is set to n0 = 1n by default for an
uninformative prior. Note that the definition of n means
that all we need to do to sample the mixture weights
is counting the number of observations assigned to each
group.

(µj, κj, λj) For each mixture component j ∈ 1, . . . , J , sample
parameters µj, κj, λj. Note that none of these parameters
have known distributions, so we resort to Metropolis–
Hastings throughout.

(a) Sample µj using an MH-step. As for the proposal
µ∗

j , we make use of the fact that the distribution
reduces to the von Mises distribution if λ = 0.
Therefore, we can draw from the known distribution
of the mean of the von Mises distribution, because it
will be somewhat close to the desired distribution.
We can take either the previously sampled µ, by
sampling from µ∗

j ∼ M
(
µ

(m−1)
j , Rjκ

)
, or use the

current sample mean direction θ̄ , by sampling from
µ∗

j ∼ M
(
θ̄j, Rjκ

)
, where θ̄j and Rj are computed

from the sample assigned to component j.
(b) Sample κj using a MH-step, using a gamma distribu-

tion with mean κ (m−1) as the proposal distribution.
The variance of this gamma distribution is a tuning
parameter, which can be changed to improve com-
putational efficiency of the algorithm. If the variance
is κ (m−1), the proposal is the χ2-distribution with
κ (m−1) degrees of freedom. In practice, setting the
variance to .05κ (m−1) seems to work well.

(c) Sample λj using a MH-step, using a uniform proposal

U
[
max(−1, λ(m−1)

j − ε), min(1, λ(m−1)
j + ε)

]
. (18)

Note that although the proposal distribution seems
symmetric, this is not the case if the current value is
less than ε from the boundary. Because the proposal
is not symmetric, the proposal distribution must
be included in the MH ratio. Again, ε is a tuning
parameter, and we will set ε = 0.01.

It is well known that if parameters are strongly correlated,
MCMC sampling can benefit from joint proposals for the cor-
related parameters. The parameters κ and λ are correlated, al-
though not in an extreme fashion. Therefore, κ and λ may be
sampled jointly, although this did not always prove beneficial in
practice.

3.3. Model identifiability

In general, mixture models may not be identifiable (Teicher,
1963), a property which manifests itself most often through la-
bel switching, where component k represents a different unob-
served subpopulation in different bootstrap or MCMC samples
from the model. However, forcing an ordering on the means may
be sufficient for identification (Everitt, 2004).

For the case of Batschelet mixtures on the circle, means are
sometimes fixed by design, because this can be a reasonable
assumption for saccade data. If the means are fixed, the model is
identifiable as long as {κj = 0, λ = 0} in no more than one com-
ponent. If this assumption is violated, any convex combination of
mixture weights αj of components where {κj = 0, λ = 0} gives
the same probability density, so the model is not identified. This
is unlikely in practice and can simply be checked in the output.
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If the means are not fixed but estimated, label switching
may occur. In practical inference, if label switching has occurred,
this would be evident in bootstrap or MCMC samples. If label
switching has occurred, a post-processing step may be used to
solve this issue (Jasra, Holmes, & Stephens, 2005; Stephens, 2000).
However, care must be taken in ensuring a circular ordering
rather than a linear ordering.

3.4. Model selection and hypothesis testing

It is often relevant to compare several models and select the
best among them, for example to select the required number
of mixture components. The most common approach to model
selection is through information criteria such as AIC (Akaike,
1987) and BIC (Schwarz et al., 1978) in frequentist settings,
and DIC (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) and
WAIC (Watanabe, 2010) in Bayesian settings (for an overview,
see Wagenmakers and Waldorp (2006)). Such tools are provided
in the R package flexcircmix accompanying this paper and
provide an approximate comparison of the fit of various models.

However, the Bayesian approach also allows us to perform
more sophisticated model comparisons naturally by comparing
the models on their posterior model probability. Consider a set of
Q models M1, . . . ,MQ each indexed by a set of free parameters
φ, that are to be compared on their probability after observing
data. This set of models can also take the form of hypotheses to
be compared. For example, one could compare a 3-component
model with a 4-component model, a model with mean directions
fixed at the cardinal directions versus a model where mean direc-
tions can vary freely, or a model that allows peaked distributions
(i.e. λ ∈ (−1, 1)) versus a von Mises mixture model (i.e. λ = 0).

In order to obtain the posterior model probability, the prior
probability of the models under consideration must first be as-
sessed. Here, and throughout the rest of this work, the models
will be assumed to have equal prior probability, so p(Ms) = 1/Q .
As a result, the prior probability drops out of the rest of the
formulae.

Then, regardless of the set of models under consideration, we
can compute the posterior model probability

pmp(Ms) =
p(Ms | θ)∑Q
q=1 p(Mq | θ)

(19)

where p(Ms | θ) is the marginal likelihood, given by

p(Ms | θ) =

∫
Ωφ

p(θ | φ)dφ, (20)

where Ωφ is the sample space of the parameter vector for the
model Ms. This integral is in general not easy to compute and has
sparked a wealth of methods for computing it (for an overview,
see Ardia, Baştürk, Hoogerheide, and Van Dijk (2012) and Friel
and Wyse (2012)). Perhaps the most promising and stable
sampling-based solution is found in bridge sampling (Meng &
Wong, 1996), which was recently made more easily applicable as
a post-processing step on MCMC output through the R package
bridgesampling (Gronau et al., 2017). Broadly speaking, bridge
sampling produces an estimate of the marginal likelihood by
evaluating additional samples from a known density that ap-
proximates the posterior. For details, see Gronau et al. (2017)
and Meng and Wong (1996).

Two issues arise for this specific application. First, the sample
of mean direction parameters µj lies on a circular parameter
space. Bridge sampling will find a known density that approxi-
mates the posterior by using the linear mean and the covariance
matrix of the MCMC samples, for example by using the multivari-
ate normal density with the same mean vector and covariance
matrix. The approximation need only be roughly correct, which

is not necessarily the case for our model. For example, if we
have a circular parameter with a mean direction near zero, some
sampled values will lie in both intervals [0, .1] and [2π − .1, 2π ).
The linear mean will then incorrectly lie near π , and the linear
variance will be far too large. To solve this, we will change the
numerical representation of the mean direction sample of µj
such that it lends itself better to the linear approximation. To do
this, first the posterior mean direction µ̄j is computed from the
sample of mean directions µj. Then, by taking µ∗

j = [(µj − µ̄j +

π ) mod 2π ]−π + µ̄j, a numerical representation is obtained that
does not have any ‘gaps’ on the real line, but corresponds to the
same set of angles µj.

The second issue is that the sample of component weight
parameters αj ∈ [0, 1] lie on a simplex, that is, they are con-
strained to sum to one. The bridge sampling usually lies on the
real line, such as the aforementioned multivariate normal distri-
bution, which means the constrained parameter space is ignored,
so that almost surely invalid proposals are sampled. Therefore,
these parameters are given a stick-breaking representation and
are then logit-transformed, in a similar manner as in Stan (Car-
penter et al., 2017). For details on the transformation, its inverse
and associated Jacobian, see the Stan reference manual (Stan
Development Team, 2017). The solutions for both circular and
simplex parameters were contributed to the latest version of the
bridgesampling package.

4. Illustration

In order to illustrate the methods presented in this work, they
will be applied to two examples.

First, the method is applied to a synthetic dataset in Sec-
tion 4.1, where it is shown that the true parameters of a data
generating process can be recovered. Then, in Section 4.2, the
method is shown to provide new insights in the saccade direction
data from Van Renswoude et al. (2016).

4.1. Synthetic data

Here, the methods developed in this paper will be applied
to a synthetic data set for which parameter values are known.
In order to sample from the Inverse Batschelet distribution, the
sampling algorithm from Jones and Pewsey (2012) was applied. A
data set consisting of 1000 angles was sampled with parameters
µ = {−1, 1, 2}, κ = {20, 4, 15}, λ = {−.7, 0, .7}, and α =

{.25, .25, .5}.
The results are shown in Table 1 and Fig. 5. First, it is clear that

the method is able to recover mean direction. Also, it can be seen
that both the bootstrapped confidence intervals and the credible
intervals generally include the true value, and cases in which this
is not true can be attributed to sampling error.

As mentioned previously, the joint likelihood of {κ, λ} is corre-
lated. Because of this, it can be seen in Table 1 that neither κ nor λ

can be estimated precisely, with both having confidence intervals
that are quite wide. A remarkable property of this method is
that while neither of the variance-related parameters is estimated
very precisely, the circular standard deviation, computed as in
Section 2.3, has tighter confidence intervals and is estimated
more precisely, so inference on it will be more powerful than
inference directly on κ or λ.

The components weights are estimated adequately in all cases.
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Fig. 5. Synthetic data plots using the power Batschelet distribution. The sample of synthetic data, plotted along with a sample of 200 densities of which the
parameters were sampled in the MCMC. That is, the spread of probability density functions provides a rough uncertainty bound for the true probability at each
point.

Table 1
Synthetic data fits using the Power Batschelet distribution.

Truth EM Boot. CI Bayes (MCMC)

Est. 2.5% 97.5% Median 2.5% 97.5%

µ1 −1.00 −1.00 −1.09 −0.91 −1.00 −1.04 −0.96
κ1 20.00 24.92 8.67 63.37 27.67 8.91 59.99
λ1 −0.70 −0.81 −1.00 −0.47 −0.85 −0.99 −0.51
α1 0.25 0.26 0.23 0.28 0.26 0.23 0.29
σc1 0.52 0.55 0.51 0.60 0.56 0.51 0.60

µ2 1.00 0.98 0.95 1.01 1.00 0.97 1.03
κ2 4.00 3.26 3.17 3.94 3.52 2.80 5.17
λ2 0.70 0.89 0.66 1.00 0.81 0.54 0.98
α2 0.25 0.26 0.23 0.29 0.27 0.23 0.31
σc2 0.34 0.42 0.33 0.44 0.38 0.27 0.53

µ3 2.00 1.97 1.95 2.00 1.98 1.96 2.00
κ3 15.00 16.29 10.87 44.57 25.08 11.37 67.42
λ3 0.00 −0.09 −0.36 0.08 −0.22 −0.47 0.06
α3 0.50 0.48 0.45 0.51 0.48 0.44 0.51
σc3 0.26 0.28 0.26 0.30 0.28 0.25 0.30

4.2. Free-viewing data

Here, the method will be applied to a real world exam-
ple, the free-viewing dataset that was originally published in
Van Renswoude et al. (2016), shown again in Fig. 6. As discussed
in Section 1, there are several hypotheses one might wish to learn
about using this dataset. One hypothesis of interest is whether

infants have a larger circular variance for each of their mixture
components. Another is whether the horizontal bias, that is, the
preference for left–right movements, is weaker for infants than
for adults. These hypotheses will be assessed here.

Because the mixture model has a fairly large number of pa-
rameters, it can be fruitful to consider fixing parameters about
which we do not need to learn. For free-viewing data, modes are
always observed oriented exactly in the cardinal directions, which
will simplify our modeling problem somewhat. The mean direc-
tions can be chosen to be fixed at µ1 = −π/2 (upward), µ2 =

0 (rightward), µ3 = π/2 (downward), µ4 = π (leftward).
Because fewer components are needed in the Batschelet mixture
and because the means are fixed, the model actually has fewer
parameters than the von Mises mixture model. It is also possible
to loosen this assumption slightly by placing a strong prior on
the mean directions centered on the aforementioned cardinal
directions.

For Bayesian inference, the priors were chosen according to
the considerations in Section 3.2.1. To be specific, the prior for
µj was circular uniform, for κj the Jeffreys prior of the von Mises
distribution, for λj the prior was the rescaled beta distribution
proportional to fBeta

(
λ+1
2 |

√
2,

√
2
)
, and finally the prior for αj

was Dirichlet(α = {
√
2, . . . ,

√
2}T ). The MCMC algorithm was run

for 46000 iterations, split into 46 parallel chains each having a
burn in of 1000.

A bootstrap was run with 10000 bootstrap replications. For
both adults and infants, the results from the EM algorithm with

Table 2
Free-viewing fit using the Power Batschelet mixture model, for adults (left) and infants (right). Mean directions were fixed at µ1 =

−π/2 (upward), µ2 = 0 (rightward), µ3 = π/2 (downward), µ4 = π (leftward).
Adults Infants

EM Boot. CI Bayes (MCMC) EM Boot. CI Bayes (MCMC)

Est. 2.5% 97.5% Median 2.5% 97.5% Est. 2.5% 97.5% Median 2.5% 97.5%

Up

κ1 0.81 0.69 1.03 5.94 0.85 666.66 0.38 0.25 0.91 6.76 0.14 635.15
λ1 1.00 1.00 1.00 0.41 −0.53 0.97 −1.00 −1.00 0.17 −0.56 −0.97 0.55
α1 0.11 0.09 0.12 0.02 0.01 0.12 0.15 0.11 0.18 0.05 0.00 0.28
σc1 1.54 1.37 1.64 0.32 0.09 1.46 1.96 1.46 2.13 0.68 0.03 2.33

Right

κ2 3.05 2.61 3.50 2.46 2.09 3.39 2.34 1.90 3.75 2.22 1.49 3.78
λ2 0.67 0.56 0.78 0.77 0.58 0.91 0.72 0.40 0.90 0.67 0.38 0.93
α2 0.32 0.31 0.35 0.36 0.31 0.40 0.27 0.23 0.32 0.32 0.23 0.43
σc2 0.48 0.42 0.58 0.62 0.44 0.76 0.65 0.43 0.84 0.69 0.43 1.05

Down

κ3 1.93 1.65 3.34 4.33 1.51 30.56 1.41 1.21 1.94 2.14 0.90 18.24
λ3 0.76 0.44 0.90 0.41 −0.20 0.85 0.99 0.61 1.00 0.65 −0.09 0.96
α3 0.10 0.07 0.12 0.06 0.05 0.14 0.18 0.15 0.20 0.13 0.06 0.34
σc3 0.80 0.47 0.95 0.38 0.23 1.01 1.12 0.80 1.23 0.73 0.25 1.42

Left

κ4 1.84 1.70 1.97 1.62 1.50 2.02 1.34 1.18 1.49 1.28 0.98 2.06
λ4 0.96 0.88 1.00 0.97 0.87 1.00 0.98 0.82 1.00 0.88 0.61 0.99
α4 0.47 0.44 0.50 0.54 0.43 0.58 0.41 0.37 0.46 0.47 0.28 0.61
σc4 0.89 0.81 0.96 1.00 0.79 1.07 1.16 1.04 1.26 1.16 0.75 1.39
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Fig. 6. Free-viewing data fit for adults (top) and infants (bottom) using the power Batschelet distribution. The x-axis is given in radians, where 0 corresponds to the
rightward direction, while π/2 corresponds to the downward direction. In the left plot, it can be seen that a third component is estimated for adults, while this is
not the case for infants. In the right plot, the densities are plotted that result from sampled parameter sets from the MCMC.

bootstrapped standard errors will be displayed together with the
Bayesian approach in Table 2.

4.2.1. Adults
Results for the adult sample are displayed in Figs. 6a and 6b.

Visually, the model fit seems excellent, and it can be seen that
observed distributions are generally quite peaked. For adults, it
can be seen that all four components contribute to the overall
shape of the model.

4.2.2. Infants
For infants, judging from the convergence plots in Fig. 7, there

might be grounds to assume that fewer than four components
may suffice. Specifically, we can see that component 1 (upward)
has component weight α that tends to zero. This can also be seen
in Fig. 6c, where the red (upward) component 1 is taken as almost
completely flat.

4.2.3. Horizontal bias comparison
The main question of whether the horizontal bias of adults and

infants differ can be addressed by comparing the circular standard
deviation in Table 2, as well as compare the component weights
α.

The horizontal components are component 2 and 4. For the
rightward component 2, with (µ2 = 0), the estimates are gener-
ally somewhat similar between adults and infants, as the confi-
dence and credible intervals overlap.

For the leftward component 4 (µ4 = π ), the confidence and
credible intervals of adults and infants do not overlap, which
can also be observed in Fig. 6 by noting that this component
has a different shape between Figs.6c and 6a. For the component
weight α4, adults have EM-estimate and 95% bootstrap confidence
interval α̂(EM)

= 0.465 (0.443, 0.502) and posterior median and
credible interval α̂(MCMC)

= 0.542 (0.431, 0.58), compared to
infants which have α̂(EM)

= 0.405 (0.37, 0.455) and α̂(MCMC)
=

0.472 (0.28, 0.614).
For the circular standard deviation σc4, adults have σ̂

(EM)
c =

0.886 (0.812, 0.964) and σ̂
(MCMC)
c = 0.995 (0.786, 1.07), compared

to infants which have σ̂
(EM)
c = 1.16 (1.036, 1.258) and σ̂

(MCMC)
c =

1.161 (0.749, 1.391). Therefore, infants seem to have a larger
variance on this component than adults. From this, it can be
concluded that the horizontal bias exists, and differs between
adults and infants.

4.2.4. Hypothesis testing
Using the model comparison methods discussed in Section 3.4,

several models of interest can be compared using Bayesian hy-
pothesis tests.

First, it is worthwile to investigate whether in general infants
and adults differ. This can be done by comparing the model that
is discussed in Section 4.2.3, which allows separate parameters
for infants and adults, to a model where both are given the same
parameters (for which parameter estimates are not shown). For
this model, the log Bayes Factor in favor of the model that has
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Fig. 7. Convergence plot for the infant data. The plot shows 46 chains of 1000 MCMC iterations, with a thinning factor of 50.

separate parameters is 52.7, which is associated with a posterior
model probability (assuming equal prior odds) in favor of sepa-
rate parameters close to 100%. Therefore, we have separated the
groups throughout.

Second, as can be seen in Fig. 6c, one may be unsure about
the number of required components for infants. Although four
components were assumed so far, three may suffice. Again, we
find almost certain evidence, log Bayes Factor 70.7, posterior
probability ≈ 100%, that the model with four components fits
better than the model with only three components.

Finally, the assumption that the means can be fixed to the
cardinal directions can be checked. To test whether this was a
valid assumption, a model with free means is run for both adults
and infants (parameter estimates not shown). This model is then
compared to the model with fixed means from before, which
gives a log Bayes factor of 61 in favor of free means. This suggests
that the data can be fit better by allowing the means to be freely
estimated. This could be understood as a systematic bias of the
means away from the cardinal directions contained in the stimuli
used. However, for the sake of simplicity, the means were kept
fixed throughout this paper.

5. Discussion

In this paper, a new mixture model for flexible circular distri-
butions was developed. It can be used to distinguish clusters in
samples of directions, for example those obtained from saccade
directions. The main contribution is the development of mixture
models for circular data that allow for peaked and flat-topped
shapes. In order to do this, a new family of distributions was
introduced, the Power Batschelet distributions, that mimic the
distributions developed in Jones and Pewsey (2012), but that
enjoy more appealing computational properties.

The method developed here can be used as a method to
investigate whether two sets of saccade directions differ from
each other, as shown in Section 4.2. This allows eye-tracking re-
searchers to answer more complex questions about their saccade
data, and draw inference where this was previously not possible.

In this paper, a Bayes Factor was computed comparing a model
where groups have equal parameters with a model where groups
each have their own parameters. We have allowed all parameters
to differ between groups, while it is also common to vary only

a set of parameters of interest. A typical example is ANOVA-
type models where means are different between groups but
variances are set equal. In the current study all parameters were
estimated separately because all free parameters were assumed
to differ between infants and adults. We investigated whether
the component variances differed between groups, which are
jointly determined by κ and λ. In addition, we assumed that the
mixture weights would vary along with the variances. However,
in some cases ANOVA-type models may be required, but they
would only require minor adaptation of our methods, for example
by adapting the M-step of the EM algorithm or jointly evaluating
the component posteriors in the MCMC.

Although developed in the context of saccade directions, the
method has potentially much broader applications. For example,
wind directions are commonly modeled with circular distribu-
tions (Bao, Gneiting, Grimit, Guttorp, & Raftery, 2010; Bowers,
Morton, & Mould, 2000; Holzmann, Munk, Suster, & Zucchini,
2006), and sometimes feature peaked distributions. Also, ob-
served arrival times can sometimes be governed by an event
occurring at a single time point, causing strongly peaked distri-
butions as well. Also, the method is a strong contender for any
form of nonparametric fit on a set of univariate circular data. In
that case, the current method functions as a flexible parametric
alternative to a fully nonparametric analysis. The mixture of
Batschelet distributions then allows much more extensive inter-
pretation and inference than a nonparametric analysis typically
would, at a minor cost of flexibility.

It should be noted that in general saccade data is time-series
data where each observation is correlated with the previous
observations. In the free-viewing paradigm, this autocorrelation is
not of core interest, as the time series consist of only 3–5 saccades
per viewed image. In general, fitting the saccade directions with
a flexible model such as the one provided here while ignoring
the time-series structure violates an assumption of the model.
However, the time series structure of saccade directions usually
does not follow a traditional autocorrelation structure, because,
for example, reaching the end of a page results in negative auto-
correlation. Therefore, this issue should be addressed separately.
The current approach does allow a powerful parametric com-
parison of different groups of saccade direction data, even when
ignoring the autocorrelation.
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For some applications, interest might specifically lie in the
autocorrelation structure, while the circular distributions still
exhibit peakedness. One approach to extend the current work is
to employ a Hidden Markov model (HMM) structure, where the
components are Batschelet-type or Batschelet mixtures. HMM’s
have been successfully applied in the context of eye-tracking
data (Stuijfzand, 2016). Another approach to obtain longitudi-
nally correlated circular observations may be through the covari-
ance structure of the multivariate von Mises distribution (Lagona,
2016). In this approach, peaked marginals such as the Power
Batschelet distribution may be obtained through copula-based
methods, which have been applied in the circular context (Lag-
ona, 2019).

In future studies, it may be fruitful to model the saccade direc-
tion jointly with saccade length, instead of the saccade direction
separately. One promising model that has not been applied to
the field of eye-tracking is the Abe–Ley model for cylindrical
data (Abe & Ley, 2017). In this model, saccades with larger length
naturally have a higher (circular) concentration, a property which
is commonly observed in vision research. However, the complex
form of such models means that extensions such as mixtures
are not available, although a hidden Markov model has been
developed (Lagona & Picone, 2016; Lagona, Picone, & Maruotti,
2015; Ranalli, Lagona, Picone, & Zambianchi, 2018).

Finally, it should be noted that methods developed here are
made accessible to eye-tracking researchers through the easy-to-
use R package flexcircmix. This means that the methods can be
readily applied to new data, without requiring extensive technical
knowledge. Hopefully, the methods developed in this paper will
provide a valuable new direction for eye-tracking researchers
to perform more valid parametric inference on the angles of
saccades throughout a broad range of applications.
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Appendix. Properties of the Power Batschelet distribution

The probability density function of the Power Batschelet dis-
tribution is defined as

fPB(θ | µ, κ, λ) = [K ∗

κ,λ]
−1 exp{κ cos t∗λ (θ − µ)}, (21)

where

t∗λ (θ ) = sign(θ )π
(

|θ |

π

)γ (λ)

, (22)

with γ (λ) =
1−cλ
1+cλ , where c = 0.4052284 and the inverse of the

normalizing constant being

K ∗

κ,λ =

∫ π

−π

exp{κ cos t∗λ (θ − µ)}dθ, (23)

which is usually numerically integrated.
Note that for any symmetric base density, such as the von

Mises used in this case, the sign(θ ) in Eq. (22) is optional, because
fPB((θ − µ) | µ, κ, λ) = fPB(−(θ − µ) | µ, κ, λ).

The log-likelihood is

ℓ(µ, κ, λ | θ) = − log[K ∗

κ,λ] + κ

n∑
i=1

cos t∗λ (θi − µ), (24)

so that, assuming θi ̸= µ ∀ i ∈ 1, . . . , n, the score functions are

∂ℓ(µ, κ, λ | θ)
∂µ

= κπ1−γ (λ)γ (λ)
n∑

i=1

|θi − µ|
γ (λ)−1 sin t∗λ (θi − µ)

(25)
∂ℓ(µ, κ, λ | θ)

∂κ
= −

[
K ∗

κ,λ

]−1
∫ π

−π

cos t∗λ (θ )e
κ cos t∗

λ
(θ )dθ

+

n∑
i=1

cos t∗λ (θi − µ) (26)

∂ℓ(µ, κ, λ | θ)
∂λ

= −
[
K ∗

κ,λ

]−1
∫ π

−π

h(θ, µ, κ, λ)eκ cos t∗
λ
(θ )dθ

+

n∑
i=1

h(θi, µ, κ, λ) (27)

where

h(θ, µ, κ, λ) =
∂κ cos t∗λ (θ − µ)

∂λ
(28)

=
κγ ′(λ)|θ − µ|

γ (λ)

πγ (λ)−1 sin
(

|θ − µ|
γ (λ)

πγ (λ)−1

)
× log

(
π

|θ − µ|

)
, (29)

with γ ′(λ) =
2c

(1+cλ) . Due to the form of the score functions, as

well as the condition that θi ̸= µ ∀ i ∈ 1, . . . , n, it is clear that
the Hessian and Fisher Information will not be easy to work with.
Therefore, it is preferred to work directly with the log-likelihood.
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