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ABSTRACT
Circular data are encountered in a variety of fields. A dataset onmusic
listening behaviour throughout the day motivates development of
models for multi-modal circular data where the number of modes is
not known a priori. To fit a mixture model with an unknown number
of modes, the reversible jumpMetropolis-Hastings MCMC algorithm
is adapted for circular data and presented. The performance of this
sampler is investigated in a simulation study. At small-to-medium
sample sizes (n ≤ 100), the number of components is uncertain. At
larger sample sizes (n ≥ 500) the estimation of the number of com-
ponents is accurate. Application to the music listening data shows
interpretable results that correspond with intuition.
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1. Introduction

Circular data are data that can be represented as angles in two-dimensional space. Exam-
ples ofmeasurements that result in circular data include directions on a compass (0◦–360◦),
time of day (0–24 hours) or day of year (0–365 days). These data are encountered across
behavioural research [1,2] and many other scientific disciplines.

Analysis of circular data requires special statistical methods due to the periodicity of the
sample space. For example, the arithmetic mean of the two time points 00:30h and 23:30h
would be 12:00 h, while the circular mean is 00:00 h, which is clearly a preferable central
tendency in this case. Several books on circular statistics are available, in particular Pewsey
et al. [3], Mardia and Jupp [4], Fisher [5].

This paper will focus on the modelling of multi-modal circular data with mixtures with
an unknown number of components.Mixturemodels often assume the number ofmixture
components to be known, although this is rarely true in practice. As a solution, the number
of mixture components is usually selected by comparing information criteria such as the
AIC [6] or BIC [7]. Such an approach allows selection of a mixture model with the best-
fitting number of components, but entirely ignores our uncertainty about the parameter
determining the number of components.

Amore natural and sophisticated approach is to treat the number ofmodes as unknown,
and obtaining the uncertainty around the number of modes jointly with the rest of the
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analysis. The main contribution of this paper is to provide an algorithm to perform a
fully Bayesian mixture model that correctly captures the uncertainty about the number of
components, as well as showing its usefulness and interpretability with a real data example.

The motivating example for this paper is a data set on music listening behaviour. The
data was provided by music service 22tracks,1 and consists of the time of day (on the 24-
hour clock) at which a user played a particular song. The user is initially presented with
a genre of music, which is selected uniformly random over the genres. The aim of our
analysis is to determine which genres are listened to most at certain times, so the most
relevant genre at a given time can be presented. In addition, a model where parameters can
be directly interpreted may allow us to understand what drives music listening behaviour.

The base distribution for our circular mixture model will be the vonMises distribution,
which is commonly used for analysis of circular data and can be considered the circu-
lar analogue of the Normal distribution. Von Mises mixture models with a fixed number
of modes have been developed previously in a frequentist setting [8], for example using
the Expectation Maximization (EM) algorithm [9,10]. Beyond fitting, some work has also
been done on hypothesis testing for vonMises mixtures [11–13]. Bayesian analysis for this
type of model can be performed through Markov chain Monte Carlo (MCMC) sampling
[14,15]. In particular, the high-dimensional variant of this mixture model has seen some
popularity due to several appealing applications such as text mining, which has led to an R
package for this model [16]. Such high-dimensional circular mixtures use the von Mises-
Fisher distribution on hyperspheres, with the vonMises as a special case. We will focus on
the circular mixture model only.

The core difficulty in employingMCMCsamplers in such applications is that the param-
eter space is of variable dimension. That is, if there are more components in the mixture
model, there are more parameters. Therefore, the usual MCMC approaches do not pro-
vide a way to explore the whole parameter space, and we must use a solution such as
Reversible jump MCMC [17,18]. In a reversible jump MCMC sampler, we allow moves
between parameter spaces by use of a special case of theMetropolis-Hastings (MH) accep-
tance ratio [19]. This paper provides a detailed account of the adaptation of a reversible
jump sampler for von Mises mixtures.

Three major contributions are made to the field of mixture modelling for circular data.
First, this paper presents the first application of the reversible jump sampler to this set-
ting, which allows us to perform inference on the amount of components in the mixture
model. Second, a novel split move, which makes use of the trigonometric properties of the
von Mises distribution, allows the sampler to move across the parameter space efficiently.
Lastly, a simulation study is performed to show that this method performs well in common
research scenarios.

Several alternative approaches for Bayesian modelling of multi-modal circular data
could be considered. Most are found in the field of Bayesian non-parametrics, such as
Dirichlet process mixture models [20], the Generalized von Mises distribution [21], log-
spline distributions [22] or a family of densities based on non-negative trigonometric sums
[23]. Such approaches generally have the advantage ofmaking fewer assumptions about the
distribution of the data. However, none of these methods provide a way for direct infer-
ence on the number of subpopulations (ie. components) making up the mixture, and the
parameters in the mixture model with unknown number of components are much more
interpretable.
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Therefore, the approach taken in this paper can be seen as a useful in-between
step between mixture models with a fixed number of components and non-parametric
approaches. Compared to fixed-component mixture models, our approach is more real-
istic in the uncertainty about the amount of components, allows performing inference
about the number of components, but also enables leaving the number of components to
be uncertain. In particular, while information criteria based methods also allow selection
of the most likely number of components, our approach provides a posterior probabil-
ity distribution around the number of components, and as such acknowledges that the
selected number of components can be wrong. Compared to non-parametric approaches,
our approach features much more interpretable parameters and inference, at the cost of
taking more assumptions about the shape of the distribution. Concluding, if the number
of components is known or not of interest, a fixed-component mixture model can be pre-
ferred for simplicity, while if density estimation is the goal a fully non-parametric approach
may be the best choice. If the number of components is not known, of interest, and inter-
pretation of the parameters of subpopulations is of interest, ourmethod aligns the best with
these goals.

The paper is organized as follows. Section 2 describes the model and chosen priors.
Section 3 contains the description and implementation of each of the steps involved in
sampling themodel parameters. In Section 4 the performance of the sampler is investigated
in a simulation study. The sampler is applied to the 22tracks data in Section 5. Finally, the
results are discussed in Section 6.

2. VonMises mixturemodel

In this section, the von Mises-based mixture model will be developed. First, its general
form will be given. Second, the likelihoods necessary for inference are discussed. Third,
priors for this model are shortly discussed.

2.1. VonMisesmixture density

The von Mises distribution is a symmetric, unimodal distribution commonly used in the
analysis of circular data. Its density is given by

fVM(θ | μ, κ) = 1
2πI0(κ)

exp(κ cos(θ − μ)), (1)

where θ ∈ [0, 2π) is an angle measured in radians, μ ∈ [0, 2π) is the mean direction, κ ∈
[0,∞) is a non-negative concentration parameter and I0(·) is the modified Bessel function
of the first kind and order zero.

When data consist of observations from multiple subpopulations for which the labels
are not observed, the distribution of the pooled observations can be described by amixture
model. For example, times at which people listen to music are expected to coincide with
daily events, such as dinner time or the daily commute, which are clustered around certain
time points that show up as modes in the data set.

The density of the pooled observations can be expressed as a mixture

f (θ | w,μ, κ) =
g∑

j=1
wjfVM(θ | μj, κj), (2)
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where g ∈ Z+ is the number of components in the mixture, μ = (μ1, . . . ,μg) and
κ = (κ1, . . . , κg) are vectors of distribution parameters of each von Mises component and
a vector w = (w1, . . . ,wg) containing the relative size of each component in the total sam-
ple, called theweight vector.Weights, which are also sometimes calledmixing probabilities,
satisfy the usual constraints to lie on the simplex, that is 0 ≤ wj ≤ 1 and

∑g
j=1 wj = 1.

2.2. Likelihood

For a dataset θ = (θ1, . . . , θN) of i.i.d. observations from a mixture of von Mises
components, the likelihood is

L(w,μ, κ , g | θ) =
N∏
i=1

g∑
j=1

wjfVM(θi | μj, κj), (3)

where it should be noted that the number of components g is treated as an unknown
parameter instead of fixed, and that the lengths of μ, κ and w depend on g.

In order to perform inference on (w, μ, κ , g), it will be convenient to include an addi-
tional latent vector z = (z1, . . . , zN) that encodes the component to which an observation
in θ is currently attributed. The probability of being attributed to component j is given by

P(zi = j | w) = wj, (i = 1, . . . ,N; j = 1, . . . , g).

The reason for introducing this parameter vector is that conditional on zi, θi is an
independent observation from its respective component j. That is,

p(θi | zi = j,μj, κj) = fVM(θi | μj, κj),

where inference for μj and κj is markedly easier than in the mixture likelihood in
Equation (3), because the problem reduces to inference for a single von Mises compo-
nent. The vector z is called the allocation vector and will be updated as part of the MCMC
procedure. Conditional on the allocation vector, the expression for the likelihood of the
component parameters μ, κ is simply

L(μ, κ | θ , z) =
N∏
i=1

fVM(θi | μzi , κzi).

As per usual in the Bayesian framework, inference will be performed on the posterior
distribution, which is given by

p(w,μ, κ , z | θ , g) ∝ p(w,μ, κ , z, g)L(w,μ, κ , g | θ), (4)

where the prior p(w,μ, κ , z, g) will be discussed next.

2.3. Prior distributions

Although informative priors could be used in practice, it may be difficult to do so for mix-
ture models with an unknown number of components. That is, not knowing whether a



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 1543

component exists makes it unlikely that there is prior information about this component.
However, one situation in which there is prior information is when all components are
known to lie close to a certain angle. In that case the algorithm can easily be adapted, but
we will focus on uninformative priors for simplicity. We will prioritize priors based on
their mathematical and computational simplicity. The joint prior p(w,μ, κ , g) is assumed
to factor into several independent priors, which will be discussed in turn.

For the von Mises parameters μj and κj, a conjugate prior [24,25] is used. In principle,
one can quite simply include prior information in the hyperparameters of this conju-
gate prior. However, for the reasons given above, we will focus on uninformative prior
hyperparameters. For μj, this is the circular uniform distribution, which we will write as
p(μj) ∼ U(0, 2π), where U(a, b) is the uniform distribution from a to b.

For κj this is a constant prior p(κj) ∝ 1. Both priors represent a lack of knowledge about
these parameters. A more informative prior for κj can also be set in the conjugate prior, for
example if highly concentrated von Mises distributions are not expected to represent real
subpopulations.

The conjugate prior for w is the Dirichlet distribution. We will use the uninformative
p(w) = D(1, 1, . . . , 1), which assigns equal probability to all combinations of weights.

The prior for the number of components g is chosen as p(g) ∝ 0.05(1 − 0.05)gN . This
can be seen to be the geometric distribution raised to the power N, the number of obser-
vations, used here as a method for penalizing complexity. While somewhat of a pragmatic
choice, this prior performs well in practice. The prior prevents overfitting and can be inter-
preted as the belief that a parsimonious model is preferred, irrespective of the number of
observations.

3. Reversible jumpMCMC for vonMises mixtures

Bayesian inference for the von Mises mixture model will proceed by sampling from the
posterior in Equation (4) usingMCMC sampling. Asmentioned, standardMCMCwill not
be able to deal with the changing dimensionality in the parameter space after g changes,
and therefore we will resort to reversible jump MCMC to solve this issue.

The reversible jumpMCMC algorithm consists of five move types. These moves can be
divided into fixed-dimension move types and dimension changing move types. The fixed-
dimension moves are the standard moves for MCMC on mixture models. They do not
change the component count g and thus do not alter the dimensionality of the parameter
space. These moves are

(1) updating the weights w;
(2) updating component parameters (μ, κ);
(3) updating the allocation z.

When g is known for a mixture of von Mises components, a sampler consisting of just
these three moves would be sufficient.

In many cases however, g is not known and should be estimated as part of the MCMC
procedure. This can be achieved by including two more move types, which are the
reversible jump move types. They are
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(4) splitting a component in two, or combining two components;
(5) the birth or death of an empty component.

Both of these move types change g by 1 and update the other parameters (w, μ, κ , z)
accordingly. In our implementation, themove types 1–5 are performed in order. One com-
plete pass over each of these moves will be called an iteration and is the time step of the
algorithm. The chosen implementations of these move types will be discussed in detail in
the following sections.

3.1. Updating theweights w

Weights w can be drawn directly from their full conditional distribution p(w | μ, κ , z, g),
which is Dirichlet and dependent only on the current allocation z. It is given by

w | z ∼ D(n1 + 1, . . . , ng + 1),

where nj is the number of observations allocated to component j, given by

nj =
N∑
i=1

1zi=j,

where 1 is an indicator function.

3.2. Updating component parametersμ and κ

The conditional posterior distribution of each μj is von Mises and given by

μj | κj, θ j ∼ VM
(
θ̄j,Rjκj

)
, (5)

where θ j is the vector of observations currently allocated to component j and θ̄j and Rj are
respectively the mean direction and the resultant length of θ j.

The conditional distribution of κj can be expressed as

f (κj | μj, θ j) ∝ I0(κj)−nj exp
{
Rjκj cos

(
μj − θ̄

)}
.

It is not straightforward to sample from this distribution. The method proposed by Forbes
and Mardia [26] is applied, which uses a rejection sampler to produce a sample from the
full conditional distribution.

3.3. Updating the allocation z

Allocation zi for each observation is sampled based on the relative densities of the
components. For observation i this is given by

P(zi = j | θi,w,μ, κ) = wjfVM(θi | μj, κj)∑g
h=1 whfVM(θi | μh, κh)

.
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This is the categorical (sometimes called ’multinouilli’) distribution, and is simple to
sample from.

3.4. Dimensionality changingmoves

For the dimensionality changing moves we make use of reversible jump moves which are
a special case of a Metropolis-Hastings step [18]. The goal is to allow the sampler to move
from a current state, which we’ll denote by x = (w,μ, κ , z), to another state x′, which has
a different size than x. In order to move around the parameter space efficiently, it will be
useful to develop several different move types, each moving in a different manner.

In general, each move is implemented by sampling a random vector u that is indepen-
dent of x, the current state of the sampler. The proposal for a new state x′ can then be
expressed as an invertible function x′(x, u), to be chosen later, which maps x and u jointly
to a proposal x′. It is required that the move is designed as a pair, such that there also exists
the reverse function x(x′, u), which is why the algorithm is called reversible jump. Essen-
tially, we develop a bridge between two spaces of different dimensions, and as a result are
able to change the dimensionality.

Given a random vector u and the invertible function x′(x, u), we can accept or reject the
proposal x′ using a Metropolis-Hastings (MH) acceptance ratio, which can be written as

min
{
1,
p(x′|y)
p(x|y)

rm(x′)
rm(x)q(u)

∣∣∣∣ ∂x′

∂(x, u)

∣∣∣∣
}
, (6)

where p(x′ | y)/p(x | y) is the ordinary ratio of posterior probability of states x and x′, rm(x)
is the probabilty of choosing move typem from state x, and q(u) is the density function of
u, and the final term |∂x′/∂(x, u)| is the Jacobian that arises from the change of parameter
space from (x, u) to x′. This Jacobian corrects for each state x lying in a space of different
dimensionality, and will be 1 if the dimensionality does not change.

The reversible jumpmoves will dictate how to sample proposals for a new state x′ given
a vector u, after which the proposal is accepted or rejected based on the MH ratio just
described. The precise form of this MH ratio depends on the move type and the chosen
function x′(x, u). Developing the move types and their associated invertible functions rep-
resents a large chunk of the work involved in implementing the reversible jump algorithm
for a specificmodel. Next, some sensible choices for the vonMisesmodel will be discussed.

3.4.1. Split or combinemove
The split or combine move is designed as a reversible pair, as is required in the reversible
jump framework. That is, any proposed split move is associated with a combine move
that would undo it. A split move takes one component and replaces it with two new
components. Conversely, a combine move joins two existing components into a single
component.

Constructing split/combine proposals for reversible jumpMCMC samplers can be done
usingmomentmatching [27], where themoments of a combined component are defined to
be the sum of the moments of the split components. In the case of von Mises components,
the second (linear) moment of a von Mises distribution ignores the circular geometry of
this problem, and is mathematically intractable. Rather, its trigonometric moments should
be used. The first trigonometric moments of a von Mises component with parameters μ
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and κ are given by α = E[cos(θ)] = ρ cos(μ) and β = E[sin(θ)] = ρ sin(μ), where the
mean resultant length is ρ = A(κ) = I1(κ)/I0(κ) andA(κ) can be approximated [4, p. 40].

Tomake sure that the trigonometricmoments represent a valid vonMises distributions,
the point described by (α,β) must lie on the unit disc, such that

√
α2 + β2 ≤ 1. (7)

This is important for the reversible jump algorithm, because whenever any dimensionality
changing move occurs, any new component must also satisfy these constraints.

The constraint of mapping to valid von Mises components, along with the reversibility
condition, limit the set of possiblemoves. However, anymove that follows these limitations
will be valid in the sense that it will correctly sample from the desired posterior. As long as
the limitations are met, we are free to select move types based on computational efficiency,
for example. Computational efficiency will be attained when the proposals are likely to be
accepted, which in turn is more likely when the proposals are in some sense ’close’ to the
original components. This will lead the specific choices for the combine and split moves,
which will be discussed next.

Combine move
In the combine move, two current components, say j1 and j2, are combined into a sin-

gle new component j∗. The combine move can be obtained from a simple weighted sum
of the trigonometric moments. That is, the new combined component has trigonometric
moments that are a weighted average between the two components that it stems from.

The parameters of the new component are defined by their trigonometric moments and
component weight, (wj∗ ,αj∗ ,βj∗), by computing

wj∗ = wj1 + wj2 ,

wj∗αj∗ = wj1αj1 + wj2αj2 ,

wj∗βj∗ = wj1βj1 + wj2βj2 .

(8)

It can be shown that the (wj∗ ,αj∗ ,βj∗) correspond to a valid von Mises distribution and
weight, due to the convexity of the unit disc (for αj∗ ,βj∗) and the convexity of the unit
interval for the weight wj∗ .

Split move
In the split move, we start from joint component j∗ and split it into two components, j1

and j2. The splitmovemust also conform to (8) to fulfill the requirement of reversibility, but
we must be more careful than in the combine move to prevent the trigonometric moments
falling outside the allowed range. We will solve this by proposing the split components
from the largest possible disc that is centred at the trigonometric moments of j∗, while
being covered by the unit disc. This last property ensures that all proposals are valid.

Next we will discuss how exactly we draw the proposals from within this disc. We can
do this by drawing vector u from

u1 ∼ U(0, 0.5) u2 ∼ U(0, 2π) u3 ∼ Beta(2, 1),

where Beta(a, b) is the Beta distribution, where we have chosen a = 2 and b = 1 to more
often select proposals close to the current joint component j∗. Different distributions could
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Figure 1. Construction of split proposal. In Step 1, the green vector shows the current mean resultant
vector for the von Mises component to be split. In Step 2, the first split component is placed within the
grey disc, bymoving u3(1 − ρj∗) in direction u2. Step 3 shows that the second split component (in blue)
follows from a combination of trigonometric moments. (a) Step 1. (b) Step 2 and (b) Step 3.

be selected here to tune the performance of the method, but these have worked sufficiently
in practice.

After drawing the vector u, we can obtain our split components by computing

ρmax = u3(1 − ρj∗)

wj1 = wj∗u1
αj1 = αj∗ + cos(φ)ρmax

βj1 = βj∗ + sin(φ)ρmax

φ = u2 + atan2(−βj∗ ,−αj∗)

wj2 = wj∗(1 − u1)

αj2 = αj∗ − cos(φ)ρmaxwj1/wj2

βj2 = βj∗ − sin(φ)ρmaxwj1/wj2 .

(9)

As discussed, different choices are possible, but these were found to perform well in prac-
tice. To aid understanding, this procedure is given a visual representation in Figure 1, which
will be discussed step by step next.

In step 1 (Figure 1(a), the von Mises component j∗ is represented by its trigonometric
moments αj∗ and βj∗ as an arrow. The two new components’ trigonometric moments must
fall inside the unit circle, as to satisfy constraint (7). To do this, a disc with radius 1 − ρj∗
centred at (αj∗ ,βj∗) is indicated in grey in the figure, from which the split components will
be sampled.

In step 2 (Figure 1(b)), the first new von Mises component j1 is placed relative to the
original component. The random direction u2 is rotated so that φ = u2 + atan2(βj∗ ,αj∗)
determines the direction in which we will step to obtain a new trigonometric moment of
j1. The trigonometric moments of the proposal (αj1 ,βj1) are then computed, in direction
φ and a distance of u3(1 − ρj∗) away from (αj∗ ,βj∗).

Step 3 (Figure 1(c)) places the second new von Mises component. Given the original
component j∗ and the first new component j1, the moments for the second component j2
are placed. They are found in the opposite direction from (αj∗ ,βj∗), that is u2 + π . The
distance is determined depending on the ratio of the two weights. This can be computed
as given in (8).

The probability of performing a split move as opposed to a combine move rm(x) is
set to 1

2 , independent of the current state of the MCMC sampler. It then follows that the
probability of the corresponding combine move rm(x′) = 1 − rm(x) = 1

2 and their ratio
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rm(x′)/rm(x) = 1. This can result in an attempted combine move when g = 1, which is
immediately rejected.

The Jacobian for the split move is straightforward to derive, but long in form and given
by

∣∣∣∣ ∂x′

∂(x, u)

∣∣∣∣ = (ρj∗ − 1)2ρj∗wj∗(1 − 2u1)2u3
u1 − 1

×
(
2(ρj∗ − 1)ρj∗ cos(u2)u3 + (1 − 2ρj∗)u23 + ρ2

j∗(1 + u23)
)−1/2

× [
(1 − 2ρj∗)u21u

2
3 + ρ2

j∗(1 − 2u1 + u21(1 + u23))

− 2(ρj∗ − 1)ρj∗ cos(u2)(u1 − 1)u1u3
]−1/2.

The inverse of this Jacobian is used for the combine move.

3.4.2. Birth or deathmove
A birth move introduces a new component into the mixture, without assigning any obser-
vations to this component. Its inverse, a death move, removes a component that has no
observations.

The proposal for a birth move consists of drawing parameters (wj∗ , μj∗ , κj∗) for a new
component. They are chosen from a proposal distribution as

wj∗ ∼ U(0, 1) μj∗ ∼ U(0, 2π) κj∗ ∼ χ2
10.

These parameters are then used to construct vector u = (wj∗ , μj∗ , κj∗). The weights of the
other components need to be rescaled such that the sum of weights remains 1. The new
weights are w′

j = wj(1 − wj∗), for j ∈ {1, . . . , g}.
Notably, as no observations are allocated to the newly created component, the likeli-

hood of the data is unaltered by the move. Additionally, as with the split or combine move
type, the probability of performing a birth move rm(x) is set equal to the probability of
performing the corresponding death move rm(x′), independent of the state of the MCMC
sampler. Therefore, the acceptance probability (6) can be simplified to

min
{
1,
p(x′)
p(x)

1
q(u)

∣∣∣∣ ∂x′

∂(x, u)

∣∣∣∣
}
.

The Jacobian for a birth move is given by∣∣∣∣ ∂x′

∂(x, u)

∣∣∣∣ = (1 − wj∗)
g .

For a death move, vector u is given by the component parameters of the component that is
removed j∗, u = (wj∗ ,μj∗ , κj∗). ItsMHacceptance ratio is the inverse of theMHacceptance
ratio of the corresponding birth move.

3.5. Label switching

When fitting a mixture model with a fixed number of components g, label switching [28]
can occur when, for example, the means of two components are close and by random
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chance switch order. This can also be seen as an identifiability problem. When applying
a sampler that can jump between parameter spaces and change the number of compo-
nents as part of the MCMC chain, label switching is very likely to occur, regardless of
the distance between means, because split moves do not define an order for the created
components.

A simple method of dealing with label switching is by imposing an identifiability con-
straint, for example by requiring themeans to be ordered. This is a crudemethod that does
not work in the case of circular data, since two means will always be ordered the same way
on a circle.

A solution is provided by Stephens [29] in the form of a post-processing step to define
the most likely allocation of sampled parameters to individual components and does not
rely on constraints. The second post-processing algorithm featured in the paper is applied
to the samples belonging to each specific g separately.

4. Simulation study

A simulation study was performed to investigate the relative performance of the
MCMC sampler in different scenarios. The sampler was implemented in R [30]
using the circular package [31]. The source code has been made available at
https://github.com/pieterjongsma/circular-rjmcmc.

4.1. Simulation scenarios

In order to assess the performance in a variety of settings, five true data generating pro-
cesses were selected to represent either commonor particularly difficultmixture datasets to
fit. These scenarios are visualized in Figure 2 and consist of (2(a)) a single von Mises com-
ponent whereμ1 = 0 and κ1 = 10, (2(b)) two vonMises components whereμ1 = 0,μ2 =
π and κ1 = κ2 = 10, (2(c)) two vonMises components whereμ1 = −π/6,μ2 = π/6 and
κ1 = κ2 = 10, (2(d)) three von Mises components where μ1 = −π/3, μ2 = 0, μ3 = π/3
and κ1 = κ2 = κ3 = 10 and (2(e)) a uniform von Mises component (κ = 0). Each sce-
nario is simulated with 50, 100, 250, 500, 1000, 2500 and 10,000 observations across 1000
replications.

Figure 2. Visualization of simulation scenarios used for investigating sampler performance.

https://github.com/pieterjongsma/circular-rjmcmc
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4.2. Starting values

TheMCMC sampler is initialized with a single component (g = 1) and parameters for the
component drawn analogous to a birth move

w = 1 μ ∼ U(0, 2π) κ ∼ χ2
10.

The observations are all attributed to this single component by setting the allocation vector
as zi = 1 for i ∈ {1, . . . ,N}.

4.3. Convergence

The convergence of a reversible jump MCMC algorithm is difficult to assess using con-
ventional methods such as the inspection of the sampled values of a parameter. Due to
the changing dimensionality, the posterior distributions of individual component param-
eters depend on the component count g. The chains for these components are expected to
jump with every change of g and would therefore not provide a valid measure of conver-
gence. Instead, the likelihood p(x | θ) is calculated for each iteration of the MCMC chain
for which convergence of the posterior probability is assessed visually. All chains, regard-
less of starting value and variation in replicated data, converged within a burn-in of 10,000
iterations. After the burn-in, the next 5,000 iterations are retained and used to describe the
posterior properties of the simulated dataset.

4.4. Results

For brevity, this section will be focused on the ability of the sampler to recover the number
of components g correctly. In addition, performance of model parameters will be assessed
for a subset of simulations.

4.4.1. Number of components g
The results for the number of components g of the simulation study are summarized in
Table 1. It shows the fraction of replications in which the maximum a posteriori (MAP)
estimate of g, gMAP, which is the posterior mode, was equal to the simulated g, gTRUE.
Furthermore, the posterior distribution of g is given, averaged over all replications.

Results with few observations (n = 50) show high uncertainty about the number of
components. For these replications, the mode of the posterior distribution for g was rarely
equal to the simulated g. As expected, the estimation of g then improves with the number of
observations.Most scenarios show a near 100% correctmode gMAP at 1000 observations or
more. One exception is scenario 2(b) for n = 10000. Here, g is overestimated and accuracy
is seemingly worse than at a smaller sample size. It should be noted that an overestimation
of g does not necessarily indicate a problem with the MCMC method. A model with a
higher number of components may have a higher likelihood of the data. The chosen prior
for g is intended to counter this effect, such that the simpler model is favoured. The prior
is seemingly not powerful enough for scenario 2(b) where n = 1000 or larger.

For the uniform scenario 2(e), the column gMAP = gTRUE, showing the correspondence
between the mode of the posterior distribution and the simulated g, has been omitted.
Although this data was simulated as a single component with κ = 0, the interpretation of
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Table 1. Simulation results for each of the scenarios in Figure 2 with sample sizes ranging from n = 50
to n = 10000. Each row represents 1000 replications. The fraction of replications where the estimated g
was equal to the simulated g is given under gMAP = gTRUE . In addition, the posterior distribution p(g | θ)

is given as the average over all replications.

p(g | θ)

Scenario n gMAP = gTRUE g = 1 g = 2 g = 3 g = 4 g ≥ 5

2(a) 50 0.40 0.29 0.29 0.21 0.12 0.10
100 0.73 0.54 0.32 0.11 0.03 0.00
250 0.88 0.69 0.27 0.04 0.00 0.00
500 0.94 0.72 0.25 0.03 0.00 0.00
1000 0.96 0.76 0.22 0.02 0.00 0.00
2500 0.99 0.82 0.17 0.01 0.00 0.00
10000 1.00 0.85 0.14 0.01 0.00 0.00

2(b) 50 0.12 0.00 0.10 0.15 0.16 0.59
100 0.66 0.00 0.50 0.31 0.12 0.06
250 0.91 0.00 0.81 0.18 0.01 0.00
500 0.88 0.00 0.77 0.21 0.01 0.00
1000 0.81 0.00 0.71 0.27 0.02 0.00
2500 0.71 0.00 0.63 0.34 0.03 0.00
10000 0.58 0.00 0.54 0.44 0.02 0.00

2(c) 50 0.30 0.05 0.23 0.29 0.21 0.22
100 0.66 0.08 0.51 0.30 0.09 0.03
250 0.93 0.03 0.83 0.13 0.01 0.00
500 0.97 0.01 0.85 0.13 0.01 0.00
1000 0.98 0.00 0.86 0.13 0.01 0.00
2500 0.98 0.00 0.89 0.11 0.00 0.00
10000 1.00 0.00 0.94 0.06 0.00 0.00

2(d) 50 0.30 0.01 0.11 0.22 0.22 0.44
100 0.60 0.01 0.25 0.45 0.21 0.08
250 0.84 0.00 0.15 0.78 0.07 0.00
500 0.96 0.00 0.04 0.91 0.06 0.00
1000 0.97 0.00 0.02 0.94 0.04 0.00
2500 0.97 0.00 0.02 0.95 0.03 0.00
10000 0.98 0.00 0.01 0.98 0.01 0.00

2(e) 50 0.01 0.03 0.05 0.07 0.84
100 0.15 0.25 0.25 0.17 0.18
250 0.34 0.37 0.20 0.07 0.02
500 0.36 0.38 0.19 0.06 0.01
1000 0.37 0.37 0.19 0.05 0.01
2500 0.37 0.38 0.19 0.05 0.01
10000 0.37 0.37 0.21 0.04 0.01

‘true’ g of this distribution is ambiguous. For larger datasets, the method favours a small
number of components, as expected.

4.4.2. Parameter estimates
Results for the recovery of the von Mises parameters μ and κ , are summarized for
scenario 2(d) in Table 2. To obtain these estimates, only the MCMC states with three com-
ponents are retained, so that g = 3 as in the data generating process of scenario 2(d). For
each simulated data set, MAP estimates for μ̂ and κ̂ , are computed by estimating the pos-
terior modes from the MCMC sample. Then, these MAP estimates are averaged over all
simulated datasets and presented.

The estimates of component parameters for scenario 2(d) show that in general the
method is able to recover the true parameter estimates for μ without bias, even with small
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Table 2. Parameter estimates for scenario 2(d) with parameters μ1 = −1.05, μ2 = 0, μ3 = 1.05 and
κ1 = κ2 = κ3 = 10.

n μ̂1 μ̂2 μ̂3 κ̂1 κ̂2 κ̂3

50 −0.99 0.01 1.02 183.7 82.0 192.9
100 −1.04 0.00 1.07 161.8 62.6 133.9
250 −1.05 −0.01 1.05 31.6 34.7 17.8
500 −1.05 0.00 1.06 11.9 8.0 10.6
1000 −1.05 0.00 1.05 10.7 8.2 10.5
2500 −1.04 0.01 1.04 10.0 9.7 10.1
10000 −1.04 0.00 1.04 10.0 9.7 10.0

sample size (n = 50). The concentration parameter κ is overestimated with small samples,
but estimates are reasonable for samples where n ≥ 500. The concentration parameter of
the central component, κ2, is systematically underestimated in this scenario, with κ1 and
κ3 slightly overestimated except with very large sample sizes. Most likely, the central com-
ponent is assigned some observations that belong to its two neighbours, and as a result is
estimated as less concentrated than the true data generating process.

5. Illustration

As a motivating example, we will apply the reversible jump MCMC sampler to a dataset
of listening behaviour, made available by 22tracks. This data will first be described and
visualized in Section 5.1. Then, results from applying the sampler to the data are discussed
in Section 5.2.

5.1. Dataset

The data provided by 22tracks containmetrics of all users of the service over the span of one
week (January 4–10, 2016). The data consist of the time of day (00:00 h to 23:59 h) at which
a user played a particular song, categorized by the genre this song was in. In this paper, a
subset of the data is used as an illustration. These consist of all observations categorized
under one of three genres that were selected arbitrarily. The genres are Indie Electronic,
Relax and Deep House. Figure 3 shows kernel density estimates of each genre. It can be
seen that depending on the genre, the data features a different number of modes, although
determining the precise number of modes is difficult without running the mixture model.

The first goal of this analysis is to estimate the genre that is most likely to be selected at
any given time. Supposedly, users listen to the genres available on the 22tracks service at
different times of day. For example, Popmight be a genre that users listen to throughout the
day while DeepHouse is preferred during the night. Quantifying this behaviour is valuable
for themusic service, as it allows them to present themost appropriate genres to users when
they visit the site at a particular time.

The second goal is to understand music listening behaviour through the parameters
of our mixture components, as the times at which we listen to music are a reflection of
life in our society. The mixture components are then interpreted as a subpopulation of
observations that correspond to a certain category of music listening, such as listening
while working, during transit, or while dancing.
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Figure 3. Kernel density estimates of observations for analysed 22tracks genres, using a von Mises ker-
nelwithκ = 200. Theperiodof the circle is 24hours. (a) Indie Electronic (n = 11, 393). (b) Relax (n = 10,
657) and (c) Deep House (n = 4, 757).

Table 3. Posterior probability of component counts p(g) for selected 22tracks genres.

g

Genre 1 2 3 4 5 6 7 8

Indie Electronic 0.01 0.52 0.36 0.10 0.01 0.00 0.00 0.00
Relax 0.00 0.25 0.55 0.18 0.02 0.00 0.00 0.00
Deep House 0.00 0.00 0.00 0.02 0.30 0.37 0.28 0.03

5.2. Results

We apply the mixture model to each genre separately, with starting values as described in
Section 4.2, using a burn-in of 10,000 iterations and retaining the next 100,000 iterations for
inference. The posterior distributions for component count g are summarized in Table 3.
The posteriors are quite different, with the Deep House genre showing a notably higher
estimated component count, which is in accordance with the data as displayed in Figure 3.

To obtain estimates for the other parameters w, μ and κ , only the samples for which
g = gMAP are used. For Deep House, these are samples where g = 6, for Indie Electronic
g = 2 and for Relax g = 3. The parameters have been summarized in Table 4, ordered by
the weights w.

The Indie Electronic genre shows two broad components spanningmost of the day. One
is centred at the middle of the day (14:15 h) and one is centred in the evening (21:13 h),
most likely corresponding to listening while working and listening at home during the
evening. The components have a small concentration, suggesting only slight preference
for these times. Such broad components are necessary, because listening occurs throughout
the day. Similarly, the Relax genre is given three components with small concentration.

For the Deep House genre, six components provided the best fit. The first three com-
ponents are broad and similar to the components found for the other genres. The central
times are later in the day, as one might expect for this type of music. The sampler was also
able to detect and fit the strong concentrations of observations at 10:41, 04:27 and 12:58 h.
It is unlikely that these patterns have been created by actual users. More likely, they indi-
cate a special attribute of the data. For example, a computer bot instead of an actual person
could have triggered a large amount of plays in a short time span. Although this does not
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Table 4. Estimated component parameters for individual genres in 22tracksdata. LB andUB indicate the
lower andupper boundof the95%density of thedatadensity of this vonMises component. Components
have been ordered according to their respective weights.

95% density

Genre j ŵj μ̂j κ̂j LB UB

Indie Electronic 1 0.72 3.73 (14:15 h) 0.89 1.04 (03:58 h) 0.15 (00:33 h)
2 0.28 5.55 (21:13 h) 0.72 2.77 (10:36 h) 2.05 (07:50 h)

Relax 1 0.54 4.11 (15:43 h) 1.20 1.63 (06:15 h) 0.31 (01:11 h)
2 0.33 5.49 (20:59 h) 0.85 2.78 (10:37 h) 1.93 (07:22 h)
3 0.13 3.09 (11:49 h) 1.75 1.10 (04:12 h) 5.09 (19:27 h)

Deep House 1 0.30 3.99 (15:15 h) 2.07 2.25 (08:35 h) 5.74 (21:55 h)
2 0.28 6.04 (23:04 h) 1.64 3.95 (15:05 h) 1.85 (07:03 h)
3 0.17 5.13 (19:36 h) 1.59 2.99 (11:27 h) 0.98 (03:45 h)
4 0.10 2.79 (10:41 h) 33.81 2.45 (09:23 h) 3.13 (11:59 h)
5 0.08 1.16 (04:27 h) 635.81 1.09 (04:09 h) 1.24 (04:45 h)
6 0.07 3.40 (12:58 h) 648.16 3.32 (12:41 h) 3.47 (13:16 h)

tell us anything about the behaviour of actual users, it is still an interesting property that
the sampler detects quite well. In fact, such a component has direct financial implications
for this business, as such plays can be rejected to save costs.

Compared to a kernel density model, this provides a much simpler and more inter-
pretable summary of the data. The posterior distribution also provides uncertainty around
all of these estimates, although these are not shown here for brevity.

6. Discussion

Wehave presented amethod for Bayesian inference of vonMisesmixture distribution. Pre-
vious work has assumed the number of components to be known, which is an assumption
we have relaxed by employing the reversible jump MCMC algorithm. The main contribu-
tions included a novel set of dimensionality changing moves based on the trigonometric
properties of the von Mises distribution. In addition, the performance of the method was
investigated in a simulation study. Generally, the method performed well. An illustration
was provided on music listening behaviour, showing the interpretation of this method.

Results of the simulation study showed that the estimation of the number of compo-
nents g was accurate for the majority of the simulated sample sizes, so the proposed split
and combine moves successfully move between parameter spaces. In one scenario (2(b)),
g is overestimated at a very large sample count (n = 10000). In this case the proposed
prior for g appears insufficient. A different choice of prior might be able to counter this
effect and seems a topic for further investigation. It should be noted that although unde-
sirable, an overfitted mixture is not necessarily problematic in application. The estimation
of parameters w, μ and κ of the individual components is not directly affected and these
parameters remain interpretable. Furthermore, the component weights allow us to gauge
the relative importance of each component.

Application to the 22tracks data provides an example for the interpretation of reversible
jumpMCMCsampler output. It should be noted that the observation counts in the 22tracks
data were higher than what showed the most accurate estimation of the simulated compo-
nent count in the simulation study and as such we did not infer much from the estimated g.
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Because the parametric von Mises model is easy to interpret, one can compare the results
with intuition. The estimated component parameters μ and κ in the provided example
seem reasonable as they indicate listening to occur during daytime and in the evening.

In conclusion, the method presented in this paper provide a reversible jump MCMC
sampler that is shown to perform well on simulated data as well as a real world example.

Note

1. Unfortunately this music service is now defunct. Previously it was found at http://www.
22tracks.com/.
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