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a b s t r a c t

Circular data are data measured in angles or directions, which occur in a wide variety
of scientific fields. An often investigated hypothesis is that of circular uniformity, or
isotropy. Frequentist methods for assessing the circular uniformity null hypothesis exist,
but do not allow the user faced with an insignificant result to distinguish lack of power
from support for the null hypothesis. Bayesian hypothesis tests, which solve this issue
and several others, are developed here. They are easy to compute and perform well,
which is shown in a simulation. Two alternative hypotheses are considered. One is based
on the von Mises distribution and performs well against unimodal alternatives. Another
is based on a kernel density, which acts as an omnibus test against all other scenarios.
Assessing the performance of the tests using different priors, it is shown that they are
powerful and allow more elaborate conclusions than classical tests of circular uniformity.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Circular data are measured in angles or directions. They are frequently encountered in scientific fields as diverse as
life sciences (Mardia, 2011), behavioral biology (Bulbert et al., 2015), cognitive psychology (Kaas and Van Mier, 2006),
bioinformatics (Mardia et al., 2008), political sciences (Gill and Hangartner, 2010) and environmental sciences (Arnold and
SenGupta, 2006). In psychology, circular data occur often in motor behavior research (Mechsner et al., 2001, 2007; Postma
et al., 2008; Baayen et al., 2012), as well as in the application of circumplex models (Gurtman and Pincus, 2003; Gurtman,
2009; Leary, 1957). Circular data differ from linear data in the sense that circular data are measured in a periodical sample
space. For example, an angle of 1◦ is quite close to an angle 359◦, although linear intuition suggests otherwise.

A fundamental hypothesis of interest is that of circular uniformity. A test for circular uniformity can be used to assess a
ypothesis of theoretical interest by itself, but can also be used as a preliminary assessment, because most tests performed
n circular statistics are only valid if the data is non-uniform. Several methods for assessing circular uniformity exist in
he frequentist framework. These will be reviewed in Section 2.

In the rest of this paper, Bayesian hypothesis tests will be added to this arsenal. In order to create a Bayesian test of
ircular uniformity, the Bayes factor will be employed, which is often hailed as the standard way of performing Bayesian
ypothesis tests (Kass and Raftery, 1995; Jeffreys, 1961). A major advantage of this Bayesian method is that through
pecifying the alternative hypothesis and the associated prior, we can precisely quantify support for either the null
ypothesis or the alternative hypothesis. Methods based on null hypothesis significance testing only signify whether or
ot the null hypothesis can be rejected, but never provide support in favor of the null hypothesis. In practice, failure to
eject the null hypothesis in a frequentist test is often taken as evidence for the null. However, a failure to reject the null
ight just as well be caused by a lack of power, so that the evidence in the data is indifferent to circular uniformity. In
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ontrast, the Bayesian hypothesis test developed here is able to provide support for the null hypothesis. This alleviates
ome of the well-described issues with null hypothesis significance testing, and is particularly useful for tests that are
sed as a preliminary assessment, such as circular uniformity tests.
To compute the Bayes factor, the so-called marginal likelihood must be obtained for each hypothesis. The marginal

ikelihood is the normalizing constant of the posterior, and the key ingredient of the Bayes factor. To obtain the marginal
ikelihood one must specify the prior distribution of the parameters in each hypothesis. The null hypothesis of circular
niformity has no parameters, so no prior is needed for it. The alternative hypothesis, however, requires specification of
oth a model for the data, would they be non-uniform, and second, a prior for the parameters in this model. This paper
ill investigate two alternative hypotheses, one based on the von Mises distribution and one based on a kernel density
lternative. In addition, several priors will be investigated that can be used with each model.
The rest of the paper is structured as follows. A short review of frequentist tests of circular uniformity is provided in

ection 2. The Bayesian circular uniformity test for a von Mises alternative is discussed in Section 3. The Bayesian circular
niformity test for a kernel density alternative, which functions as an omnibus test, is discussed in Section 4. The methods
re applied to example datasets in Section 5. Section 6 provides a discussion.

. Frequentist tests of circular uniformity

Here, we will shortly review frequentist tests of circular uniformity. Four commonly used tests are Kuiper’s test (Kuiper,
960), Rayleigh’s test (Mardia and Jupp, 2000; Brazier, 1994), Rao’s test of equal spacing (Rao, 1976) and Ajne’s test (Ajne,
968). Perhaps the most common of these is the Rayleigh test. Let θ = (θi = 1, . . . , θn) denote a set of data consisting of

angles, and let the mean resultant length R̄ = n−1
√
(
∑n

i=1 cos θi)2 + (
∑n

i=1 sin θi)2. Then the Rayleigh test statistic can be
computed simply as 2nR̄2, which has approximately a χ2

2 distribution. It can be shown that the Rayleigh test is the most
powerful test against von Mises alternatives, as well as Projected Normal (PN) alternatives (Bhattacharyya and Johnson,
1969). Although the Rayleigh test is consistent against unimodal alternatives, it is not consistent against alternatives that
have resultant length ρ = 0, in particular distributions with antipodal symmetry (Mardia and Jupp, 2000).

Another test is Kuiper’s test (Kuiper, 1960), which is based on the maximum difference between the theoretical and
empirical distribution function. It is consistent against all alternatives to uniformity (Mardia and Jupp, 2000). A similar
test uses Watson’s U2 statistic (Watson, 1961), which is instead based on the mean difference between the theoretical
and empirical distribution function.

Several other tests for circular uniformity exist, among which Rao’s equal spacing test (Rao, 1976), the range
test (Laubscher and Rudolph, 1968), the Hodges–Ajne test (Hodges, 1955; Ajne, 1968), Ajne’s An test (Ajne, 1968), and
the Hermans–Rasson test (Hermans and Rasson, 1985). Somewhat more recently, a smooth test for circular uniformity
was developed by Bogdan et al. (2002). A test specifically targeting multimodal alternatives was developed by Pycke
(2010).

3. Tests with a von Mises alternative

In this section, a Bayesian hypothesis test for circular uniformity against a von Mises alternative will be developed.
The von Mises distribution is a natural distribution on the circle, given by

M(θ | µ, κ) = [2π I0(κ)]−1 exp {κ cos(θ − µ)} , (1)

where θ ∈ [0, 2π ) is an angular observation, µ ∈ [0, 2π ) is the mean direction, κ ∈ R+ is a concentration parameter and
I0(·) is the modified Bessel function of the first kind and order zero.

The test will be based on the Bayes factor, which is the ratio of two marginal likelihoods, given by

BF10 =
m1(θ)
m0(θ)

=

∫
φ
p(φ, θ | H1)dφ∫

φ
p(φ, θ | H0)dφ

, (2)

where θ = θ1, . . . , θn is a dataset of i.i.d. angles, and φ is a vector of parameters belonging to the chosen model. For the
von Mises distribution φ = (µ, κ)T .

Because the null hypothesis does not feature parameters and assigns equal probability to each data point, m0(θ)
depends only on the sample size. The circular uniform distribution is defined by p(θ ) = (2π )−1, so the marginal likelihood
for H0 is obtained by

m0(θ) =

n∏
i=1

p(θi) = (2π )−n. (3)

The marginal likelihood of H1 is given by

m1(θ) =

∫
p(φ, θ | H1)dφ =

∫
∞

∫ 2π

p(µ, κ, θ | H1)dµdκ, (4)

φ 0 0
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where

p(µ, κ, θ | H1) ∝ p(µ, κ | H1) p(θ | µ, κ,H1) (5)

s the kernel of the posterior, where the prior p(µ, κ | H1) must still be chosen, and p(θ | µ, κ,H1) is the likelihood. The
ikelihood of the von Mises distribution is given by

p(θ | µ, κ,H1) =

n∏
i=1

M(θi | µ, κ) = [2π I0(κ)]−n exp
{
Rκ cos(θ̄ − µ)

}
, (6)

here R is the resultant length and θ̄ is the mean direction.
For any prior that does not depend on µ, so that p(µ, κ) = p(κ)/2π , the Bayes factor simplifies to

BF10 = (2π )n
∫

∞

0

p(κ)
2π

∫ 2π

0
[2π I0(κ)]−n exp

{
Rκ cos(θ̄ − µ)

}
dµdκ (7)

=

∫
∞

0
I0(κ)−n p(κ)

2π

∫ 2π

0
exp

{
Rκ cos(θ̄ − µ)

}
dµdκ (8)

=

∫
∞

0
p(κ)

I0(Rκ)
I0(κ)n

dκ, (9)

where the last step uses the fact that I0(x) = [2π ]
−1

∫ 2π
0 exp {x cos θ} dθ . Thus, computation of the Bayes factor requires

only univariate integration.

3.1. Choosing priors

Choosing the prior for this hypothesis test is not trivial. In principle, the prior for {µ, κ} should capture our actual
belief about the possible values of the parameters, given that the alternative hypothesis is true. Although researchers are
free to determine their own prior for this test, we propose some general guidelines for the set of possible priors to be
considered here.

First, it should be noted that choosing improper priors generally do not result in useful Bayesian hypothesis tests.
Therefore, only proper priors will be considered here.

Second, if a test for circular uniformity is considered, the researcher will generally not already have an idea about the
mean direction of the data if H1 is true, because they are investigating whether there even is a preferred (mean) direction.
Therefore, we suggest taking a circular uniform prior on µ. This is done by taking p(µ) = [2π ]

−1 and independent of κ ,
so that p(µ, κ) = p(µ)p(κ) = p(κ)/2π and we can concern ourselves only with choosing the prior for κ .

Finally, a researcher that considers circular uniformity to be a reasonable hypothesis rarely expects strongly concen-
rated distributions, even if the alternative hypothesis were true. Therefore, we suggest setting a prior for κ that gives
most of its probability to fairly low values of κ . Should the data follow a concentrated distribution anyway, the test will
e powerful regardless.
In practice, whether these expectations are reasonable should be assessed by the researcher themselves. However,

aking this approach allows us to build default methods that work well in most research scenarios in which the test
ould be applied. In the following sections, different choices for priors are considered, and for each the resulting test is
ssessed.

.2. Priors based on the conjugate prior

A conjugate prior for the von Mises distribution was suggested by Guttorp and Lockhart (1988), and is given by

p(µ, κ) ∝ I0(κ)−c exp {R0κ cos(µ − µ0)} , (10)

here µ0, R0, and c are the prior mean, prior resultant length, and prior ‘sample size’, respectively. As discussed previously,
e would like to remove the necessity to choose a prior mean µ0. This can be done by putting a circular uniform prior
n µ0 and integrating it out so that

p(µ, κ) ∝

∫ 2π

0
[2π ]

−1I0(κ)−c exp {R0κ cos(µ − µ0)} dµ0 =
I0(R0κ)
I0(κ)c

, (11)

which only depends on κ . Then, all that remains is choosing values for R0 and c . It can easily be seen that imagining a
ingle datapoint on the circle results in R0 = 1 and c = 1, producing the constant prior on κ . Because the constant prior
s improper and therefore invalid for hypothesis testing, we examine two valid alternatives.

First, the prior used by McVinish and Mengersen (2008) has R0 = 0, c = 1, so that we obtain

p(µ, κ) ∝ I0(κ)−1. (12)

his prior will be referred to as prior (12), and is displayed in Fig. 1, in red.
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Fig. 1. Graphs of three different choices of priors for κ: Prior (12) (red) has R0 = 0, c = 1, prior (13) (blue) has R0 =
√
2, c = 2, and the Jeffreys

rior (green) has κu = 10.

Second, the prior could be taken to be proportional to the likelihood of an imagined dataset {a, a + π/2}, with a any
ngle. This imagined dataset, somewhat arbitrarily, has two angles at 90◦ from one another. This results in R0 =

√
2, c = 2,

so we obtain

p(µ, κ) ∝ I0
(√

2κ
)
I0(κ)−2. (13)

his prior will be referred to as prior (13), and is displayed in Fig. 1, in blue. It can be seen that this prior has more mass
t higher values of κ .
Denoting the normalizing constant of either prior by g = 2π

∫
∞

0 I0(R0κ)I0(κ)−cdκ , the marginal likelihood for H1 for
hese von Mises-based priors is

m1(θ) =

∫
∞

0

∫ 2π

0
p(µ, κ)p(θ | µ, κ)dµdκ (14)

= g [2π ]−n
∫

∞

0

I0(R0κ)
I0(κ)c

I0(κ)−n
∫ 2π

0
exp

{
Rκ cos

(
θ̄ − µ

)}
dµdκ (15)

= g [2π ]−(n+1)
∫

∞

0
I0(R0κ)I0(Rκ)I0(κ)−(n+c)dκ. (16)

he Bayes factor in favor of the alternative is then

BF10 =
m1(θ)
m0(θ)

= [2π ]
nm1(θ) = g [2π ]−1

∫
∞

0
I0(R0κ)I0(Rκ)I0(κ)−(n+c)dκ. (17)

his can be computed by univariate numerical integration. For computational stability, it can be beneficial to first compute
he log of the product of Bessel functions inside the integral, using

I0(R0κ)I0(Rκ)I0(κ)−(n+c)
= exp {log I0(R0κ) + log I0(Rκ) − (n + c) log I0(κ)} .

.3. Jeffreys prior

The Jeffreys prior is a common choice for non-informative priors, especially in low-dimensional parameter spaces as
s the case here. The Jeffreys prior is proportional to the square root of the determinant of the Fisher Information Matrix
(φ) for a single observation, so that for the von Mises distribution it is given by

p(φ) ∝

√
det [I(φ)] =

√
κA(κ)A′(κ), (18)

where A(κ) = I1(κ)/I0(κ) and A′(κ) =
d
dκ A(κ).

An attractive property of this prior is that it has p(κ = 0) = 0. However, this prior is improper, which means it cannot
be used directly in hypothesis testing. Therefore, we suggest to take a truncation of this prior from above at some value
κu. A proper prior based on the Jeffreys prior is then given by

p(µ, κ | κu) =
I(κ < κu)

√
κA(κ)A′(κ)

2π
∫ κu
0

√
κA(κ)A′(κ)dκ

, (19)

where I(·) is an indicator function. This prior with κ = 10 is shown in Fig. 1, in green.
u
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To choose κu, it might be thought of as an upper bound for the values of κ for which we will be able to find support. If
the data favors a value of κ higher than κu, the marginal likelihood of the alternative hypothesis H1 will be underestimated,
although H1 will still be preferred. Conversely, it should be noted that even if the likelihood strongly suggests κ < κu,
he resulting Bayes Factor will still depend on κu through the integral in the normalizing constant. The concern that a
omewhat arbitrary choice must be made can be alleviated somewhat by performing a sensitivity analysis. In Section 3.4,
t will be shown that the hypothesis test using this prior performs well even for some fixed values of κu.

The Bayes Factor is given by

BF10 = (2π )n
∫

∞

0

∫ 2π

0
p(µ, κ)f (θ | µ, κ)dµdκ (20)

=

∫
∞

0
p(µ, κ)I0(κ)−n

∫ 2π

0
exp

{
Rκ cos(θ̄ − µ)

}
dµdκ (21)

= 2π
[∫ κu

0

√
κA(κ)A′(κ)dκ

]−1 ∫ κu

0

√
κA(κ)A′(κ)I0(Rκ)I0(κ)−ndκ. (22)

.4. Simulation

In order to assess the performance of the Bayesian hypothesis tests with a von Mises alternative and the three
riors discussed previously, a simulation study was performed. One million datasets were sampled from the von Mises
istribution with κ set to {0, 0.5, 1, 2, 5}, where κ = 0 was used three times more often as it represents H0. Samples
izes were randomly selected from {2, . . . , 15, 20, 30, . . . , 190, 200}.
Fig. 2 shows the performance of BF10 > 1 as a decision criterion for all priors, as well as a plot of the obtained log

ayes factors. In general, all three tests perform well, and are particularly good at correctly classifying data generated
nder the null hypothesis. Prior (12) and prior (13) show very similar performance, although prior (13) is more prone to
elect H0. The Jeffreys prior with κu = 20 is even more prone to select H0. When data is almost uniform with κ = 0.5,
he tests need a large sample size to select H1 more than half of the time (around n > 50 for prior (12) and prior (13),
nd n > 100 for the Jeffreys prior with κu = 20).
Compared to the error rates of the Rayleigh test, the current test has better power in all situations but those with

= .5, n > 30 and κ = 0, n < 30. For those cases, it can be seen in the plots on the right of Fig. 2 that the Bayes factors
hat are produced are somewhat indecisive, so they may not be taken as evidence in favor of either hypothesis at all. Also,
t can be seen that if H0 is true, p(H0 | θ) → 1 as n → ∞, which is not the case for the Rayleigh test.

It can be seen that in some cases, such as in 2(a) with κ = 0.5, increasing the sample size from 1 to 10 actually
ecreases the probability of selecting H1, even though it is the true hypothesis. This is a known property of some Bayesian
ypothesis tests. It should be noted that in these cases, the Bayes factor shows indecision.

. Tests with a kernel density alternative

If the von Mises alternative is insufficient, the correct alternative distribution to test against is often unknown. A pure
ayesian approach could be to formulate a set of possible models, and choose between this set of alternatives. However,
his requires attempting to fit an infinite set of models which might be hard to do in practice.

Instead, it may be useful to fit a very flexible model as the alternative, which can mimic the true distribution well, so
s to provide an omnibus test against many possible models. A kernel density fulfills this role, being able to approximate
ny density given enough data. Recent developments of kernel density methods for circular data have focused on kernel
ensity bandwidth selection and kernel regression (Di Marzio et al., 2009; Oliveira et al., 2012; Di Marzio et al., 2013;
liveira et al., 2014).
Here, we will build a test for circular uniformity which uses a von Mises kernel density as the alternative. The pdf of

he kernel density based on a dataset Θ = Θ1, . . . , Θn is given by

f (θ | Θ, κ) =
1
n

n∑
i=1

M(θ | Θi, κ). (23)

Our interest is to obtain a posterior for the bandwidth κ , which is the only free parameter. However, if the likelihood is
specified as

f (Θ | κ) =

n∏
j=1

f (θj | Θ, κ) =

n∏
j=1

n∑
i=1

M(θj | Θi, κ). (24)

then M(θj | Θi, κ) → ∞ if i = j, κ → ∞. Therefore, following Hall et al. (1987), we specify the likelihood in a manner
reminiscent of leave-one-out cross-validation, by setting

f (Θ | κ) =

n∏∑
M(θj | Θi, κ). (25)
j=1 i̸=j
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Fig. 2. Results of the simulation study for prior (12) (top), prior (13) (middle) and the Jeffreys prior (bottom) with κu = 20. The left plots show
the proportion of simulations which obtained a Bayes factor in favor of the alternative hypothesis (BF10 > 1). Error rates for the Rayleigh test with
α = .05 are provided as dotted lines, with the nominal significance displayed as a gray line at .05. The right plots show a subsample of the log-Bayes
factors obtained for different sample sizes n and κ , as well as a solid trendline computed from the full simulation showing the average log Bayes
factor for each sample size.
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This leads to the posterior

p(κ | Θ) ∝ f (Θ | κ)p(κ) (26)

where the prior for p(κ) must still be set. Note that for this model, κ has a different interpretation than in the von Mises,
so a different prior is in order. Specifically, in the von Mises model κ refers to the concentration of the full dataset, while
in the kernel density model κ refers to the concentration around each separate data point. Therefore, higher values of κ

should be considered likely a priori.
The Bayes factor is given by

BF10 = [2π ]
n
∫

∞

0
p(κ)

n∏
j=1

∑
i̸=j

[2π I0(κ)]−1 exp
{
κ cos(θj − Θi)

}
dκ (27)

=

∫
∞

0

p(κ)
I0(κ)n

n∏
j=1

∑
i̸=j

exp
{
κ cos(θj − Θi)

}
dκ, (28)

which is once again computed by univariate numerical integration.
For priors of the type discussed in Section 3.2, the Bayes factor for some R0 and c can be written as

BF10 =

[∫
∞

0
I0(R0κ)I0(κ)−cdκ

]−1 ∫
∞

0
I0(R0κ)I0(κ)−(n+c)

n∏
j=1

∑
i̸=j

exp
{
κ cos(θj − Θi)

}
dκ. (29)

Another particularly good option for the kernel density model is the Jeffreys prior discussed in 3.3, as it allows tuning
u to accommodate reasonably high values for the concentration. For this prior, the Bayes factor can be written as

BF10 =

[
2π

∫ κu

0

√
κA(κ)A′(κ)dκ

]−1 ∫ κu

0

√
κA(κ)A′(κ)
I0(κ)n+1

n∏
j=1

∑
i̸=j

exp
{
κ cos(θj − Θi)

}
dκ. (30)

4.1. Simulation

We assess the performance of the kernel based circular uniformity test for antipodal von Mises. The antipodal von
Mises is an antipodally symmetric mixture of two von Mises distributions, where data was obtained by drawing from the
pdf

f (θ | µ, κ) =
1
2
M(θ | µ, κ) +

1
2
M(θ | µ + π, κ). (31)

This alternative hypothesis is chosen to be especially hard for the von Mises based tests developed in Section 3. The setup
in terms of sample sizes and chosen true values for κ is the same as in Section 3.4.

Results for data generated from the antipodal von Mises distribution are displayed in Fig. 3. It can be seen that the
ayleigh test performs abysmally, which is expected, because it is based on rejection of H0 for large values of the resultant

length, which for the antipodal von Mises is zero on average. Our method picks up the difference with reasonable power
when data was generated with κ ≥ 2. In order to detect non-uniformity for antipodal von Mises data with κ = 1, a very
large sample is needed, but it must be noted that antipodal data with small κ is almost uniform. Evidence in favor of H0
is collected slowly, but with larger sample sizes, H0 is selected more and more.

5. Examples

In this section, the method will be applied to two real-world examples.
In a classic experiment on pigeon homing (Schmidt-Koenig, 1963), the vanishing angles of homing pigeons were

measured, with the initial question of whether the vanishing direction is circular uniform or follows some other circular
distribution. Two datasets from this experiment are depicted in Fig. 4. In one experiment, also provided in Fisher (1995),
fifteen homing pigeons were measured to have vanishing directions given by

{85◦, 135◦, 135◦, 140◦, 145◦, 150◦, 150◦, 150◦, 160◦, 285◦, 200◦, 210◦, 220◦, 225◦, 270◦
},

shown in Fig. 4(a). In another dataset, provided in Mardia and Jupp (2000), ten pigeons were measured to have vanishing
directions

{55◦, 60◦, 65◦, 95◦, 100◦, 110◦, 260◦, 275◦, 285◦, 295◦
},

shown in Fig. 4(b).
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Fig. 3. Performance for data from the antipodal von Mises distribution with various true values for κ . The left plot shows the proportion of simulations
hich obtained a Bayes factor in favor of the alternative hypothesis (BF10 > 1). Error rates for the Rayleigh test with α = .05 are provided as dotted

ines, with that nominal significance displayed as a gray line at .05. The right plot shows a subsample of the log Bayes factors obtained for different
ample sizes n and κ , as well as a solid trendline computed from the full simulation showing the average log Bayes factor for each sample size.

Fig. 4. The two example datasets. For each subfigure, the blue line between the center and the circle depicts the mean direction, while the gray
ine depicts 0◦ .

.1. Homing pigeon example 1

The results for the first dataset are given in Table 1. For this dataset, reasonable hypotheses are that the data are either
ircular uniform (which we call H0), or that the data follow a symmetric unimodal distribution, where we pick the von
ises distribution (which we call HM here). These two hypotheses are evaluated as discussed in Section 3.2, using prior

12) given by p(κ) ∝ I0(κ)−1 because a low concentration is expected. Table 1 denotes the results of our hypothesis test,
as well as the Rayleigh test for comparison. The log marginal likelihood of H0 is −27.57, while the log marginal likelihood
of HM is −23.92, so HM is most supported by the data. In fact, the Bayes factor in favor of HM is 38.54, so that the
posterior probability of H is 0.975, which constitutes strong support for this hypothesis.
M
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Table 1
Results of example 1.
Bayes factor p(H0 | θ) p(HM | θ) Rayleigh statistic Rayleigh p-value

38.542 0.025 0.975 0.637 0.001

Table 2
Results of example 2.
p(H0 | θ) p(HM | θ) p(Hk | θ) Rayleigh statistic Rayleigh p-value

0.034 0.012 0.954 0.223 0.620

5.2. Homing pigeon example 2

For the second dataset, the hypothesis that the data is bimodal is also reasonable, although we might not want to
assume antipodal symmetry. To demonstrate the flexibility of the Bayesian approach, we evaluate three hypotheses jointly.
The hypotheses are circular uniformity (H0), the von Mises distribution (HM), and the kernel density alternative (Hk)
described in Section 4. For the von Mises distribution, the same conjugate prior is used as before, p(κ) ∝ I0(κ)−1. For the
kernel density alternative, higher concentrations are more plausible than for the von Mises hypothesis, because dispersion
in the final kernel density model is not exclusively determined by κ , but also by the spread of the data. Therefore, we
pick the Jeffreys prior here, truncated above at κu = 40. In a small sensitivity analysis for the truncation value (not
eported further), the Bayes factor was robust to truncation values above 20, although setting the value extremely high
ill influence the marginal likelihood, and the inference as a result.
In order to compare the relative probability of each hypothesis, posterior model probabilities were computed. When

hoosing between a set of p models, we can compute the posterior model probability of model i, assuming equal prior
model probabilities, as

p(Hi | θ) =
mi(θ)∑p
j=1 mj(θ)

, (32)

where ma(θ) denotes the marginal likelihood of model Ha. This will provide the relative probabilities of the models that
are assessed.

Results are displayed in Table 2. The Rayleigh test is not significant (p = 0.62), suggesting no departure from
uniformity. In contrast, our comparison of hypotheses shows a preference for the kernel density alternative, giving it
a posterior model probability of 0.954. This can be seen as evidence that the data generation distribution is likely neither
the circular uniform distribution nor the von Mises distribution. Rather, the correct model was likely not included in the
set of models that were assessed, which should motivate the researcher to further investigate possible models. This result
is easy to interpret and understand, and provides a more complete picture than the usual frequentist test.

6. Discussion

Bayesian hypothesis tests for assessing circular uniformity were developed in this paper. The Bayesian approach
provides three major advantages for this type of hypothesis. First, the hypothesis of circular uniformity is precisely the
type of hypothesis which might be true in reality, so that we would want to choose H0 if the data supports it. The available
frequentist tests do not support this, as an insignificant p-value does not allow us to draw conclusion on whether H0 is
true. Second, the Bayesian hypothesis test allows us to quantify the strength of the evidence, either in an odds ratio
in the Bayes factor, or in an intuitive probability in the posterior model probability, which is more informative than the
simple dichotomous decisions provided by null hypothesis tests. Third, the Bayesian framework allows us to add additional
hypotheses to the comparison quite easily. In example 2 in Section 5.2, this is used by having the kernel density alternative
effectively act as a ‘none of the above’ category, motivating the researcher to search for a model that fits the data better.

Among the most central critiques of the Bayesian method (and Bayesian testing in particular) lies the difficulty in
choosing priors, as this seemingly requires us to know in advance what distribution the data may have should the
alternative hypothesis be true. Moreover, the conclusions drawn in Bayesian hypothesis tests are often highly dependent
on seemingly arbitrary quantities, most notably the parameters of the prior distribution. However, when choosing a
frequentist test for circular uniformity, one is faced with a plethora of tests (see Section 2) which are each most powerful
against different alternatives. This choice closely mirrors the choice of the prior in the alternative hypothesis of a Bayesian
hypothesis test. For example, this can be seen in Landler et al. (2018), where different tests are recommended for different
expected alternative distributions. In either case, we must use our expectations of the distribution of the data, should the
alternative hypothesis be true. Furthermore, in Section 3.1 it was shown how the selection of priors can be dealt with to
circumvent the concerns about their influence on the results.

Beyond circular uniformity, previously Bayesian analyses of circular models have been investigated from several
viewpoints. Bayesian model assessment has been investigated for wrapped models (Ravindran and Ghosh, 2011), projected
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ormal models (Nuñez-Antonio et al., 2015) and semiparametric intrinsic models (Bhattacharya and SenGupta, 2009;
eorge and Ghosh, 2006). However, the only previously discussed Bayesian test for circular uniformity the authors
re aware of is in McVinish and Mengersen (2008), where the alternative hypothesis is a Dirichlet process mixture of
riangular distributions. Compared to that work, our focus is on adding parametric alternatives, simplifying computation,
ssessing performance of the Bayes factor, developing accessible computational tools and comparison of this method
o frequentist methods, both conceptually and in a simulation study. Computation involved in evaluating the marginal
ikelihood of our models has been reduced to simple univariate numerical integration, which makes running these tests
ore straightforward and markedly faster. Also, the tools used in this paper are easily available from R through the
ackage BayesCircIsotropy, available on GitHub.
Assessing the performance of the method, it was shown that the test is often powerful in selecting the correct model,

oth for the data from the null hypothesis as well as the alternative. The main difficulty in practice is selecting a prior,
s is often the case in Bayesian analyses. In general, choosing a prior with larger variance will allow us to find support
or a larger set of true models, but required sample size to find this support will increase. As is shown in the simulation,
ome default options perform quite well in common research settings. In practice, it is often advisable to perform a prior
ensitivity analysis.
Although the philosophical underpinnings of Bayesian hypothesis testing are not the focus of this paper, we will shortly

onnect the current work with the ongoing discussion. The Bayesian framework is sometimes touted as inductive, which
ould suggest Bayesian model comparison is sufficient to draw scientific conclusions from data. Recently, Gelman and
halizi (2013) refute this claim outright and advocate model checking, as models are usually wrong. We generally follow
he view of Morey et al. (2013) and note that tools developed here are useful to give preference between models, but
o not necessarily provide inductive evidence in favor of the model assessed, such as the von Mises model. The kernel
ensity alternative presented in Section 4 functions as a form of model checking, circumventing the step of deciding on
est statistics to be used in a posterior predictive check, or deciding on a specific alternative hypothesis to test against.

Finally, the approach of this paper is to apply Bayesian hypothesis testing to basic circular data analyses. Future work
ight attempt to obtain easily computable marginal likelihoods for more complex models. In circular data analysis, model
election is an important avenue that requires more attention.
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