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a b s t r a c t 

Generalizing over temporal variations is a prerequisite for effective action recognition in videos. Despite 

significant advances in deep neural networks, it remains a challenge to focus on short-term discriminative 

motions in relation to the overall performance of an action. We address this challenge by allowing some 

flexibility in discovering relevant spatio-temporal features. We introduce Squeeze and Recursion Temporal 

Gates (SRTG), an approach that favors inputs with similar activations with potential temporal variations. 

We implement this idea with a novel CNN block that uses an LSTM to encapsulate feature dynamics, 

in conjunction with a temporal gate that is responsible for evaluating the consistency of the discovered 

dynamics and the modeled features. We show consistent improvement when using SRTG blocks, with 

only a minimal increase in the number of GFLOPs. On Kinetics-700, we perform on par with current 

state-of-the-art models, and outperform these on HACS, Moments in Time, UCF-101 and HMDB-51. 1 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Action recognition in videos is an active field of research. A 

ajor challenge comes from dealing with the vast variation in 

he temporal display of the action [1,2] . In deep neural networks, 

emporal motion has primarily been modeled either with optical 

ow as a separate input stream [3] or using 3D convolutions [4] . 

he latter have shown consistent improvements in state-of-the-art 

odels [5–7] . 

3D convolution kernels in convolutional neural networks (3D- 

NNs) take into account fixed-sized temporal regions. Kernels in 

arly layers have small receptive fields that primarily focus on sim- 

le patterns such as texture and linear movement. Later layers 

ave significantly larger receptive fields that are capable of mod- 

ling complex spatio-temporal patterns. Through this hierarchical 

ependency, the relations between discriminative short-term mo- 

ions within the larger motion patterns are only established in the 

ery last network layers. Consequently, when training a 3D-CNN, 

he learned features might include incidental correlations instead 

f consistent temporal patterns. Thus, there appears to be room 

or improvement in the discovery of discriminative spatio-temporal 

eatures. 
∗ Corresponding author. 

E-mail address: a.g.stergiou@uu.nl (A. Stergiou). 
1 The code for this project can be found at: https://git.io/JfuPi . t
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To improve this discovery process, we propose Squeeze and Re- 

ursion Temporal Gates (SRTG): a method that aims at extracting 

eatures that are temporally consistent. Instead of relying on a 

xed-size window, our approach relates specific short-term acti- 

ations to the overall motion in the video, as shown in Fig. 1 . We

ntroduce a novel block that uses an LSTM [8] to encapsulate fea- 

ure dynamics, and a temporal gate to decide whether these dis- 

overed dynamics are consistent with the modeled features. The 

ovel block can be used as at various places in a wide range of 

NN architectures, with minimal computational overhead. 

Our contributions are as follows: 

• We implement a novel block, Squeeze and Recursion Temporal 

Gates (SRTG), that favors inputs that are temporally consistent 

with the modeled features. 
• The SRTG block can be used in a wide range of 3D-CNNs, in- 

cluding those with residual connections, with minimal compu- 

tational overhead ( ∼0.15% of model GFLOPs). 
• We demonstrate state-of-the-art performance on five action 

recognition datasets when SRTG blocks are used. Networks with 

SRTG consistently outperform their vanilla counterparts, inde- 

pendent of the network depth, the convolution block type and 

dataset. 

We discuss the advancements in the modeling of time for ac- 

ion recognition in Section 2 . A detailed description of the main 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. A. Original 3D convolution block. Activation maps consider a fixed-size tem- 

poral window. Features are specific to the local neighborhood. B. SRTG convolution 

block. Activation maps take global time information into account. 
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ethodology is provided in Section 3 . Experimental setup and re- 

ults are presented in Section 4 and we conclude in Section 5 . 

. Related work 

We discuss how temporal information is represented in CNNs, 

n particular using 3D convolutions. 

Time representation in CNNs. Apart from the hand-coded cal- 

ulation of optical flow [3] , the predominant method for repre- 

enting spatio-temporal information in CNNs is the use of 3D con- 

olutions. These convolutions process motion information jointly 

ith spatial information [4] . Because the spatial and temporal di- 

ensions of videos are strongly connected, this has led to great 

mprovements especially for deeper 3D-CNN models [5,9] . Recent 

ork targets the efficient incorporation of temporal information at 

ifferent time scales through the use of separate pathways [6,7] . 

3D convolution variants. A large body of work has focused on 

educing the computational requirements of 3D convolutions. Most 

f these methods are targeted towards the decoupling of tempo- 

al information, for example as pseudo and (2+1)D 3D convolutions 

10,11] . Others have proposed a decoupling of horizontal and verti- 

al motions [12] . 

Information fusion of spatio-temporal activations. Squeeze 

nd Excitation [13] , Gather and Excite [14] and Point-wise Spatial 

ttention [15] consider self-attention in convolutional blocks for 

mage-based input. In the video domain, self-attention has been 

mplemented by [16] using clustering, to integrate local patterns 

ith different attention units. Others have studied the use of non- 

ocal operations that capture long-range temporal dependencies 

hrough different distances [17] . Wang et al. [18] proposed to fil- 

er feature responses with activations decoupled to branches for 

ppearance and spatial relations. Qiu et al. [19] have extended the 

dea of creating separate pathways for general features that can be 

pdated through network block activations. 

While these methods have shown increased generalization per- 

ormance, they do not address the discovery of local spatio- 

emporal features across large time sequences. As activations are 

onstrained by the spatio-temporal locality of their receptive fields, 

hey are not allowed to effectively consider temporal variations of 

ctions based on their general motion and time of execution. In- 

tead of mapping the locality of features to each of the frame-wise 

ctivations, our work combines the locally-learned spatio-temporal 

eatures with their temporal variations across the duration of the 

ideo sequence. 
2 
. Squeeze and recursion temporal gates 

In this section, we introduce Squeeze and Recursion Tempo- 

al Gates (SRTG) blocks, and the possible configurations for their 

se in CNNs. We will denote layer input a as a stack of T frames

 (C × T × H × W ) with C the number of channels, T the number of 

rames, and H and W the spatial dimensions of the video. The 

ackbone blocks that SRTG are applied to also include residual 

onnections where the final accumulated activations are the sum 

f the previous block activations a [ l−1] and the current computed 

eatures z [ l] denoted as a [ l] = z [ l] + a [ l−1] , with block index l. 

.1. Squeeze and recursion 

Squeeze and Recursion blocks can be built on top of any spatio- 

emporal activation map a [ l] = g(z [ l] ) for any activation function g() 

pplied to a volume of features z [ l] , shown in Fig. 2 (a). This pro-

ess is similar to Squeeze and Excitation [13] . For each block, the 

ctivation maps are pooled in both spatial dimensions to create 

 vectorized representation of the volume’s features across time. 

ach element in the vector contains the intensity values of a frame 

queezed, so to say, in a single average value. This process encap- 

ulates the average temporal attention through the discovered fea- 

ures. 

Recurrent cells. The importance of each feature in the tempo- 

al attention feature vector is decided by an LSTM sub-network. 

hrough the sequential chain structure of recurrent cells, the fea- 

ures that are generally informative for entire video sequences can 

e discovered. We briefly describe the inner workings of the LSTM 

ub-network [8] and how the importance of each feature for the 

ntire video is learned, as depicted in Fig. 3 . 

To focus on salient patterns, low intensity activations are dis- 

arded in the first operation of the recurrent cell at the forget gate 

ayer . A decision f (t) is made given the input pool(a [ l] ) (t) and infor- 

ative features from the previous frame h (t−1) . The features that 

re to be stored are decided by the product of the sigmoidal ( σ ) 

nput gate layer i (t) , and the vector of candidate values ˜ C (t) as com- 

uted as: 

i (t) = { σ (w i ∗ [ h (t−1) , pool(a [ l] ) (t) ] + b i ) } 
 

 (t) = { tanh (w C ∗ [ h (t−1) , pool(a [ l] ) (t) ] + b C ) } (1) 

The previous cell state C (t−1) is then updated based on the for- 

et and input gates in order to ignore features that are not consis- 

ent across time and to determine the update weight. The new cell 

tate C (t) is calculated as: 

 (t) = f (t) ∗ C (t−1) + i (t) ∗ ˜ C (t) (2) 

The output of the recurrent cell h (t) is given by the current 

ell state C (t) , the previous hidden state h (t−1) and current input 

pool(a [ l] ) (t) as: 

 (t) = a (t) ∗ tanh (C (t) ) , where 

 (t) = { σ (w a ∗ [ h (t−1) , pool(a [ l] ) (t) ] + b a ) } (3) 

The hidden states are again squeezed together to re-create a co- 

erent sequence of filtered spatio-temporal feature intensities a � [ l] . 

his new attention vector considers previous cell states, thus creat- 

ng a generalized vector based on the feature intensity across time. 

.2. Temporal gates for cyclic consistency 

Cyclic consistency. To evaluate the similarity between two 

emporal volumes, cyclic consistency has been widely used (e.g., 

20,21] ). The technique is based on the one-to-one mapping of 

rames from two time sequences, schematically summarized in 
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Fig. 2. (a) SRTG gate states. The gates can be inactive or active. When inactive, main stream and LSTM stream are fused. When active, the output is determined by the 

Temporal Gate and is either the fused result (open gate) or only the main stream (close state). (b) SRTG configuration options described in Section 3.3 . Similar to Residual 

Networks, we distinguish between Simple blocks with two conv operations and Bottleneck blocks with three conv operations. 

Fig. 3. Overview of the LSTM-chained cells used for the discovery of globally in- 

formative local features. Each input corresponds to a temporal activation map and 

produces a feature vector of the same size as the input. 

Fig. 4. Temporal Cyclic Error. Soft nearest neighbor is used to match points be- 

tween two embeddings. Cycle-consistent points cycle back to original points (visu- 

alized for t 2 ). Otherwise, a temporal cyclic error occurs (e.g. at t 7 ). Corresponding 

salient areas below are visualized with CFP [22] . 
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ig. 4 . Each of the two feature spaces can be considered an em- 

edding space . Two embedding spaces are cycle-consistent if and 

nly if, each point at time t in the embedding space A , has a min-

mum distance point in embedding space B that is also at time 

. Equivalently, each point at time t in embedding space B should 

lso have a minimum distance point in embedding space A at time 

. As shown in Fig. 4 , when points do not cycle back to the same

emporal location, they do not exhibit cyclic consistency. In this 

ase, a temporal cyclic error occurs. 

By having points that can cycle back to themselves, a similarity 

aseline between embedding spaces can be established. Although 

ndividual features of the two spaces may be different, they should 

emonstrate an overall similarity when their alignment in terms 

f cyclic consistency is the same. Therefore, comparing volumes by 

heir cyclic consistency is a suitable measure to account for (tem- 

oral) variations. 
3 
Soft nearest neighbor distance. The main challenge in creating 

 coherent similarity measure between two embeddings is to deal 

ith the vast embedding spaces, as well as to discover the “near- 

st” point in an adjacent embedding. The idea of soft matches for 

rojected points in embeddings [23] is based on finding the clos- 

st point in an embedding space through the weighted sum of all 

ossible matches and then selecting the closest actual observation. 

To find the soft nearest neighbor of an activation a A 
(t) 

in embed- 

ing space B , the euclidean distances between observation a B 
(t) 

and 

ll points in B are calculated (see Fig. 5 ). Each frame is considered

 separate instance for which we want to find the minimum point 

n the adjacent embedding space. We weight the similarity of each 

rame in embedding space B to activation a A 
(t) 

using a softmax ac- 

ivation and by exploiting the exponential difference between acti- 

ation pairs: 

 

 

(B → A ) 
(t) 

= 

T ∑ 

i 

z (i ) ∗ a B (i ) , where z (i ) = 

e −|| a A 
(t) 

−a B 
(i ) 

|| 2 
∑ T 

i e −|| a A 
(t) 

−a B 
(i ) 

|| 2 (4) 

The softmax activation produces a normal distribution of simi- 

arities N (μ, σ 2 ) , centered on the frame with the minimum dis- 

ance from activation a A 
(t) 

. Based on the discovery of the nearest 

eighbor ˜ a (B → A ) 
(t) 

, the distance to nearest frames in B can then be 

omputed. This enables the discovery of frames that are closely re- 

ated to the initially considered frame a A 
(t) 

, achieved by minimizing 

he L2 distance from the found soft match: 

 

(B → A ) 
(t) 

= argmin 

i 

(|| ̃  a (B → A ) 
(t) 

− a B (i ) || 2 ) (5) 

We define a point as consistent if and only if the initial tempo- 

al location t matches precisely the temporal location of the com- 

uted point in embedding space B , a (B → A ) 
(t) 

= a B 
(t) 

∀ t ∈ { 1 , . . . , T } .
o establish a consistency check for frames in embedding space 

 , the same procedure is repeated in reverse for every frame 

n embedding space B , calculating the soft nearest neighbor in 

mbedding space A . The two embeddings are considered cycle- 

onsistent if and only if all points on both embedding spaces map 

ack to themselves through the other embedding space: a (B → A ) 
(t) 

= 

 

B 
(t) 

and a (A → B ) 
(t) 

= a A 
(t) 

∀ t ∈ { 1 , . . . , T } . 
Temporal gates. The temporal activation vector encapsulates 

verage feature attention over time. However, it does not enforce 

 precise similarity to the local spatio-temporal activations. Thus, 

e compute cyclic consistency between the pooled activations 

pool(a [ l] ) and the outputted recurrent cells a � [ l] . In this context, 

yclic consistency is used as a gating mechanism to fuse the recur- 

ent cell hidden states with unpooled versions of the activations 

hen the two volumes are temporally cycle-consistent. This en- 

ures that only time-consistent information is added back to the 

etwork, as shown in Fig. 2 (a). 
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Fig. 5. Temporal Gates. Activations of each frame ( a B 
(t i ) 

) in embedding space B are compared to the activations of every frame ( a A 
(t j ) 

) in embedding space A . We calculate for 

each frame-wise activation map ( a B 
(t) 

) the corresponding soft nearest neighbor ( ̃  a A → B 
(t) 

) in encoding space A . We then equivalently obtain ̃  a B → A 
(t) 

in encoding space B . The gate 

is open when ̃  a A → B and ̃  a B → A are exactly and sequentially equal to a A and a B . 
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.3. SRTG block variants 

Cyclic consistency can be considered in different parts of a 

onvolution block, and we investigate six different approaches in 

erms of constructing a SRTG block. In each case, the principle of 

lobal and local information fusion remains. The block configura- 

ions only differ in the relative locations of the SRTG and the LSTM 

nput. All configurations are shown in Fig. 2 (b). Similar to networks 

ith residual connections, we consider Simple blocks with two 

onv operations and Bottleneck blocks with three conv operations. 

ot all SRTG configurations apply to the Simple blocks. 

Start. SRTG is the first operation ensuring that operations will 

e based on both global and local information. This is used in both 

imple and Bottleneck residual blocks. 

Top. Activations of the first convolution are used by the LSTM, 

ith fused features being used by the final convolution. This is 

pecific to Bottleneck blocks. 

Mid. SRTG is added at the middle of Simple blocks and after 

he second convolution at Bottleneck blocks. 

End. Local and global features are fused at the end of the final 

onvolution, before the concatenation of the residual connection. 

his is only used in Bottleneck blocks. 

Res. The SRTG block is applied to the residual connection. This 

ransforms the residual connection to further include global spatio- 

emporal features combining them with convolutional activations 

rom either Simple or Bottleneck blocks. 

Final. SRTG is added at the end of the residual block, which 

llows for the activations to be calculated jointly with their rep- 

esentations across time on the entire video. This can be used in 

oth Simple and Bottleneck blocks. 

. Experiments and results 

We evaluate our approach on five action recognition bench- 

ark datasets ( Section 4.1 ). We perform experiments with several 

esNet backbones with various depths. Each network uses either 

D convolutions ( r3d ) or (2+1)D convolutions ( r(2+1)d ). 

.1. Datasets 

We use five action recognition datasets for our experiments: 

Human Action Clips and Segments (HACS, [24] ) includes ap- 

roximately 500K clips of 200 classes. Clips are 60-frame segments 

xtracted from 50k unique videos. 

Kinetics-700 (K-700, [25] ) is the extension of Kinetics-400/600 

o 700 classes. It contains approximately 600k clips of varying du- 

ation. 
4 
Moments in Time (MiT, [26] ) is one of the largest video 

atasets of human actions and activities. It includes 339 classes 

ith approximately 800K, 3-second clips. 

UCF-101 [27] includes 101 classes and 13k clips that vary be- 

ween 2 and 14 s in duration. 

HMDB-51 [28] contains 7K clips divided over 51 classes with at 

east 101 clips per class. 

.2. Experimental settings 

Training was performed with a random sub-sampling of 16 

rames, resized to 224 × 224 . We adopted a multigrid training 

cheme [29] with an initial learning rate of 0.1, halved at each cy- 

le. We used a SGD optimizer with 1 e −6 weight decay and a step- 

ise learning rate reduction. All tested SRTG blocks incorporate 

tacked dual LSTMs (2 layers). For HACS, K-700 and MiT, we use 

he train/test splits suggested by the authors, and report on split1 

or UCF-101 and HMDB-51. 

.3. Comparison of SRTG block configurations 

We compare the different SRTG block configurations with a 34- 

ayer r3d and r(2+1)d. ResNets-34 contain Simple blocks with two 

onv layers instead of the Bottleneck blocks with three conv layers. 

e therefore only evaluate the Start, Mid, Res and Final configu- 

ations. Results, summarized in Table 2 , are obtained on HACS by 

raining from scratch. All SRTG blocks perform better than their 

anilla counterparts. This demonstrates the merits of our more 

exible treatment of the temporal dimension. This effect appears 

o be stronger when the filtering is applied later. Indeed, the best 

erforming SRTG configuration Final achieves a top-1 accuracy im- 

rovement of 3.781% for 3D and 4.686% for (2+1)D convolution 

locks. 

.4. Comparison of network architectures 

To better understand the merits of our method, we compare 

 number of network architectures with and without SRTG (Final 

onfiguration). We summarize the performance on all five bench- 

ark datasets in Table 1 . The top part of the table contains the 

esults for state-of-the-art networks including I3D [5] which is 

ased on an Inception-v1 network. The remaining evaluated archi- 

ectures use Resnet backbones. Temporal Shift Module (TSM, [30] ) 

nd Multi-Fiber networks (MF, [6] ) use a r3d-50 backbone and 

hannel-Separated Convolutions (ir-CSN, [31] ) and SlowFast net- 

orks (SF, [7] ) are based on r3d-101 backbones. We further include 

 50-layer SlowFast network for an additional comparison of lower- 

apacity models. We have used the trained networks from the re- 

pective authors’ repositories. These trained models are typically 



A. Stergiou and R. Poppe Pattern Recognition Letters 141 (2021) 1–7 

Table 1 

Action recognition accuracy for all five benchmark datasets with the model’s average inference times per clip. Top part of the table includes state-of-the-art 

models, evaluated from trained models provided by the respective authors. Middle and bottom parts summarize the results for r3/(2+1)d with/without SRTG. 

Model Inf. (msec.) HACS Kinetics-700 Moments in Time UCF-101 HMDB-51 

( ↓ F / ↑ B) top-1(%) top-5(%) top-1(%) top-5(%) top-1(%) top-5(%) top-1(%) top-5(%) top-1(%) top-5(%) 

I3D 21.3/80.0 79.948 94.482 53.015 69.193 28.143 54.570 92.453 97.619 71.768 94.128 

TSM 38.6/143.4 N/A N/A 54.032 72.216 N/A N/A 92.336 97.961 72.391 94.158 

ir-CSN-101 51.4/461.2 N/A N/A 54.665 73.784 N/A N/A 94.708 98.681 73.554 95.394 

MF-Net 32.8/236.0 N/A N/A 54.249 73.378 27.286 48.237 93.863 98.372 72.654 94.896 

SF r3d-50 26.9/84.0 N/A N/A 56.167 75.569 N/A N/A 94.619 98.756 73.291 95.410 

SF r3d-101 39.3/125.1 N/A N/A 57.326 77.194 N/A N/A 95.756 99.138 74.205 95.974 

r3d-34 32.7/74.1 74.818 92.839 46.138 67.108 24.876 50.104 89.405 96.883 69.583 91.833 

r3d-50 28.2/87.7 78.361 93.763 49.083 72.541 28.165 53.492 93.126 96.293 72.192 94.562 

r3d-101 41.6/110.2 80.492 95.179 52.583 74.631 31.466 57.382 95.756 98.423 75.650 95.917 

r(2 + 1)d-34 40.8/152.0 75.703 93.571 46.625 68.229 25.614 52.731 88.956 96.972 69.205 90.750 

r(2 + 1)d-50 33.2/128.7 81.340 94.514 49.927 73.396 29.359 55.241 93.923 97.843 73.056 94.381 

r(2 + 1)d-101 49.9/163.6 82.957 95.683 52.536 75.177 32.213 57.748 95.503 98.705 75.837 95.512 

SRTG r3d-34 35.2/80.6 78.599 93.569 49.153 72.682 28.549 52.347 94.799 98.064 74.319 94.784 

SRTG r3d-50 31.8/96.9 80.362 95.548 53.522 74.171 30.717 55.650 95.756 98.550 75.650 95.674 

SRTG r3d-101 49.2/131.6 81.659 96.326 56.462 76.819 33.564 58.491 97.325 99.557 77.536 96.253 

SRTG r(2 + 1)d-34 46.3/157.0 80.389 94.267 49.427 73.233 28.972 54.176 94.149 97.814 72.861 92.667 

SRTG r(2 + 1)d-50 37.6/141.5 83.774 96.560 54.174 74.620 31.603 56.796 95.675 98.842 75.297 95.141 

SRTG r(2 + 1)d-101 58.9/172.2 84.326 96.852 56.826 77.439 33.723 59.114 97.281 99.160 77.036 95.985 

Table 2 

Comparison of r3d-34 with SRTG configurations on HACS. 

Config Gates top-1 (%) top-5 (%) 

3D (2 + 1)D 3D (2 + 1)D 

No SRTG ✗ 74.818 75.703 92.839 93.571 

Start 
√ 

75.705 76.438 93.230 93.781 

Mid 
√ 

75.489 76.685 93.224 93.746 

Res 
√ 

76.703 77.094 93.307 93.856 

Final 
√ 

78.599 80.389 93.569 94.267 
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2 Multi-accumulative operations [32] are based on the product of two numbers 

increased by an accumulator. They relate to the accumulated sum of convolutions 

between the dot product of the weights and input region. 
re-trained on other datasets. Missing values are due to the lack 

f a trained model. Any deviations from previously reported per- 

ormances are due to the use of multigrid [29] with a base cycle 

atch size of 32. 

The second and third parts of Table 1 summarize the perfor- 

ances of ResNets with various depths and 3D or (2+1)D convolu- 

ions, with and without SRTG, respectively. Models for HACS are 

rained from scratch. The weights of models for K-700 and MiT 

re initialized based on those from the pre-trained HACS model. 

or UCF-101 and HMDB-51, we fine-tune the pre-trained models 

n HACS and K700. 

For the state-of-the-art architectures, larger and deeper models 

mprove accuracy. This is in line with the general trend. Models 

mplemented with (2+1)D convolution blocks perform slightly bet- 

er than their counterparts with 3D convolutions but these differ- 

nces are modest and not consistent across datasets. 

As shown in Table 1 , adding SRTG blocks to any architec- 

ure consistently improves performance. Table 3 shows pairwise 

omparisons of the performance on the three largest benchmark 

atasets for networks with and without SRTG. When using SRTG 

locks, the improvements are in the range of 1.2–4.7% for HACS, 

.8–4.4% for K-700 and 2.1–3.7% for MiT. For smaller networks, we 

bserve larger gains. The use of time-consistent features obtained 

hrough our method appears to improve the generalization ability 

f 3D-CNNs. 

The r3d and r(2+1)d networks with SRTG perform at least on- 

ar with the current state-of-the-art architectures. The r3d-101 

utperforms current state-of-the-art in HACS, MiT, UCF-101 and 

MDB-51. For MiT, our top-1 accuracy of 33.564% largely surpasses 

ther tested architectures. The (2+1)D variant further outperforms 

urrent architectures on HACS with 84.326% top-1 accuracy. Its 

erformance on Kinectics-700 is comparable to the best perform- 
5 
ng SlowFast r3d-101 model. While SlowFast achieves better top-1 

ccuracy, a r(2+1)d-101 network with SRTG blocks has higher top- 

 accuracy. This similar performance is remarkable given the rela- 

ively low complexity of the SRTG r3d-101 and r(2+1)d-101 models. 

lowFast is built on a dual-network configuration with two sub- 

arts responsible for long-term and short-term movements. Slow- 

ast therefore includes a significantly larger number of operations 

han our tested networks with SRTG blocks. We analyze the com- 

utation cost of the SRTG block in Section 4.5 . 

Finally, we observe that the performance gain with SRTG is sub- 

tantial for the two smaller datasets, UCF-101 and HMDB-51. The 

lready almost saturated performance of the ResNet-101 models on 

CF-101 increases with 1.569% and 1.778% for the 3D and (2+1)D 

onvolution variants, respectively. This further demonstrates that 

RTG can improve the selection of features that contain less noise 

nd generalize better, even when there is fewer training data avail- 

ble. 

.5. Analysis of computational overhead 

The SRTG block can be added to a large range of 3D-CNN archi- 

ectures. It leverages the small computational costs of LSTMs com- 

ared to 3D convolutions. That enables us to increase the num- 

er of parameters without a significant increase in the number 

f GFLOPs. This also corresponds to the small additional memory 

sage compared to baseline models on both forward and back- 

ard passes. We present the number of multi-accumulative op- 

rations (MACs) 2 used for the r3/(2+1)d architectures with and 

ithout SRTG in Fig. 6 , with respect to the corresponding accu- 

acies. The additional computation overhead, for models that in- 

lude the proposed block, is approximately 0.15% of the total num- 

er of operations in the vanilla networks. This constitutes a neg- 

igible increase, compared to the performance gains, making SRTG 

 lightweight block that can be easily used on top of existing net- 

orks. The low computational impact is further evident in Table 1 , 

here SRTG models have maximum added latency times over the 

aseline counterparts of +9.0 milliseconds for forward passes and 

21.4 milliseconds for gradient calculations. Average added latency 
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Table 3 

Pairwise comparisons of r3d and r(2+1)d networks with and without SRTG on HACS, K-700 and 

MiT. 

Dataset r3d-50 r(2 + 1)d-50 r3d-101 

None SRTG None SRTG None SRTG 

HACS 78.361 80.362 ( + 2.0) 81.340 83.474 ( + 2.1) 80.492 81.659 ( + 1.1) 

K-700 49.083 53.522 ( + 4.4) 49.927 54.174 ( + 4.2) 52.583 56.462 ( + 3.8) 

MiT 28.165 30.717 ( + 2.5) 29.359 31.603 ( + 3.3) 31.466 33.564 ( + 2.0) 

Fig. 6. Accuracy in relation to computation cost. Top-1 accuracy and operations (in GMACs) of r3/r(2+1)d with/without SRTG on HACS, K-700 and MiT. 

Table 4 

Results on UCF-101 and HMDB-51 based on transfer learning. 

Model Pre-training GFLOPs UCF-101 top-1 (%) HMDB-51 top-1 (%) 

SRTG r3d-34 HACS 110.48 94.799 74.319 

HACS + K-700 95.842 74.183 

HACS + MiT 95.166 74.235 

SRTG 

r(2 + 1)d-34 

HACS 110.8 94.149 72.861 

HACS + K-700 94.569 73.217 

HACS + MiT 95.648 74.473 

SRTG r3d-50 HACS 150.98 95.756 75.650 

HACS + K-700 96.853 75.972 

HACS + MiT 96.533 76.014 

SRTG 

r(2 + 1)d-50 

HACS 151.6 95.675 75.297 

HACS + K-700 95.993 75.743 

HACS + MiT 96.278 75.988 
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imes for r3d and r(2+1)d networks are +5.4 ms and +10.5 ms for 

orward and backward respectively. 

.6. Evaluating feature transferability 

A common practice to train CNNs is to use transfer learning on 

 pre-trained network. To evaluate the performance of the SRTG 

lock after transfer learning, we pre-train on several datasets and 

ne-tune on smaller datasets UCF-101 and HMDB-51. Through this 

xperiment, we can further eliminate biases relating to the pre- 

raining datsets and compare the accuracies achieved with respect 

o the SRTG blocks. 

As shown in Table 4 , the accuracy rates remain fairly consis- 

ent for the pre-training datasets. This consistency is due to the 

arge sizes of these datasets, as well as the overall robustness of 

he proposed method. The average offset between each of the pre- 

rained models is 0.71% for UCF-101 and 0.47% for HMDB-51. These 

re only minor changes in accuracy, which further demonstrates 

hat the improvements observed are due to the inclusion of SRTG 

locks in the network. 

. Conclusions 

We have introduced a novel Squeeze and Recursion Temporal 

ates (SRTG) block that can be added to a large range of CNN ar- 

hitectures to create time-consistent features. The SRTG block uses 

n LSTM to capture multi-frame feature dynamics, and a tempo- 

al gate to evaluate the cyclic consistency between the discovered 

ynamics and the modeled features. SRTG blocks add a negligi- 

le computational overhead (0.03–0.4 GFLOPs), which makes both 
6 
orward and backward passes efficient. Adding our proposed SRTG 

locks in ResNet backbones with 3D or (2+1)D convolutions con- 

istently leads to performance gains. Our results are on par with, 

nd in most cases outperform, the current state-of-the-art on ac- 

ion recognition datasets including Kinetics-700 and Moments in 

ime. For HACS, we obtain a state-of-the-art-performance of 84.3%. 

ur combined experiments demonstrate the generalization abil- 

ty of the discovered time-consistent features. Using sophisticated 

ampling techniques [33,34] , we plan to overcome the limitation 

f requiring segmented clips. This would allow for our work to be 

sed for the detection of actions in long videos involving human 

ehavior. 
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