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ScienceDirect
Plasticity is studied across the social and biological sciences,

but communication between disciplines is hindered by

differences in the concepts used to do so. For instance, the

distinction between expectant and dependent plasticity is

widely used in psychology, but rarely used in evolutionary

biology. As a consequence, researchers are less likely to

benefit from each other’s theories, methods, and findings. This

paper discusses three challenges to the generality of the

distinction: (1) organisms without neurons, (2) organisms that

have multiple sensitive periods with flexible timing, and (3)

variation in experience across individuals and populations.

Although we hope that one day all disciplines will share a

common, generalizable taxonomy of forms of plasticity, until

then, we propose that psychologists continue using the

distinction for traits and species where it applies, but also take

low-cost measures to improve its connections with

evolutionary biology. To this end, we provide five actionable

recommendations.
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Introduction
Plasticity, the ability to adapt to environmental condi-

tions, is studied across the biological and social sciences.

However, different disciplines use different concepts to

study plasticity. This diversity may be justified: research-

ers should use those concepts that are most productive for

their particular subject matter. However, if researchers

working on the same topic speak different languages,

they are less likely to benefit from each other’s theories

and findings. This reduces scope for interdisciplinary

research and hinders the integration of plasticity research

across disciplines. Researchers miss out on theories that
www.sciencedirect.com 
illuminate their data and predict new observations; on

methods that separate factors that are currently con-

founded in their studies; and on mechanisms in other

species that provide insight into mechanisms in the

species they study (for a shining example of recent

integration, see Ref. [1��]).

Here, we focus on a distinction that is widely used to

study sensitive and critical periods in psychology, but

rarely used in evolutionary biology: that between experi-
ence-expectant plasticity and experience-dependent plasticity
[2��,3,4�]. Expectant systems process a specific type of

information within a particular time period or life stage; a

‘critical period’. However, some degree of plasticity may

exist outside of this developmental window as well; in

that case, the period is described as ‘sensitive’ rather than

‘critical’ [2��,3,4�]. Dependent systems process experi-

ences that are unique to each individual, as opposed to

species-typical. Changes in these systems are thought to

be gradual and reversible based on later experiences.

Dependent systems do not have critical periods, even

if their ability to respond to inputs may vary to some

extent across ontogeny [5], as we discuss later.

In this paper, we discuss three challenges to the general-

ity of the distinction between expectant and dependent

plasticity [6��]. In essence, there are types of plasticity

that do not fit either category. Psychologists have not

claimed that two types of plasticity apply to all species.

However, they are naturally interested in integrating

plasticity research across disciplines (e.g. Ref. [7]), and

therefore need to be aware of these limitations.

The distinction between expectant and dependent plas-

ticity is productive in psychology (e.g. Refs. [8–13]). It

would thus be unhelpful to suggest that psychologists

simply adopt the concepts used in evolutionary biology.

Rather, we will propose that they take low-cost measures

to improve connections with evolutionary biology. To this

end, we provide five actionable recommendations. By

strengthening ties between disciplines, these small steps

could set the stage for the broader, longer-term goal of a

common, generalizable taxonomy of forms of plasticity

shared by all disciplines.

Two types of plasticity
Expectant systems are thought to evolve when all mem-

bers of a species have a particular experience (e.g.

encountering a parent) at the same time in ontogeny

(e.g. when leaving the egg). In such cases, natural selec-

tion may favor neural systems to ‘expect’ this information,

implemented through specific brain circuits showing
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heightened neuroplasticity. When an organism encoun-

ters the relevant experience, major and rapid changes

occur in the brain, which are difficult or impossible to

reverse based on subsequent experience (Table 1). Con-

sider filial imprinting: once a chick has imprinted on its

mother, it will lose the ability to form parent-offspring

attachment with other adults [14]. If the system is

deprived of this input (e.g. visual animals being reared

in the dark), it may lose the capacity to develop normally

[15].

Dependent systems, by contrast, process a broad range of

information [2��,3,4�]. These systems form and prune new

synaptic connections in response to specific situations,

and which occur over the course of individual lives, as

opposed to at a specific time. Nonetheless, the degree of

plasticity of dependent systems may vary across ontog-

eny. For instance, if a given object or event is especially

common or relevant, neural systems may become special-

ized, or fine-tuned, for processing it (e.g. efficiently

processing the features of phonemes or faces), at a cost

to their ability to process other types of stimuli [16]. Such

specialization processes are typically gradual and revers-

ible based on later experiences (Table 1). Accordingly,

dependent systems tend to retain the capacity to recover

from deprivation.

Despite their differences, expectant and dependent plas-

ticity may co-occur in a single system. For instance, a

system may ‘expect’ linguistic communication of a certain

general type to exist, but use dependent plasticity to

acquire details of the particular language (e.g. learning

irregular forms).

The distinction also provides a heuristic for research by

suggesting that certain features of plasticity tend to go

together. For instance, sensitivity to a specific input at a

particular time is likely followed by major and rapid

changes in the brain. Understanding such associations

is key from an applied perspective. Expectant systems

have windows of vulnerability and opportunity during

which interventions have the most impact. For some traits

in some species, researchers are able to modify the timing

and duration of such windows, and to ‘reopen’ windows

that had already ‘closed’, through pharmacological or
Table?1

The features of experience-expectant and experience-dependent plas

minor variations in the way these terms are used in different publicat

Experience-expectant plast

Evolution Species-typical experience

Particular type of informatio

Time limited 

Development Heightened neuroplasticity 

Major, rapid changes to bra

Hard to reverse 
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experiential manipulation. Such work has the potential

to inform interventions that help to erase neural signa-

tures of psychosocial trauma [17] and physical impairment

[18�].

The distinction between expectant and dependent plas-

ticity has advanced insight into the mechanisms of plas-

ticity [15,18�,19]. One might therefore be surprised to

learn this distinction is rarely used in evolutionary biology

(for an exception, see Ref. [20]). This is likely because

there are challenges to applying the distinction across the

full tree of life. As we will see, some of these challenges

are more easily resolved than others.

Organisms without neurons
Plants do not have neurons. Nor do some animals (e.g.

sponges, sea urchins). However, these organisms do have

systems of plasticity that produce critical and sensitive

periods in development [21–24]. The distinction between

expectant and dependent plasticity does not apply to

these organisms, however, if we view neural mechanisms

as essential features. This leads to missing opportunities

for integration. For instance, the adaptive reasons for

sensitive periods in brainy and brainless organisms may

be similar, and there might be similarities in their func-

tioning. For instance, plasticity may decline once organ-

isms have acquired enough information about the current

conditions [6��,25,26].

Evolutionary biologists often define ‘sensitive periods’ in

a way that decouples function and mechanism, as a time

period or life stage in which experience shapes a trait to a

larger extent than the same experience does in other

developmental stages [25]. This definition does not spec-

ify physiological mechanisms, which vary between spe-

cies [6��,25]. It also includes sensitive and critical periods

in morphological development. Such periods may involve

physiological reorganization, which is not necessarily

neural, triggered by specific experiences occurring at

particular times (e.g. predator-induced defensives in prey

species, such as growth of neck spines in Daphnia [27]).

In sum: critical and sensitive periods in non-neural

systems may have features in common with expectant

systems, but the distinction between expectant and
ticity, as they are typically represented in the literature. There are

ions

icity Experience-dependent plasticity

 Individual-specific experience

n Variety of information types

At all points in ontogeny

Non-heightened neuroplasticity

in Gradual formation of synapses

Easier to reverse
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dependent plasticity does not capture these systems. This

issue, however, can be resolved easily: we may consider

neural mechanisms a ‘nonessential feature’ that only

applies when we are dealing with neural systems. In

Table 1, this would require two simple changes: replacing

‘neuroplasticity’ with ‘plasticity’ in row four (so it reads:

‘heightened plasticity’ and ‘non-heightened plasticity’),

and replacing ‘brain’ and ‘synapses’ with ‘phenotypes’ in

row five (so it reads: ‘major, rapid changes to phenotypes’

and ‘gradual formation of phenotypes’).

Multiple sensitive periods with flexible timing
The next time you peek into an aquarium, you are likely

to see goby fish. These fish have small-to-medium sized

ray fins, large heads, and tapered bodies. In nature, goby

fish live in freshwater, brackish, and marine environ-

ments, where they display amazing abilities. Specifically,

they are able to change sex. Goby fish live in groups of

females (harem) with a single dominant male. If this male

is lost from the group (e.g. dies, gets badly injured), one of

the adult females (usually the largest) changes her sex to

become male of the group. This sex change involves

major coordinated changes across multiple biological

systems, including anatomical, neuroendocrine, and

behavioral axes [28]. There are other factors that can

induce sex change in goby fish (e.g. reaching a critical age

or size), and also other animals capable of changing sex (e.

g. amphibians [29]). Sex reversals have some features that

we think of as ‘experience-expectant’, but other features

that do not fit this category, and which fit better with

‘experience-dependent’.

First, in contrast to expectant plasticity, sex change may

occur at nearly all points in development [28,30]. It is

induced by a specific event rather than a given ontoge-

netic stage. The loss of a dominant male may occur at any

time (e.g. due to predation or infection). Therefore, the

system has evolved to ‘expect’ the loss of a dominant

male, responding to this specific cue with a major pheno-

typic reorganization, but the developmental timing of this

response is flexible. This raises the question whether

other animals — which experience fitness-relevant

changes to their contexts at unpredictable intervals that

can reliably be detected — are also able to have multiple

sensitive periods with flexible timing.

Second, in contrast to expectant plasticity, individuals may

change their sex multiple times during their lifetimes

[31,32]. Such bidirectional sex change shows the effects

of a sex change may not be lasting. Todd et al. [28] note:

“Sexual fate is no longer seen as an irreversible determin-

istic switch set during early embryonic development but as

an ongoing battle for primacy between male and female

developmental trajectories. That sexual fate is not final and

must be actively maintained via continuous suppression of

the opposing sexual network creates the potential for

flexibility into adulthood” (p. 223). Some other features
www.sciencedirect.com 
of sex change, however, do fit expectant plasticity. For

instance, sex change is triggered by a specific cue (e.g.

changes in social structure, and in some species, reaching a

critical age or size), rather than extensive exposures, and

involves a major reorganization of the phenotype.

In sum: sex reversal has some properties of expectant

plasticity (e.g. a specific cue triggers a major reorganiza-

tion of the phenotype), and others of dependent plasticity

(e.g. reversals can occur at nearly all points in develop-

ment and multiple times over the life course in sequen-

tially hermaphroditic fish). Other properties do not fit

either type of plasticity. For instance, in the absence of

the cue, loss of a dominant male, the system develops into

a female, rather than breaking down (as an expectant

system might), or becoming recruited by other inputs (as a

dependent system might). We think these challenges are

difficult to resolve. This would require dropping or modi-

fying several essential properties of expectant systems (in

Table 1, rows three and six).

Variation in experience across individuals and
populations
Expectant plasticity is thought to result from experience

shared by all members of a species (Table 1). However,

different populations of the same species often vary in their

levels of plasticity. Consider soapberry bugs. Males from

Oklahoma are able to adjust their level of mate guarding

adaptively basedon thesexratio they experienced earlier in

their lives [33]. If there are many females, they guard their

mates less; it is easier to find a new mate and their mate is

unlikely tofind a newmale.Males from Florida,by contrast,

are not able to adjust their level of mate guarding. They

have not evolved to ‘expect’ variation in the local sex ratio.

Overevolutionary time, theOklahoma populationhasbeen

exposed to rapid fluctuations in the local sex ratio (due to

thunderstorms, which are more likely to kill females), but

the Florida population has not. As there is barely gene flow

between these populations, their differences in plasticity

remain stable over time [34].

Thus, expectant plasticity does not need to be shared by

all, or even by most, members of a species. This challenge

is easily resolved by viewing expectant plasticity as a

feature of populations (i.e. a number of organisms of the

same species who live in the same geographical range and

are capable of interbreeding), rather than species. In

Table 1, this requires a minor change: changing the left

column of row one from ‘species-typical experience’ to

‘population-typical experience’.

Even within a single population, not all individuals need

to be exposed to a given experience for expectant plas-

ticity to evolve. It is sufficient for a proportion of the

population to have the experience in each generation

[35,36]. For instance, some individuals may never be

exposed to a predator. However, because the costs of
Current Opinion in Behavioral Sciences 2020, 36:157–162
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getting killed are high, the entire population might evolve

to ‘expect’ predators. This issue blurs the distinction

species-typical (or population-typical) experiences and

individual-specific experience. It can be resolved either

by dropping the first row from Table 1, or by revising it to

stating that plasticity is expectant if all individuals in a

population are able to developmentally adapt to (rather

than have) the relevant experience. This solution is

imperfect, too, because in some conditions natural selec-

tion might favor populations in which some individuals

are plastic, in an expectant way, and others not. On the

positive side, this challenge illustrates scope for synergy:

theories from evolutionary biology may shed light on

individual differences in plasticity within human popula-

tions (Ref. [37�]; for a formal model, see Ref. [38]; for

statistical challenges to documenting ‘differential sus-

ceptibility’, see Ref. [39]).

Conclusion
We have argued that the distinction between expectant

and dependent plasticity does not apply across the full

tree of life. We have shown that there are many organisms

that show only some of the properties of expectant

plasticity, but not other features; or which have a mixture

of the two types of plasticity; or, which fit neither type.

The distinction is a useful heuristic for traits in species

where it applies, but is limited in scope. This is not,

however, how it is usually depicted in the literature.

So how do we proceed? Although we hope that one day all

disciplines will share a common, generalizable taxonomy

of forms of plasticity, until then, we propose that psy-

chologists keep using the distinction when it fits a partic-

ular trait (e.g. filial or sexual imprinting) in a particular

species (e.g. humans, rodents). However, in cases where it

does not fit well, such as when considering hypotheses

that might apply across the full tree of life, researchers

could use constructs from evolutionary biology. For

instance, they could define a ‘sensitive period’ as a

window in which experience shapes a trait to a larger

extent than the same experience does in other windows

[25]. By decoupling function and mechanism, such a

broad definition fosters the discovery of general principles

in plasticity; for instance, based on the benefits and costs

of being more or less plastic at different life stages, as a

function of environmental conditions [40–42].

Using a broader definition of sensitive periods, however,

will not be enough to ensure that research by psychologists

is disseminated into evolutionary biology. To this end, we

list five actionable recommendations. This list is not

exhaustive, but it provides a start. Psychologists could:

� Include a section in their papers that uses broader

terminology (e.g. phenotypic plasticity), and which high-

lights links to other organisms and other disciplines;
Current Opinion in Behavioral Sciences 2020, 36:157–162 
� Invite evolutionary biologists to present at psychology

conferences (e.g. a keynote on sensitive and critical

periods by a researcher studying non-human animals

rarely represented at psychology conferences, such as

insects or fish);

� Present their research at meetings attended by evolu-

tionary biologists, as they are just as interested in

humans as they are in other animals;

� Write a review paper for an interdisciplinary journal

read by both communities (e.g. Proceedings of the Royal
Society B, Evolution and Human Behavior);

� Tag organizations for evolutionary biologists

when disseminating research on social media (e.g.

on Twitter: @EES_update, @BehavEcolPapers,

@EvolHumBehav).

Of course, it would be possible to compile a similar list for

evolutionary biologists, which could help dissemination

and understanding of ideas and findings from that field

into psychology. In the future, we should strive for

infrastructure that bridges not only psychology and evo-

lutionary biology, but which also connects these fields to

the other sciences, advancing consilience, i.e. the inte-

gration of all sciences. Our paper offers a small step in this

direction.
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