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ARTICLE INFO ABSTRACT

Keywords: Evolutionary social scientists have argued that impulsive behavior is adaptive in harsh and unpredictable
Impulsivity conditions. Is this true? This paper presents a mathematical model that computes the optimal level of impulsivity
Harshness in environments varying in harshness and unpredictability. We focus on information impulsivity, i.e., choosing
Unpredictability

to act without gathering or considering information about the consequences of one's actions. We explore two
notions of harshness: the mean level of resources (e.g., food) and the mean level of extrinsic events (e.g., being
the victim of a random attack). We explore three notions of unpredictability: variation in resources, variation in
extrinsic events, and the interruption risk (the chance that a resource becomes unavailable). We also explore
interactions between harshness and unpredictability. Our general model suggests four broad conclusions. First,
impulsive behavior is not always adaptive in harsh and unpredictable conditions; rather, this depends on the
exact definitions of harshness, unpredictability, and impulsivity. Second, impulsive behavior may be adaptive in
environments in which the quality of resources is low or high, but is less likely to be adaptive when their quality
is moderate. Third, impulsive behavior may be adaptive when resource encounters are likely to be interrupted.
Fourth, extrinsic events have only a limited effect on whether impulsive behavior is adaptive. We discuss the

Bayesian inference
Life history theory
Formal model

implications of these findings for future research, consider limitations, and suggest future directions.

1. Introduction

A common perspective is that self-control helps us make better de-
cisions and achieve valued goals (Baumeister, 2002; Duckworth, 2011;
Mischel, Shoda, & Rodriguez, 1989; Moffitt et al., 2011; Verdejo-Garcia,
Lawrence, & Clark, 2008). This view regards impulsive behavior as
short-sighted, resulting from low levels of self-control. Such a view
implies that impulsive behavior is negative, defective, and dysfunc-
tional (Daly & Wilson, 2005; Daruna & Barnes, 1993; Evenden, 1999;
Frankenhuis, Panchanathan, & Nettle, 2016; Wilson & Daly, 2006).
These judgments are often reflected in definitions of impulsive beha-
vior, for instance, as behavior that is “poorly conceived, prematurely
expressed, unduly risky or inappropriate to the situation and that often
result in undesirable consequences” (Daruna & Barnes, 1993, p. 23).

The emphasis on dysfunction may be appropriate from a health and
wellbeing perspective. Longitudinal studies show that high levels of
self-control (low impulsivity) in childhood predict a broad suite of de-
sirable outcomes later in life, including better health, more wealth, and
stable social relationships (Duckworth & Seligman, 2005; Duckworth,
Tsukayama, & Kirby, 2013; Moffitt et al., 2011). Evolutionary social
scientists, however, have offered a different perspective. They note that

there is a large variation in impulsive behavior, both between in-
dividuals or within the same individuals over time, and argue that this
may reflect a developmental and behavioral adaptation to harsh and
unpredictable environments. Of course, this perspectives privileges
biological fitness (survival and reproductive success), not health and
wellbeing. These two notions of adaptation are conceptually in-
dependent: behaviors might hurt wellbeing, yet enhance fitness, or vice
versa (Frankenhuis & Del Giudice, 2012).

Over the past decade, there has been a surge of papers arguing that
impulsive behavior is adaptive in harsh and unpredictable environ-
ments (reviewed in section 1.1). However, this “adaptive impulsivity”
hypothesis is based on natural language, not on formal modeling.
Natural language is often ambiguous, leaving room for different inter-
pretations of concepts and how they relate to one another. As we dis-
cuss below, there are multiple interpretations of harshness, unpredict-
ability, and impulsivity, making the truth and scope of this hypothesis
unclear. Formal modeling resolves such ambiguity by expressing con-
cepts and their relations mathematically. In addition, formal modeling
allows a researcher to analyze under what conditions a hypothesis
follows logically from assumptions (Epstein, 2008; Smaldino, 2017). In
this paper, we develop a formal model that explores the optimal level of
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one type of impulsive behavior (i.e., information impulsivity, see sec-
tion 1.2.3) in environments varying in both harshness and unpredict-
ability.

1.1. Why impulsive behavior might be adaptive in harsh and unpredictable
environments

The hypothesis that impulsive behavior is adaptive in harsh and
unpredictable environment has been inspired by life history theory
(though not logically derived from it). Life history theory is a frame-
work based on a collection of mathematical models from evolutionary
biology and ecology (Stearns, 2000), which is increasingly used in the
evolutionary social sciences (Del Giudice, Gangestad, & Kaplan, 2015;
Nettle & Frankenhuis, 2019). Central to this framework is the question
why species differ in how they allocate finite resource (such as time and
energy) across different life history traits, such as the rate of growth,
onset of reproduction, quantity and quality of offspring, parenting and
mating effort, and delaying senescence. As decisions made early in life
influence how life history traits trade-off later in life, scholars have
proposed that life history traits cluster on a single dimension. For in-
stance, species that invest in rapid growth at the expense of somatic
quality (also called r-selected species) may have a reduced lifespan, and
delaying reproduction increases the risk of dying before reproduction.
As offspring are more likely to die before adulthood, such organisms
tend to produce a high number of offspring with lower levels of parental
investment per offspring. In contrast, species that invest in somatic
quality at the expense of rapid growth (also called K-selected species)
tend to have longer lifespans, delayed reproduction, and larger in-
vestments in fewer offspring.

In the past decade, evolutionary social scientists and biologists have
increasingly used life history theory to explain individual differences in
behavioral and physiological traits as well. Specifically, they have
proposed that underlying patterns of resource allocation may be asso-
ciated with other behavioral and physiological traits not directly related
to life history traits (Réale et al., 2010; Royauté, Berdal, Garrison, &
Dochtermann, 2018). According to this pace of life syndrome (POLS)
hypothesis, variation in life history traits create suites of correlated
behavioral and physiological traits. A widespread (but controversial;
see also section 4.2) claim is that these suites fall on a continuum
ranging from ‘fast’ to ‘slow’ (Ellis, Figueredo, Brumbach, & Schlomer,
2009; Giudice, Gangestad, & Kaplan, 2005). Fast-paced individuals
mature earlier, reproduce earlier, and have shorter lifespans. Due to
their shorter expected lifespans, they are thought to focus on immediate
(as opposed to long-term) rewards. Impulsive behavior is thought of as
a fast-life behavioral trait because it allows individuals to maximize
resources in the short term. Impulsivity is a behavioral trait, not a life
history trait. Life history traits govern the scheduling and allocation of
resources to competing life-history objects (e.g., investing in current or
future reproduction). Impulsivity is a behavioral trait that increases
available resources as it allows individuals to act swiftly, seize fleeting
opportunities, and avoid the costs associated with collecting informa-
tion.

Two characteristics of the environment are thought to be essential
in determining pace of life: harshness and unpredictability (Del
Giudice, 2018; Ellis et al., 2009). Harshness refers to morbidity and
mortality caused by factors beyond the control of the individual. In a
harsh environment the expected lifespan is short, and individuals
maximize fitness by reproducing early before they die. Unpredictability
refers to stochastic variation in harshness over time or space. In un-
predictable environments conditions might worsen at any time. Hence
the future is uncertain and difficult to plan for, favoring faster paces of
life that are rewarding in the short-term.

As harshness and unpredictability are thought to favor faster paces
of life, and impulsivity might be part of a fast pace of life, evolutionary
social scientists have proposed that impulsive behavior is adaptive in
harsh and unpredictable environments. Empirical evidence for this
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hypothesis is mixed. On the one hand, correlational studies show that a
faster life-history strategy is associated with higher levels of impulsivity
(Lee, DeBruine, & Jones, 2018; Mishra, Templeton, & Meadows, 2017).
Similarly, experimental studies show that people who have grown up in
harsh environments may be more likely to respond to resource scarcity
with higher levels of impulsive behavior (Griskevicius et al., 2013;
Kruger, Reischl, & Zimmerman, 2008; but see Pepper et al., 2017 for a
replication study that obtains a different result) and residents of
countries with low life expectancy show less willingness to wait for a
delayed reward (Bulley & Pepper, 2017). On the other hand, fast life
history traits such as early maturation do not always correlate with less
deliberation, exploration, or future orientation in humans (Copping,
Campbell, & Muncer, 2013, 2014) or non-human animals (Royauté
et al., 2018).

1.2. Conceptual challenges

The hypothesis that impulsive behavior increases fitness in harsh
and unpredictable environments provides an explanation for the var-
iation in impulsivity between individuals, and within individuals over
time and across contexts. There remains, however, conceptual ambi-
guity in this adaptive impulsivity hypothesis: there are different notions
of harshness, unpredictability, and impulsivity, making the precise
meaning, validity, and scope of this hypothesis unclear. Before pre-
senting our model, we discuss various interpretations of these concepts.
Our discussion is not exhaustive; there are other usages, which we do
not discuss. Our goal is to familiarize the reader with the common
usages in evolutionary social science, and to show there is a need for
greater conceptual clarity in theoretical discussions and empirical tests
of the adaptive impulsivity hypothesis.

1.2.1. Harshness

Evolutionary social scientists often define harshness as extrinsic
mortality-morbidity; that is, the rate at which external factors, which an
individual cannot control, cause disability and death. Empirical studies
rarely measure extrinsic mortality-morbidity directly. Instead, they
operationalize harshness in one of two ways. The first operationaliza-
tion focuses on exposure to violence and crime (Brumbach, Figueredo,
& Ellis, 2009; Griskevicius, Delton, Robertson, & Tybur, 2011;
McCullough, Pedersen, Schroder, Tabak, & Carver, 2013; Mell, Safra,
Algan, Baumard, & Chevallier, 2018; Pepper et al., 2017) and/or low
life expectancy (Aronoff & DeCaro, 2019; Lee et al., 2018; Mell et al.,
2018; Pepper & Nettle, 2014; M. Wilson & Daly, 1997). The second
operationalization focuses on resource scarcity or low resource quality,
often measured as low socioeconomic status (Allen & Nettle, 2019;
Griskevicius et al., 2013; Griskevicius, Tybur, Delton, & Robertson,
2011; McCullough et al., 2013; Mell et al., 2018; Pepper et al., 2017;
Simpson, Griskevicius, Kuo, Sung, & Collins, 2012). Although extrinsic
morbidity-mortality and low resource quality are often empirically
correlated (Ellis et al., 2009), each may actually pose different selection
pressures on impulsive behavior, as we will show later.

1.2.2. Unpredictability

There are at least three different notions of unpredictability. First,
the state of the environment itself can be unpredictable due to random
changes in the degree of harshness over time, space, or both. If the
environment is only spatially unpredictable, the environment does not
change over time, but different individuals can experience different
environmental states. If the environment is only temporally un-
predictable, all individuals experience the same environmental state,
which varies over time. Empirical studies have measured environ-
mental unpredictability, for instance, as the number of household
moves, or the number of different father figures passing through a
single-mother household (Belsky, Schlomer, & Ellis, 2012; Mittal &
Griskevicius, 2014; Simpson et al., 2012). However, such measure-
ments typically include both spatial and temporal variation. For
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instance, people might move house because geographical areas differ in
their level of harshness (spatial unpredictability), because the harshness
in a geographical area changes over time (temporal unpredictability;
e.g., jobs may move away), or both. Second, an environment that does
not change over space or time might still be unpredictable if, for a mean
level of harshness, there is large variance in possible outcomes
(Frankenhuis et al., 2016). That is, even if the mean level of harshness
does not change over time or space, the range of experiences in a
particular environment may be large or small. For instance, in a harsh
but predictable environment, resources might be consistently poor (e.g.,
money is always tight). In a harsh and unpredictable environment,
there is variation in resource availability (e.g., piece workers might
have large pay checks in some periods but receive little income in
others). Similarly, in unpredictable environments some probabilistic
event (e.g., being randomly attacked) might occur (Brumbach et al.,
2009; Simpson et al., 2012). Third, resources within stable environment
might be predictable but their persistence can be unpredictable. That is,
currently available resources (e.g., food or job) might become un-
available due to interruptions (i.e., a decay rate or collection risk;
Stephens, 2002). For instance, in an unchanging environment where
there is little variation in resource quality (e.g., jobs always provide
little income), resources might disappear due to high competition (e.g.,
other piece workers might ‘steal’ a job site).

1.2.3. Impulsivity

In empirical studies, different measures of impulsivity are only
weakly correlated or even uncorrelated (Cyders & Coskunpinar, 2011;
MacKillop, Weafer, Gray, & Palmer, 2016; Sharma, Markon, & Clark,
2014), providing limited support (if any) for a single-factor model
(Caswell, Bond, Duka, & Morgan, 2015; Stahl et al., 2014), suggesting
that impulsivity may not be a unitary construct. There is an active
debate on how many and which types of impulsivity exist, with studies
typically dividing impulsivity in two to five types (Cyders, 2015;
Evenden, 1999; Fineberg et al., 2014; Frederick, Loewenstein, &
O'donoghue, 2002; Hamilton et al., 2015; Hamilton et al., 2015).

A common divide is between choice impulsivity and motor im-
pulsivity. Choice impulsivity refers to preferences that result in im-
pulsive decisions (Hamilton, Mitchell, et al., 2015), and can be further
divided into two separate constructs (Caswell, Bond, et al., 2015;
Fineberg et al., 2014; MacKillop et al., 2016). The first is temporal
impulsivity, or the tendency to prefer immediate rewards over later
ones (also known as temporal preference, delay of gratification, or
temporal discounting; Caswell et al., 2015; Frederick et al., 2002;
Hamilton, Mitchell, et al., 2015). The second type is information im-
pulsivity, or the tendency to act without gathering or considering in-
formation about the consequences of one's actions (also known as non-
planning impulsivity, reflection impulsivity, or impulsive processing;
Caswell, Morgan, & Duka, 2013; Hamilton, Littlefield, et al., 2015;
Kagan, 1966). In contrast, motor impulsivity (also known as impulsive
action) occurs after a decision is made, and refers to the inability to
control, inhibit, or cancel motor patterns. There are more possible types
of impulsivity besides information, temporal, and motor impulsivity.
However, these types either result from somatic damage or psycho-
pathology (e.g., ADHD or addiction), or are explicitly defined as ne-
gative outcomes (e.g., impulsivity as disadvantageous decision making;
Fineberg et al., 2014). In this article we explore under which environ-
mental conditions evolution by natural selection might have favored
impulsive behavior. As such, we consider only types of impulsivity that
results from evolutionary pressures and that shape preferences. We do
not study under what conditions an individual is able to act according
to its preference (i.e., motor impulsivity) or how specific (psycho)
pathologies influence this ability (i.e., disadvantageous decision
making).

Temporal and information impulsivity are both important con-
structs in life-history research. Temporal impulsivity is associated with
a fast pace of life. Individuals with a present-orientation favor
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immediate consumption over saving for the future. This behavior may
be adaptive in harsh and unpredictable environments, where in-
dividuals face increased levels of poverty, violence, disability, and/or
experience less control over their environment (Frankenhuis & Nettle,
2020; Pepper & Nettle, 2017). Such hardship reduces life expectancy,
increases uncertainty about future rewards, and implies greater op-
portunity costs to not using resources in the short term (Mell et al.,
2019). In such conditions, people might benefit from maximizing short-
term rewards.

Information impulsivity — the focus of the present study - is asso-
ciated with two behavioral traits often considered part of a fast pace of
life. The first is poor planning due to a failure to deliberate. Two
questionnaires often used in the evolutionary social sciences measure
this trait. The mini-K (Figueredo et al., 2006) includes questions such as
“I try to understand how I got into a situation to figure out how to
handle it” and “I often make plans in advance”. Studies that explore the
psychometric properties of the mini-K scale suggest that these items
form a single factor that partly measure planning deficits (Richardson,
Chen, Dai, Brubaker, & Nedelec, 2017). Other studies in the evolu-
tionary social sciences measure impulsivity using Eysenck's Impulsivity
Scale (Eysenck, Pearson, Easting, & Allsopp, 1985; Mishra &
Novakowski, 2016), a scale that explicitly defines impulsivity as “doing
and saying things without thinking” (Eysenck, Easting, & Pearson,
1984, p 3.15). The second behavioral trait is the tendency to favor
quick and shallow exploration over thorough exploration. When pre-
sented with a new situation, a fast-paced individual acts boldly, in-
vesting little time in understanding the situation before acting
(Baumard & Chevallier, 2015; Del Giudice, 2015; Réale et al., 2010; Sih
& Del Giudice, 2012). The Balloon Analogue Risk Task (BART) — used in
many fields of social science, including evolutionary psychology
(Griskevicius et al., 2013; Humphreys et al., 2015; Lu & Chang, 2019;
Mishra, Lalumiére, & Williams, 2010) — measures this tendency. In this
task, participants earn money by repeatedly inflating balloons. Inflating
a balloon makes it more valuable. However, each balloon has a max-
imum inflation point. Beyond this point, the balloon bursts, ending the
trial without reward. Participants thus face a tradeoff between a small-
but-certain reward and a larger-but-less-certain reward. Crucially, in
most versions of the BART participants are not told what the maximum
inflation point is. Rather, they can learn about this point by trial and
error, which requires sacrificing a number of balloons. People vary in
their willingness to pay for information. Due to task impurity, evolu-
tionary social scientists using these versions of the BART measure in-
formation impulsivity, alongside risk preferences.

In the evolutionary social sciences, the term ‘impulsivity’ is used to
refer to temporal impulsivity, information impulsivity, or both. Some
researchers explicitly use the term to refer to one type of impulsivity:
either to information impulsivity (Brumbach et al., 2009; Copping
et al., 2013; Del Giudice, 2015; Mishra et al., 2017) or temporal im-
pulsivity (Allen & Nettle, 2019; Daly & Wilson, 2005; Griskevicius et al.,
2013; Lee et al., 2018; Mittal & Griskevicius, 2014; Sih & Del Giudice,
2012). Other researchers use separate labels for impulsivity and time-
oriented traits such as future orientation or time perspective (Chen &
Vazsonyi, 2011; Del Giudice, 2014; Del Giudice & Belsky, 2010;
Griskevicius et al., 2013). This distinction suggests they view temporal
and information impulsivity as separate constructs. Finally, some re-
searchers regard information impulsivity as a separable component of a
broader cluster of impulsivity traits; defining impulsivity, for instance,
as “[...] a stable tendency to act without deliberation and without
consideration of future consequences, [reflecting] a combination of
behavioral disinhibition and future discounting” (Del Giudice, 2018, p.
114). This conceptual manifold is problematic. As MacKillop et al.
(2016) noted: “the use of a catch-all term impulsivity to refer to distinct
characteristics may foster ambiguity and confusion in the literature” (p.
3362).
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1.3. Limitations of existing models

Formal models have explored optimal levels of impulsive behavior
as a function of the quality of resources, such as food and mates. For
instance, models of mate choice have shown that it is adaptive to collect
more information before choosing a mate (i.e., low information im-
pulsivity) when the variance in the quality of mates is high (Collins,
McNamara, & Ramsey, 2006; Fawcett & Johnstone, 2003; Luttbeg,
1996; Mazalov, Perrin, & Dombrovsky, 1996). Similarly, foraging
models suggest some environmental conditions that promote informa-
tion impulsivity (Dunlap & Stephens, 2012; Mathot & Dall, 2013). For
instance, as food becomes scarcer or the requirements for survival in-
crease, the relative cost of sampling information increases, promoting
information impulsivity. Similarly, when the variance in food quality
decreases, sampling information becomes less beneficial, promoting
information impulsivity. Such models might provide a formal founda-
tion for the adaptive impulsivity hypothesis. However, these models
have usually focused on a single type of harshness and a single type of
unpredictability, and have not studied the interactive effects of harsh-
ness and unpredictability on impulsive behavior.

1.4. Our contribution

We present a mathematical model that computes the optimal level
of information impulsivity in environments varying in both harshness
and unpredictability. Although the empirical literature on the adaptive
impulsivity hypothesis studies both temporal and information im-
pulsivity, we focus on information impulsivity (Copping et al., 2013;
Del Giudice, 2015, 2018; Mishra et al., 2017). We explore two notions
of harshness: the quality of resources that agents make decisions about
(e.g., food) and the quality of extrinsic events over which agents have
no control (e.g., being randomly attacked). We explore three notions of
unpredictability: variance in the resource quality, variance in the ex-
trinsic event quality, and interruption rate (the probability that a given
resource disappears). We leave temporal impulsivity for a future study.
Thus, we use the term ‘impulsivity’ here to refer to information im-
pulsivity.

2. Model

In the main text we describe the decision problem. In the supple-
mentary materials we describe how agents solve this decision problem
(appendices A to D). Furthermore, we provide the software im-
plementation, programmed in JAVA (version 8.192), with extensive in-
code documentation. All appendices and code are accessible at https://
github.com/JesseFenneman/AdaptivelnformationImpulsivity.

2.1. The decision problem

Fig. 1 provides a graphical overview of the decision problem (see
appendix B for an in-depth and formal description). An agent's state has
two components: a soma, representing the agent's condition, whether it
be physical, social, or material; and belief, representing the agent's
knowledge about the resources in its environment. An agent's somatic
state can range from 0 to 100 (at 0, the agent dies). This state changes
when an agent interacts with its environment.

When encountering a resource (see appendix B.1.1.), an agent
makes decisions that influence the outcome of interactions. Although an
agent cannot influence the resource quality, it can decide whether to
accept or reject a given resource (e.g., eat food or not, accept a job offer
or not). If an agent accepts, the encounter is interrupted with a fixed
probability before that agent can collect the outcome (e.g., someone
else may be hired). If the agent accepts a resource and is not inter-
rupted, the resource is added to its somatic state. This addition can be
positive or negative, depending on the resource quality. After this in-
teraction, over which the agent had some control, an extrinsic event
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happens, over which the agent has no control (e.g., being randomly
attacked, receiving windfall donations). This extrinsic event is added to
(if positive) or subtracted from (if negative) the somatic state. A re-
source encounter is always followed by an extrinsic event, and vice
versa. We call the pairing of a resource encounter and the subsequent
extrinsic event a ‘cycle’. We want the timescale of a cycle to be short
relative to the lifespan of an agent (we do not focus on end-of-life ef-
fects), and therefore assume that as long as an agent is alive, there are
infinitely many cycles.

2.1.1. Priors, cues, and beliefs

Resources and extrinsic events are drawn randomly from separate
and independent normal distributions. An agent does not know the
quality of individual resources or extrinsic events until they impact its
somatic state. We make two assumptions. First, an agent spends its
entire life in a single, unchanging environment. There is no depletion of
resources or extrinsic events; the distributions of resources and extrinsic
events do not change from one cycle to the next. Second, an agent
knows the broader (or meta) parameters of its environment: it knows
the mean and variance of the distributions of resources and extrinsic
events.

Before deciding to accept or reject a resource, an agent has the
option to sample cues that provide imperfect information about the
resource quality, and by extension about consequences of its actions
(e.g., the food might be healthy or poisonous; a job may be dangerous
or safe; see appendix B.1.1.1.). A cue can be positive or negative, and
predicts the sign of the resource correctly or incorrectly with a prob-
ability known to the agent. This probability is given by the cue relia-
bility, which is conditional on the resource quality: extremely positive
(negative) resources are more likely to result in positive (negative) cues
than resources that are closer to zero. Positive and negative cues are
equally likely if the resource has a quality of 0. The cue reliability de-
pends only on the quality of the encountered resource, not on the mean
resource quality in the environment. That is, sampling a cue from a
good quality resource in an environment where the mean resource
quality is high results in a positive cue with the same likelihood of
sampling from a good quality resource in an environment where the
mean resource quality is low. However, sampling is costly: it requires
an agent to invest some energy in sampling (e.g., gathering information
about a potential employer requires effort). Each cue sampled reduces
the somatic state by a fixed amount.

After sampling a cue, an agent updates its belief state about the
resource quality in a Bayesian manner, the optimal way of information
updating (McNamara, Green, & Olsson, 2006). This does not imply that
we assume that psychological processes are Bayesian. Rather, we as-
sume that natural selection favored behavior consistent with Bayesian
updating. Such behavior might be instantiated in simple if-then rules.
Over generations, natural selection might have favored if-then strate-
gies that result in Bayesian-like behavior (Higginson, Fawcett, Houston,
& McNamara, 2018; Trimmer et al., 2011). As we study information
impulsivity but not temporal impulsivity, we assume that no time
passes during an encounter; sampling immediately results in a cue. If
sampling takes time, an agent might avoid sampling for two reasons:
because somatic costs of sampling outweigh the benefit of information,
or because it prefers to have outcomes sooner rather than later. This
would make it impossible to separately evaluate the effects of en-
vironmental conditions on information impulsivity and temporal im-
pulsivity.

2.1.2. Fitness

The somatic state of an agent at the end of its life determines its
fitness (appendix B.1.3.). We explore three different mappings of state
to fitness: linear, the marginal fitness increment is constant as state
increases; diminishing, the marginal fitness increment decreases as
state increases; and increasing, the marginal fitness increment increases
as state increases. There are real-world examples for each of these
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Fig. 1. A schematic overview of the decision problem faced by an agent.

mappings. For instance, in a large and well-mixed population, the re-
productive output of a male might increase linearly with each mating.
For a well-fed individual each additional morsel of food provides di-
minishing fitness returns. When there is high reproductive skew, each
additional increase in strength might result in larger fitness gains. A
marginally diminishing or increasing mapping requires that we set a
decay or growth parameter, respectively. We conducted robustness
checks to explore different values of these parameters. These analyses
showed that the value of these parameters shift quantitative results, but
not qualitative results. Therefore, we present results for only one set of
parameter values. Readers are welcome to explore other values using
the interface we provide with our model (see section 2.4). There are no
additional parameters for a linear mapping. We describe results for the
linear mapping in the main text, and results for the increasing and
decreasing mappings in the supplementary materials.

2.2. Harshness and unpredictability

We vary five dimensions of the environment between agents (ap-
pendix B.1.4.):

e The mean resource quality (a kind of harshness);

e The mean extrinsic event quality (a kind of harshness);

e The variance in resource quality (a kind of unpredictability);

o The variance in extrinsic event quality (a kind of unpredictability);
and

o The interruption rate (a kind of unpredictability).

2.3. States and optimal policies

A policy specifies the behavior of an agent in all possible states that
that agent can be in. The optimal policy instructs an agent to take the
fitness maximizing action in all states. We use stochastic dynamic
programming and reinforcement learning to find the optimal policy

(Sutton & Barto, 2018). Appendix C provides an in-depth and formal
description of how we used these techniques. Because the parameters of
its environment do not change, an agent does not change its prior be-
liefs about resource and extrinsic event quality between cycles. That is,
the outcome of a previous cycle does not provide any new information
to the agent about these distributions. Therefore, the optimal policy
does not depend on cues sampled in previous cycles; it depends only on
an agent's somatic state at the start of a cycle.

2.3.1. Somatic damage and the discount rate

For real organisms, a good somatic state does not always guarantee
survival. There are other potential causes of mortality (e.g., natural
disasters). We capture these causes by assuming that there is a fixed
probability of death at each time period. As a result, agents discount
future cycles. Specifically, an agent values the outcome of a cycle far-
ther into to the future less than cycles closer in time. In our model,
discounting is exponential: the outcome of a future cycle is reduced by a
consistent factor for each intermediate cycle that agent has to go
through. This factor is called the discount rate. It can range from 0 (if
future expected outcomes have no value), to 1 (no discounting; all fu-
ture outcomes are valued equally). Moreover, higher discount rates
significantly increase the computational time of our model. We set the
discount rate to 0.95. Discounting occurs between cycles, not within a
cycle: sampling one more cue does not decrease the value of future
cycles. This assumption is essential: it ensures that, in our model, in-
formation impulsivity is not confounded with temporal impulsivity.
Moreover, it ensures that discounting affects the outcomes of all actions
equally. An agent weights the long-term consequences of all actions
equally.

2.3.2. Quantifying information impulsivity

Information impulsivity is the tendency to act without gathering or
considering information about the consequences of one's actions. In our
model an agent can only gather information by sampling cues. Each
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Fig. 2. A simplified overview of how sampling influences beliefs. An agent has a prior belief about the resource value (panel A). After sampling more positive than
negative cues (panel B, dashed black line) an agent becomes optimistic about the resource quality. The combination of areas C and D reflect the belief that the
resource is positive, whereas area B reflects the probability that the resource is negative. Because the combination of areas C and D is larger than B, accepting has a
positive expected outcome. In contrast, sampling more negative than positive cues (panel B, solid gray line) makes an agent pessimistic. Here, area C reflects the
belief that the resource is positive, whereas the combination of areas A and B reflect the probability that the resource is negative. In this case accepting is ill-advised:
as area C is smaller than the combination of areas A and B, accepting has a negative expected outcome. Sampling more cues further reduces an agent's uncertainty
about the resource quality (panel C). Reducing uncertainty increases the expected outcome of a resource encounter as it allows an agent to better differentiate
between negative and positive resources. If most sampled cues are positive (dashed black line), the ratio of the combination of areas C and D to area B further
increases. Consequently, accepting is more likely to result in a positive outcome. If most sampled cues are negative (solid gray line) the ratio of area C to the
combination of areas A and B further decreases. Here, accepting is more likely to result in a negative outcome, and the best action is to reject. However, each
additional cue results in a smaller decrease in uncertainty: after sampling a thousand cues, one more cue provides almost no additional information. There is,
therefore, a point at which the cost of sampling outweighs the benefits of the reduced uncertainty. Upon reaching this point an agent stops sampling and either rejects
or accepts the resource.

time it samples it always receives a single cue. The cue reliability is costs of understanding ramifications and updating beliefs. Although
fixed, and cues are independent. As a result, each cue is equally in- such costs are unlikely to be high, they are also unlikely to be zero.
formative. Because an agent always follows the optimal policy, it al- Similarly, if cues are extremely unreliable, an agent never samples. If
ways uses this information to update it beliefs about the resource cues are extremely reliable, an agent always samples one cue that
quality. As such, an agent that samples a cue will necessarily act based provides near-perfect information. We assumed that cues carry in-
on more gathered information. Reversely, an agent that does not sample formation, but are not perfect, nor extremely unreliable (c.f. Dall et al.,
will necessarily base its action on less information. We therefore use the 2005).
number of cues an agent samples as a measurement of information Some readers may be interested in different parameter settings. If
impulsivity. However, cues are probabilistic. This means that two so, they can use our graphical interface to explore parameter settings
agents can live in the same environment, follow the same policy, and other than the ones that we focus on here. Our model can be tailored in
encounter the same resource, but end up in different belief states and at least four different ways. First, the parameters of the decision task
therefore make different decisions. For instance, one agent might can be altered (e.g., vary the cost of sampling). Second, the distribution
sample four positive cues and decide to accept a resource, and another of resources and extrinsic events within an environment can be changed
agent might sample two positive and two negative cues and decide to (e.g., distributions can be made non-normal). Third, a reader might be
continue sampling before making a decision. We measure information interested in specific state-to-fitness mappings. Fourth, a reader might
impulsivity as the number of cues an agent expects to sample when be interested in studying the policies in more detail (e.g., what exactly
starting a resource encounter, when it follows the optimal policy. does the optimal policy prescribe?). Our graphical interface allows
Agents that sample fewer cues are more impulsive. users to easily adjust the parameters of the decision task, the para-
meters of the environment of an agent, the state-to-fitness mapping,
2.4. Parameters settings inspect an agent's policy in detail, and graph results. For more extensive
customization, we provide the software implementation of our model
In addition to setting the discount rate parameter, we also have set online with extensive in-code documentation. Future studies can use
the cost of sampling and the cue reliability. Some settings would pro- this software as a foundation to build models tailored to other decision
duce obvious or theoretically uninteresting results. For instance, we problems. We discuss possible extensions in section 4.2.
explored various costs to sampling. If the costs of sampling is very high,
no sampling takes place. If, however, the cost of sampling is very low, 3. Results
an agent always samples a maximum number of cues. We therefore
assume that there is some cost to sampling, but that this cost is not We present qualitative results; we do not provide specific numbers
extremely high. In our view some costs are theoretically plausible. and round values to nearest integers. We provide exact results in online
Biologists and psychologists often distinguish between two types of appendices E (linear marginal returns), F (diminishing marginal re-
costs: search costs and processing costs. Search costs are paid when an turns), and G (increasing marginal returns). Our results do not quali-
individual actively gathers information (e.g., seeking advice about a tatively differ if we assume linear marginal returns, diminishing mar-
potential job). Not all actions have search costs. For instance, a Daphnia ginal returns, or increasing marginal returns.
that passively drifts in a pond may receive cues indicating the presence Fig. 2 provides a brief overview of how sampling changes an agent's
of a predator. Similarly, humans may receive cues about their en- beliefs. An agent typically accepts or rejects a resource when it is suf-
vironment if they witness many closed storefronts. However, processing ficiently confident that the resource is positive or negative. When nei-
this information does incur processing costs, which are the cognitive ther of these conditions is met, an agent samples additional cues. How
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much information an agent needs before it is confident enough to make
a decision depends on its environment and its current state. To gain
insight, we focus on three dimensions that influence an agent's decision:
(1) the prior probability that a resource is positive, (2) how many more
positive than negative cues an agent needs, on average, before ac-
cepting, and (3) how many more negative than positive cues an agent
needs, on average, before rejecting. These dimensions explain much of
the variation between policies.

The optimal policy for when an agent starts a cycle with an extreme
somatic state (i.e., very high or very low) is different from when it starts
a cycle with an intermediate somatic state. As we are primarily inter-
ested in how the environment (rather than an agent's somatic state)
shapes the optimal policy, we first focus on the intermediate starting
state (section 3.1). Then we discuss the effect of extreme states (section
3.2). In these two sections, we assume there are no extrinsic events (i.e.,
the mean and variance of extrinsic events are both 0). In section 3.3, we
discuss how extrinsic events shape optimal policies.

3.1. Sampling with intermediate starting somatic states

Fig. 3 shows optimal policies as a function of the mean resource
quality, the variance in resource quality, and the interruption rate. We
show optimal policies with increasing and decreasing returns in sec-
tions 1 and 2 of appendices E, F, and G.

3.1.1. Sampling increases with higher variance in resource quality

As the variance in the resource quality increases, so does an agent's
prior uncertainty (Fig. 3, row 1). When this variance is close to 0, there
is no uncertainty: all resources have the same quality (e.g., jobs do not
differ in quality), and no learning is required (Fig. 3, row 4). When
there is moderate variance (e.g., jobs differ slightly in quality), the prior
uncertainty is higher, but in most cases an agent knows the sign of the
resource before sampling. Specifically, when the mean resource quality
is at least moderately positive (or negative), an agent can assume that
the resource is likely to be positive (or negative), even though it does
not know the exact quality. For example, if jobs are almost always
positive (negative), an agent can accept (reject) any encountered job
without sampling. When the mean resource quality is close to O a re-
source is equally likely to be positive or negative. In these environments
an agent needs to sample a few cues before being confident enough to
accept (Fig. 3, row 2) or reject (Fig. 3, row 3). Finally, when the var-
iance in the resource quality is high, both positive and negative re-
sources are possible. Even when the mean resource quality is very low,
an agent will sometimes encounter a positive resource. Similarly, when
the mean resource quality is very high, an agent will sometimes en-
counter a negative resource. For example, even in very prosperous
(poor) areas some jobs may be unsatisfactory (worthwhile). In high-
variance environments the prior uncertainty is high, and an agent needs
a large amount of evidence before it is convinced that a resource is
positive or negative. Therefore, an agent needs many more positive
than negative cues before accepting, and many more negative than
positive cues before rejecting. As little to no sampling occurs when
variance in the resource quality is low to medium, the rest of this
subsection focuses on environments that have a high variance in re-
source quality.

3.1.2. Sampling is maximal when the resource quality is neither high nor
low

Increasing the resource quality has a quadratic (inverted-U) effect
on sampling: agents sample few cues when the mean resource quality is
extreme (both negative and positive), but sample many when the mean
is close to 0. When the mean resource quality is very positive, almost all
resources in an environment will be positive. Accordingly, an agent
needs little evidence to conclude that a resource is positive and should
be accepted. However, an agent needs a lot of evidence before it is
convinced that the resource has a rare negative quality and should thus
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be rejected. Moreover, because most resources are positive, sampling is
more likely to results in a positive cue than in a negative cue. Therefore,
an agent typically samples a small number of positive cues, and then
quickly accepts. This pattern reverses when the mean resource quality
is very negative. In these environments an agent needs only a few more
negative than positive cues to reject, but many more positive than ne-
gative cues to accept. Because negative cues are more common than
positive cues in this environment, an agent is likely to sample a few
more negative than positive cues early on. For example, if jobs are on
average very rewarding, an agent is quick to accept and rejects only
when multiple red flags are raised. Conversely, if most jobs are dan-
gerous, an agent rejects a potential job at the first sight of trouble, but
needs strong evidence before accepting. When the mean resource
quality is closer to 0, an agent's prior is dispersed: positive and negative
resources are about equally likely. Accordingly, an agent needs a
medium amount of evidence for accepting or rejecting. In this scenario,
an agent needs many more negative than positive cues before rejecting,
and many more positive than negative cues before accepting. As posi-
tive and negative resources, and hence positive and negative cues, are
equally likely, sampling likely provides ambiguous evidence. Therefore,
an agent is expected to sample many cues before making a decision.

3.1.3. Interruptions decrease sampling

Increasing the interruption rate increases the cost of sampling,
which reduces the number of cues sampled. To see why, consider an
extremely unpredictable environment in which half of all encounters
are interrupted. For example, it may be that two equally suited candi-
dates apply for the same vacancy. If both accept, one will get the job,
whereas the other will experience an interruption. In this situation,
accepting a positive (or negative) resource results in a positive (or ne-
gative) outcome 50% of the times, and in an interruption (no change in
somatic state) otherwise. Because an agent does not know whether an
interruption is about to occur, the expected outcome of accepting is
reduced by 50%. As the expected outcome of a resource encounter
depends on the expected outcome of accepting, increasing the fre-
quency of interruptions decreases the profitability of resource en-
counters. As discussed in Fig. 2, sampling is beneficial because it makes
an agent's estimate of the resource value more accurate. However, as
interruptions become more frequent and resources become less valu-
able, the added value of this increased accuracy decreases. As the cost
of sampling one additional cue remains the same, the benefit-to-cost
ratio of sampling decreases. Hence, an agent needs fewer cues before
reaching a point where the benefits of sampling are less than the cost of
sampling, reducing the number of cues sampled. As a result, increasing
the interruption rate has the same effect as increasing the cost of
sampling. Due to this decreased benefit-to-cost ratio, an agent is more
tolerant of uncertainty.

3.2. Prospects of starvation and satiation increase sampling

Fig. 4 shows how an agent's somatic state at the start of a cycle
shapes the optimal policy (for details, see section 3 of appendices E, F,
and G). Consider an agent that starts a cycle with a very low somatic
state (‘starvation sampling’). If this agent accepts a negative resource, it
dies of starvation. To avoid this mortal mistake, this agent is eager to
reject, and needs little evidence to conclude that a resource is negative
and should be rejected. The agent is also hesitant to accept and de-
mands much evidence to be convinced that a resource is positive. This
combination of eager-to-reject and hesitant-to-accept by itself does not
result in high sampling. For that to happen, the mean resource quality
needs to be positive. If the mean resource quality is negative, sampling
often results in a negative cue and in a swift rejection. If the mean
resource quality is positive, sampling is more likely to result in a po-
sitive cue; hence, the agent is more likely to sample many positive cues.
Similarly, an agent is also eager to reject and hesitant to accept when it
starts a cycle with a very good somatic state (‘satiation sampling’). In
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Fig. 3. How the mean resource quality and interruption rates influence the three dimensions that influence an agent's decision and the number of sampled cues. The
horizontal axis shows the mean resource quality, ranging from negative (“-”) to positive (“+ ). The vertical axis shows the variance in resource quality, ranging from
no (“0”) to high (“+7”) variance. The columns show different interruption rates (no interruptions, common, or abundant). Row 1, “prior positive”, shows the prior
probability that the resource is positive. Row 2, “positive surplus”, shows how many more positive than negative cues an agent needs, on average, before accepting.
Row 3, “negative surplus”, shows how many more negative than positive cues an agent needs, on average, before rejecting. Finally, row 4, “cues sampled”, shows the
expected number of cues sampled when following the optimal policy. Here extrinsic events are excluded (they always have a value of 0) and the somatic state at the

start of the cycle is 50.

this situation accepting a moderately and an extremely positive re-
sources are equally rewarding as both result in the agent reaching the
highest possible somatic state, which reduces the potential benefit of
accepting. As with starvation sampling, this results in more sampling
only when the mean resource is positive and positive cues are more
likely than negative cues.

Both starvation and satiation sampling are threshold effects; sharp
changes in behavior caused by a steep change in how rewarding out-
comes are. Threshold effects are common in the risk sensitive foraging
literature, with risk aversion typically increasing when the somatic
state approaches starvation levels (Lim, Wittek, & Parkinson, 2015).
Likewise, formal models often find increased sampling when an agent's
somatic state approaches an upper limit (Mathot & Dall, 2013). In our
model, threshold effects exist in part because the probability of death is
a deterministic function of the somatic state: it occurs always, but only,
when the somatic state is 0; there is no probability of dying when the
somatic state is higher than 0. An alternative approach would be to
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model the probability of dying as a stochastic function of the somatic
state, with the probability of death increasing as the somatic state de-
creases. Future models can test if our results change qualitatively when
death is stochastic, rather than deterministic. However, in the present
article we are not interested in how threshold effects shape the optimal
policy per se; rather, we are interested in how environmental conditions
shape this policy.

3.3. Extrinsic events increase satiation and starvation sampling, but have
little influence otherwise

The mean and variance in extrinsic events determine at what so-
matic state an agent might starve or become satiated (Fig. 5; see also
section 1 and 3 of appendices E, F, and G). Consider an environment
where extrinsic events are always very negative (e.g., almost all peers
are prone to violence and theft). Here the next extrinsic event will
immediately and strongly reduce an agent's somatic state. To survive
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Fig. 4. How the somatic state at the start of the cycle influences the three dimensions that influence an agent's decision and the number of sampled cues. The
horizontal axis shows the mean resource quality, ranging from negative (“-”) to positive (“+”). The vertical axis shows the somatic state at the start of a cycle,
ranging from O to 100. Column A, “prior positive”, shows the probability that the resource is positive. Column B, “positive surplus”, shows how many more positive
than negative cues an agent requires, on average, before accepting. Column C, “negative surplus”, shows how many more negative than positive cues an agent
requires, on average, before rejecting. Finally, column D, “cues sampled”, shows the expected number of cues sampled when following the optimal policy. In this

figure extrinsic events are excluded (they always have a value of 0, interruptions are absent, and the variance in resource quality is high.)

this event, an agent needs to end the current resource encounter with a
somatic state high enough to incur this negative extrinsic event. As
such, the threshold to avoid starvation is higher when extrinsic events
are very negative, prompting an agent to go into starvation mode at
higher somatic states. Similarly, if extrinsic events are always very
positive (e.g., almost all peers are quick to offer a helping hand), an
agent reaches the satiation threshold if it finishes the current resource

encounter with a somatic state close (but not quite at) the upper limit.

Strikingly, extrinsic events have little influence on the optimal
policy when an agent has an intermediate somatic state. When an
agent's somatic state is neither high nor low, even extreme extrinsic
events will not result in starvation or satiation. An extrinsic event can
either increase or decrease the somatic state. As long as this change
does not put the somatic state under the lower threshold or above the
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Fig. 5. The influence of extrinsic events. The mean of extrinsic events differed between environments, and was either negative, zero, or positive. Similarly, the
variance in extrinsic events was either low, medium, or high. Therefore, for each environment there are eight comparable environments that only differ in the mean
and variance of extrinsic events, but have the same mean and variance in resource quality and interruption rates. We compare these nine environments to study the
influence of extrinsic events. Specifically, for each somatic state at the start of the cycle (vertical axis), we compute standard deviation in the number of cues sampled
in these nine environments. A high standard deviation indicates that extrinsic events have a strong influence on the optimal policy (dark colors); a low standard
deviation indicates that extrinsic events have little influence (light colors). We show this influence for different mean resource quality (horizontal axis), different
variance in resource quality (columns), and different interruption rates (rows).
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upper threshold, it has the same effect as ‘decision noise’. In this si-
tuation an extrinsic event affects the expected outcomes of accepting,
rejecting, and sampling equally; if it increases the expected outcome of
one action, it also increases the expected outcome of all the other ac-
tions and by the same amount. Consequentially, as these events do not
influence the difference in expected outcome for each action, they also
do not influence the optimal policy. The optimal policy therefore does
not depend on the mean or variance of extrinsic events.

4. Discussion

Evolutionary social scientists have argued that impulsive behavior is
adaptive in harsh and unpredictable environments. We have developed a
formal model that explores how commonly used definitions of harshness
and unpredictability affect the optimal level of information impulsivity.
Our results show that this hypothesis is not universally true, but rather,
depends on the exact definition of harshness, unpredictability, and im-
pulsivity; harsh and unpredictable environments can favor high or low
levels of impulsivity, or have no effect on impulsive behavior.

Our model suggests five conclusions about how harshness and un-
predictability shape the optimal level of impulsive behavior. Two of
these are also supported by existing models: individuals should sample
more cues when the prior uncertainty of resources is higher (i.e., when
the variance in resource quality is high); and individuals that are close
to a somatic threshold (starvation or satiation) should sample more
information, regardless of the state of their environment. Three other
findings may be novel. First, impulsive behavior is adaptive when the
resource quality is either low or high, but not when it is moderate.
Second, impulsive behavior is almost always adaptive when resources
are likely to be interrupted. Models of temporal impulsivity often find
that temporal impulsivity increases as interruptions become more
common. However, to our knowledge, this is the first model that finds
similar effects on information impulsivity. Third, the mean and var-
iance of extrinsic events only affect impulsivity when agents are in a
very bad or a very good state. This is surprising because harshness is
commonly defined (although not typically measured, see section 1.2.1)
as a high rate in which external factors cause disability and death.

The conclusion that harshness and unpredictability can have multiple
influences on impulsivity highlights the need for clear and explicit defi-
nitions. Although different interpretations of harshness and unpredict-
ability are typically empirically related (e.g., resource scarcity can increase
violence and disease), they are conceptually different. An environment can
simultaneously be harsh and unpredictable in some sense, but affluent and
predictable in others. Empirical support for the adaptive impulsivity hy-
pothesis is mixed (see section 1.1). This might be partly due to the jingle
fallacy, the erroneous belief that two constructs are the same because they
have the same name. However, if empirical results depend on what notion
of harshness, unpredictability, or impulsivity is measured, findings from
one study might not generalize to other studies or to other populations.
This makes it difficult for studies to incrementally build upon each other,
stifling academic progress. We therefore strongly recommend that future
studies use explicit, ideally formal, definitions of harshness and un-
predictability. Such explicit definitions can help improve empirical mea-
surements of harshness and unpredictability. For instance, future mea-
surements of harshness could explicitly differentiate between resource
scarcity and high levels of extrinsic morbidity-mortality.

4.1. Formalizing life history theory in the social sciences

Our model also contributes to a larger conversation about how to use
life history theory in evolutionary social sciences. A recent bibliometric
analysis shows that in the previous decade the life history literature has
fragmented into different clusters with dividing lines between the evo-
lutionary psychology, evolutionary anthropology, and non-human an-
imal literatures (Nettle & Frankenhuis, 2019). Alarmingly, studies within
the evolutionary social science cluster have few ties with formal models
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of life history theory. These weak connections are problematic, because
references are sometimes used in support of claims that are different,
absent, or even contradictory to the source model. One example is the
proposed fast-slow continuum. Although its existence is often described
as a fundamental prediction of life history theory (Ellis et al., 2009),
formal support for the fast-slow continuum is limited and mixed (Mathot
& Frankenhuis, 2018; Zietsch & Sidari, 2019). Some models show that
harsh and unpredictable conditions can favor slow life histories (e.g.,
Abrams, 1993; Baldini, 2015). Similarly, our model shows that one kind
of impulsivity, which is often viewed as part of a fast life history, is not
necessarily favored in harsh and unpredictable environments.

4.2. Empirical predictions, limitations, and future directions

All models are simplifications of reality (Smaldino, 2017). However,
they differ in whether they are general or specific (Houston &
McNamara, 2005; Parker & Smith, 1990). The goal of a general model is
to study abstract qualitative patterns. For instance, a prisoner's dilemma
model captures the logic of cooperation and defection between two ra-
tional players — it does not matter whether the players are people,
companies, or rivaling states. The parameters of general models are often
difficult to operationalize, predict, and measure. Specific models study
the dynamics of a particular real-world system. The parameters of these
models are frequently based on empirical data, and these models might
provide predictions. We have presented a general model; our goal was to
provide a formalization of the adaptive impulsivity hypothesis. As such,
we made simplifying assumptions. These assumptions allowed us to ex-
plore a decision problem in depth, facilitating theoretic insight about the
ways in which key variables interact with each other. Simple models are
well suited to producing such insights, but at a cost to realism (Levins,
1968). We think this is acceptable, because our primary goal is not to
make empirical predictions. However, this does not necessarily mean
that the conclusions of our model cannot be used as empirical prediction.
Rather, this depends on the extent to which the assumptions of our
general model capture essential features of real environments. If this
match is sufficiently high, the conclusions of our model on how harsh-
ness and unpredictability shape impulsive behavior can be used as em-
pirical predictions. Estimating this match is difficult, if not impossible.
There are, however, several limitations that reduce realism and limit the
scope of our model. These limitations are hierarchical: we can only ad-
dress some limitations (e.g., our model does not include life history
trajectories) after we have addressed more fundamental limitations (e.g.,
our model does not address development or environmental change).
Here we discuss four fundamental limitations. For each limitation we
discuss how potential extensions can incorporate more realistic and more
complicated assumptions that address these limitations.

First, in order to reduce complexity we assumed that the parameters
of the environment are fixed within and between generations. We fur-
ther assumed that an agent learned the (meta) parameters of its en-
vironment through its evolutionary and developmental history.
Although extreme outcomes may be unexpected, they do not change an
agent's beliefs about its environment. For some organisms a fixed world
assumption may be realistic: if the rate of environmental change is slow
compared to the lifespan of an organism, the environment might appear
to be fixed from that organism's perspective (Fawcett & Frankenhuis,
2015). However, for species with a longer life span, such as humans, the
environment might change both temporally (e.g., due to economic cy-
cles) and spatially (e.g., due to labor or educational migration). In a
fixed environment an organism ‘only’ has to infer the value of an en-
countered resource. In a varying environment, it also has to infer the
current state of the environment and forecast what the future might
hold. This results in a tradeoff between exploration (sampling in-
formation) and exploitation (saving costs by relying on current esti-
mates of the environment). Moreover, in a varying environment, there
might be lean years where resources are scarce and/or extrinsic events
more extreme. An organism can buffer against such variability by
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storing resources. This might increase (to save costs on information
gathering) or decrease (to reduce the variance in outcomes) im-
pulsivity. Besides reducing realism, this assumption also reduced the
scope of our model: unpredictability is often interpreted as changes in
the environmental state (e.g., this kind of unpredictability is the focus
of Ellis et al., 2009). Future models could incorporate both temporal
and spatial unpredictability.

Second, our model includes no development. We studied organisms that
(a) are fully developed at birth, (b) are affected by the environment re-
gardless of their age, and (c) reproduce only at the end of life. These as-
sumptions do not hold for many species, including humans. Rather, in-
dividuals typically go through early developmental stages in which they
acquire the skills needed to integrate information. If the individual faced
early-life adversity, or if this acquisition is costly or time consuming, in-
vesting in this skillset might not outweigh the cost. Moreover, both the
young and the old might be more affected by resource scarcity and extrinsic
events than adults. In hunter-gatherer societies, only adults produce more
food than they consume (Kaplan, Hill, Lancaster, & Hurtado, 2000). Con-
sequentially, in lean years the old and young might be more susceptible for
starvation than adults. Similarly, negative extrinsic events such as disease
and violence might disproportionally affect the young (who are less able to
defend themselves) and the old (who might be weakened due to senes-
cence). Finally, we studied an organism that is semelparous, rather than
iteroparous. However, in many species fecundity and fertility often peak
during middle age. As both reproduction and the subsequent investment in
offspring are costly, individuals in middle age might face a higher demand
for resources. Future models can build in age structure and reproduction,
with survival and fecundity differing at different ages, and explore how such
selection regimes shape the optimal level of impulsivity.

Our model can also be extended to include developmental processes in
order to explore to two empirical patterns. First, impulsivity and risk
taking are highest during adolescence, when individuals enter the mating
competition market (Figner, Mackinlay, Wilkening, & Weber, 2009;
Steinberg, 2007). For risk behavior, a common explanation is that securing
a high quality mate requires intense competition for resources and social
status (Ellis et al., 2012), which demands high levels of risk taking (e.g.,
engaging in physical fights). Future models could examine whether this
increased need for resources and social status likewise results in more
impulsive behavior. Another empirical pattern is the paradoxical (but ro-
bust) finding that both behavioral tasks and self-report questionnaires
predict real-world impulsivity, yet the two sets of measurement show little
to no correlation (Cyders & Coskunpinar, 2011; Reynolds, Ortengren,
Richards, & de Wit, 2006; Stahl et al., 2014). A popular explanation is that
both sets of measurements tap into separate constructs. Self-reports mea-
sure a stable baseline of impulsivity (i.e., trait impulsivity), whereas be-
havioral tasks measure the capability to flexibly deviate from this baseline
in situations that require higher or lower levels. This explanation raises
such interesting questions as: Why there is a baseline? Why do we not
always adjust our impulsivity to match the current situation? Why do
individuals differ in their baseline levels? Is this baseline continuously
updated throughout development, or are there sensitive periods in which
the baseline is set for the rest of life? Part of the answer to these questions
might be that flexibility comes at a cost. For instance, the cognitive ma-
chinery needed to make constant adjustments might be expensive to
maintain. If we always need the same level of impulsivity — for instance,
when our environment is sufficiently stable — the cost of plasticity might
outweigh its benefits (Fawcett & Frankenhuis, 2015). Moreover, if the
environment is very stable, the best strategy might be to set a fixed
baseline early in life (i.e., a sensitive period). Future models can explore
these questions by incorporating developmental processes.

Third, we committed to the ‘behavioral gambit”: we studied a single
behavioral trait in isolation, and implicitly assumed that the expression of
this trait is not hindered by other life history, behavioral, or physiological
traits (Fawcett, Hamblin, & Giraldeau, 2013). Furthermore, our model did
not address genetic, developmental, physiological, or cognitive limitations
that prevent an organism from following the optimal policy. In real life
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there are limitations. For example, we assumed that organisms behave as-
if they perform Bayesian updating. However, Bayesian updating is com-
putationally expensive at the best of times, and computationally in-
tractable in most realistic situations (Trimmer, McNamara, Houston, &
Marshall, 2012; van Rooij, Wright, Kwisthout, & Wareham, 2018).

The behavioral gambit is a useful simplification when testing under
what environmental conditions impulsivity might be adaptive.
However, it limits the scope and realism of our results. Future exten-
sions might explore two different avenues. First, they can incorporate
more realistic cognitive processes. For example, future models can
study agents that rely on heuristics that human decision-makers are
known to use. This extension can study in which environment a specific
heuristic performs well, and when it performs poorly. Alternatively,
rather than simulating agents that use known heuristics, future models
can use the computed optimal policies to explore new heuristics.
Specifically, based on modeling results, future research can explore
which heuristics would allow animals to approximate optimal deci-
sions. Second, they can increase realism by incorporating other beha-
vioral traits. Such a model can provide novel insights for two different
debates. Different notions of impulsivity are only weakly correlated or
even uncorrelated (section 1.2.3). A model incorporating multiple types
of impulsivity can explore whether environmental conditions moderate
the correlation between different conceptualizations. That is, it can
explore whether some environments favor high (or low) levels of all
types, whereas others favor high levels of one type but low levels of the
other. Alternatively, extensions can incorporate other behavioral,
physiological, or life history traits that are proposed to cluster on a fast-
slow continuum. This extension can test the claim that harsh and un-
predictable environments result in faster life-history strategies.

Fourth, we assumed that agents did not interact, nor needed to consider
the behavior of other agents (i.e., our model is not game theoretic). This
assumption is reasonable for some decisions. For instance, if resources are
(practically) infinite, the actions of one agent do not noticeably change the
number of available resources (e.g., when job supply is high, accepting a job
does not meaningfully decrease the total number of available jobs). In other
decisions agents do interact, but only indirectly. In this case, accepting may
reduce the resources available for other agents. However, the behavior of
other agents does not influence the consequences of an action during a
resource encounter. For instance, two predators may share overlapping
domains. Although they rarely are in close proximity, resources consumed
by one are no longer available for the other. However, whether or not one
predator should give chase to prey does not depend on the actions of the
other predator. Our model can incorporate some indirect interactions by
changing the parameters of an environment. For instance, our graphical
interface allows users to increase or decrease the interruption rate (e.g., prey
might be more or less easily scared) or to assume that resources are non-
normally distributed (e.g., competitors might be more likely to consume
positive than negative resources). However, in many real-world decisions an
agent does need to consider the actions of other agents. For instance, re-
sources might become scarce if everyone acts impulsively. If so, acting
impulsively may be the only way to collect resources. Such policy, where
one is impulsive because everybody else is, results in a positive feedback
loop that might increase impulsivity. Alternatively, high levels competition
may foster selective cooperation, which requires low levels of impulsivity. It
can also result in even more complex patterns, where multiple phenotypes
coexist, or the population might cycle between multiple phenotypes (Bear &
Rand, 2016; Tomlin, Rand, Ludvig, & Cohen, 2015). It will be hard if not
impossible to predict outcomes without building the model. Future models
might therefore incorporate interactions between agents.

To end, we have presented a formal model of the increasingly
common claim impulsive behavior is adaptive in harsh and un-
predictable environments. Our results show that this hypothesis is not
universally true, but rather, depends on the exact definition of harsh-
ness, unpredictability, and impulsivity. We hope our model will con-
tribute to the corpus of formal models of theories that feature centrally
in the evolutionary social sciences.
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