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Sensitive periods, in which experience shapes phenotypic development to a

larger extent than other periods, are widespread in nature. Despite a recent

focus on neural–physiological explanation, few formal models have examined

the evolutionary selection pressures that result in developmental mechanisms

that produce sensitive periods. Here, we present such a model. We model

development as a specialization process during which individuals incremen-

tally adapt to local environmental conditions, while receiving a constant

stream of cost-free, imperfect cues to the environmental state. We compute

optimal developmental programmes across a range of ecological conditions

and use these programmes to simulate developmental trajectories and

obtain distributions of mature phenotypes. We highlight four main results.

First, matching the empirical record, sensitive periods often result from

experience or from a combination of age and experience, but rarely from age

alone. Second, individual differences in sensitive periods emerge as a result

of stochasticity in cues: individuals who obtain more consistent cue sets lose

their plasticity at faster rates. Third, in some cases, experience shapes pheno-

types only at a later life stage (lagged effects). Fourth, individuals might

perseverate along developmental trajectories despite accumulating evidence

suggesting the alternate trajectory is more likely to match the ecology.
. . .we all begin with the natural equipment to live a thousand kinds of life but end in
the end having lived only one.

—Clifford Geertz, 1973
1. Introduction
Phenotypic plasticity, the ability to tailor development to local conditions, is

widespread in nature [1] and evolves in environments that vary spatially or

temporally if cues provide information about the state of the environment

[2,3]. The degree of plasticity, however, is not fixed: it varies between species,

between individuals, between traits within an individual, and within traits

across development. Recent neural–physiological research offers mechanistic

explanations of such variation [4–12]. Despite theoretical progress explaining

the evolution of sensitive periods (e.g. [13–19]), there are few formal models

(for exceptions, see [20–26]). Here, we present such a model.

We conceptualize development as a specialization process during which

individuals simultaneously learn about and incrementally adapt to local environ-

mental conditions [21,27]. This approach differs from existing models, which

typically assume a two-stage life history, in which organisms first obtain environ-

mental cues and later develop phenotypes, either immediately (e.g. [28,29]) or after

a time lag (e.g. [26,30]). Trait development poses special challenges when earlier

onset of specialization has the potential for higher fitness but also increases the like-

lihood of phenotype–environment mismatch. For instance, if trait construction

takes time, or if earlier integration of phenotypic components increases the effi-

ciency of traits (‘the epiphenotype problem’; [31]), organisms benefit from early

onset of trait development (e.g. anti-predator defences; [32]). But, an early commit-

ment increases the risk of phenotype–environment mismatch [33], due to fewer

opportunities to collect cues, which improve estimates of the environmental state

[34–36].
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In a previous model [21], we showed that sensitive periods

are likely to evolve if organisms face a trade-off between

sampling cues and phenotypic specialization. In that scenario,

organisms often sample cues early in ontogeny. Once pheno-

typic construction begins, however, plasticity terminates as a

consequence of the assumed trade-off. Here, we present a

novel model in which learning and specialization do not

trade-off. Instead, individuals receive cues throughout onto-

geny while building their phenotypes. This allows organisms

to revise their estimates about the environmental state and

switch developmental trajectories.

This model makes several other assumptions. First, fitness

increases monotonically with the time invested in correctly

tailoring the phenotype to local conditions. Accordingly,

organisms benefit from an earlier onset of specialization,

allowing more time for refining the phenotype–environment

fit [21]. For example, water fleas that begin tailoring their

phenotype prenatally (inside the mother) towards a

predator-rich environment develop larger protective helmets

than conspecifics who start doing so only after hatching [37].

Second, developing a phenotype that does not match the

environmental state is costly, and these costs depend on the

degree of mismatch. In our model, organisms can specialize

towards one of two phenotypes. With no mismatch costs, the

two phenotype extremes should be conceptualized as two

orthogonal and non-antagonistic dimensions. With mismatch

costs, the two phenotype extremes are orthogonal and antagon-

istic. By antagonistic we mean a phenotypic increment increases

an organism’s fitness if it is matched to the environment and

reduces an organism’s fitness if it is mismatched. The two

phenotype extremes should not be interpreted as ends of a

single dimension (e.g. pace of life-history development).

Third, organisms are uncertain about the environmental

state but receive cost-free, imperfect cues that improve their

estimates. Our previous model [21] assumed that learning

about the environment trades off with specializing towards a

phenotypic target. This represents ‘costly’ information, which

includes active information search (e.g. barnacles inspecting

different rocks before settling). The current model assumes no

trade-off between learning and specialization. This represents

‘cost-free’ information, which includes passive information

reception (e.g. water fleas detecting predators while foraging).

We use state-dependent life-history theory [38–40],

implemented by stochastic dynamic programming, to model

how natural selection shapes developmental mechanisms

that learn about local conditions by receiving a constant

stream of cost-free but imperfect cues, and incrementally

adapt to these conditions, with correct increments increasing

fitness and incorrect increments decreasing fitness.
2. Model
(a) The organism and the environment
The environment is structured into an infinite number of

discrete patches. Each patch is in one of two states: E1 or E0

(e.g. dangerous or safe). The state of a patch is stable within gene-

rations, and the distribution of patches remains stable across

generations (i.e. the environment is characterized by spatial

variation, not temporal variation [41]). There is one optimal

phenotype for each environmental state: P1 or P0 (e.g. having

spent all of ontogeny specializing towards an armoured or a

sleek phenotype). After birth, organisms disperse to randomly
selected patches, receive cues and develop phenotypes, repro-

duce at a rate proportional to their phenotype–environment

fit, die, and the cycle repeats. Because the distribution of patches

remains fixed across evolutionary time, we assume that develop-

mental programmes have adapted to this distribution [42].

Ontogeny (i.e. the developmentally relevant stage for the

trait of interest; not necessarily early life) consists of 20 discrete

and non-overlapping time periods. In each period, organisms

receive a cue (C1 or C0) and then choose to either incre-

ment (1/20th of the way) towards P1 or P0, or to wait and

forgo phenotypic specialization. Once developed, phenotypic

increments cannot be reversed (e.g. discarded or resorbed).

Cues indicate the environmental state (e.g. dangerous or

safe) with a fixed probability. The cue validity is the probability

of receiving a given cue (e.g. detecting the chemical signature of

a predator) conditioned on being in the corresponding environ-

mental state (e.g. dangerous). We assume that the cue validities

of each environmental state are equal: P(C1jE1) ¼ P(C0jE0). The

probability of receiving an incorrect cue, P(C1jE0) or P(C0jE1),

is the complement of receiving the correct cue, 1 2 P(C0jE0) or

1 2 P(C1jE1). Organisms learn about the environmental state

using Bayes’ theorem, the optimal way of information updating

[42–44] if updating is cost-free. Organisms use the fixed distri-

bution of patches as the Bayesian prior and the fixed cue

validities to update their estimates.

(b) Penalty and reward functions
Organisms comprise myriad traits (e.g. eye colour, wing

shape). Different variants of any trait may result in different fit-

ness consequences, deviations from some baseline level. The

fitness of an organism increases relative to baseline with each

correct phenotypic increment (i.e. the phenotype corresponds

to the ecology) and decreases with each incorrect increment

(see electronic supplementary material, appendix S6, for the

dynamic programming equations, including fitness functions,

used to simulate optimal developmental programmes).

We consider three functional mappings between correct

phenotypic development and fitness: linear rewards (the

marginal increase in fitness is constant with each correct incre-

ment), diminishing rewards (the marginal increase decreases)

and increasing rewards (the marginal increase increases).

We consider three analogous mappings between incorrect

phenotypic development and fitness decrements (i.e. linear

penalties, diminishing penalties, increasing penalties).

We assume that the fitness penalty for a completely mis-

matched organism is equal to the fitness reward for a

completely matched organism (we discuss the consequence

of varying the penalty magnitude in the Discussion section).

The pay-offs for correct and incorrect specialization are the

same in both environmental states. Further, phenotypic

specialization does not affect fitness during the life stage in

which it is constructed, but at some later life stage. Models

of predictive adaptive response (e.g. [32,33]) and time lag

(e.g. [26,30]) share this assumption. In our model, however,

the adaptive fit later in life depends on the time invested in

progressively constructing a phenotype.

(c) Quantifying plasticity
We quantify plasticity using an experimental twin study.

Using the optimal developmental policy, we simulate twins

who are identical in every way up to time period t, and

then keep one twin (the original) in its natal patch and send
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Figure 1. Developmental plasticity. This plot depicts the phenotypic distance between organisms and their doppelgängers with linear rewards for correct phenotypic
development and linear penalties for incorrect development. Each row of three panels depicts a cue validity (0.55, 0.75, 0.95) and each column of three panels a
prior probability of E1 (0.5, 0.7, 0.9). Within each panel, the horizontal axis depicts the time period in which the adoption occurred and the vertical axis phenotypic
distance. Phenotypes are defined by two numbers: time periods specializing towards P1 and towards P0. Phenotypic distance is the Euclidean distance between two
organisms. Open circles depict ‘absolute’ phenotypic distance: the average distance between 10 000 organisms and their doppelgängers at the end of development
(ranging from 0 to 20

p
2, scaled to a 0 to 1 range). Filled circles depict ‘proportional’ distance: absolute distance divided by maximum possible distance (ranging

from 0 to 1).
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the other twin (the doppelgänger) to a mirror patch, after which

the doppelgänger receives the opposite cues from the original

twin (yoked, opposite cues; not cues from an opposite patch)

until the end of ontogeny. This approach resembles methods

that are commonly used in empirical studies of sensitive

periods (e.g. [45,46]).

We replicate this simulation for 10 000 sets of twins. We

quantify plasticity by comparing the phenotypic distance

between twins at the time of the adoption to the phenotypic

distance at the end of ontogeny. The phenotype is character-

ized by two numbers: the number of time periods an

organism specializes towards each of the two optimal pheno-

types (these numbers summed plus the number of forgone

specializations equals 20, the total number of time periods).

We define the phenotypic distance between two individuals

as the Euclidean distance along these two dimensions

(i.e. the square root of the sum of the squared differences).

We compute the ‘absolute’ phenotypic distance by taking the

average phenotypic distance across the 10 000 twin pairs. We

then divide the absolute distance by the maximum possible

distance to obtain the ‘proportional’ phenotypic distance.

This measure controls for potential distance, which necessarily

declines as ontogeny proceeds.
3. Results
We present four kinds of results. First, we show plasticity by

comparing originals with their doppelgängers (figure 1 and
electronic supplementary material, figures A1.1–A1.8).

Second, we compare the optimal developmental policies

(i.e. those favoured by natural selection) across a range of

ecological conditions: fitness function, penalty function, cue

validity and prior probability (figure 2 and electronic sup-

plementary material, figures A2.1–A2.8). Third, we compare

the optimal policies, which may include plasticity, with two

non-plastic types that ignore cues (figure 3 and electronic sup-

plementary material, figures A3.1–A3.8). Fourth, we simulate

developmental trajectories using these optimal policies to

generate distributions of mature phenotypes (figure 4 and elec-

tronic supplementary material, figures A4.1–A4.8). (In the

electronic supplementary material, figures A5.1–A5.9, we

also present the expected degree of phenotypic mismatch.)

We focus our analysis on linear reward and linear penalty func-

tions in the main text. Results from decreasing and increasing

marginal rewards and penalties appear in the electronic

supplementary material.

(a) Plasticity across ontogeny
We first consider the extent to which doppelgängers phenoty-

pically diverge from their original counterparts due to

receiving opposite cues after adoption (figure 1 and electronic

supplementary material, figures A1.1–A1.8). Results show

that the later adoptions occur, the less doppelgängers and

their original counterparts diverge (i.e. plasticity declines

across ontogeny). The more informative the cues are, the

faster plasticity declines, regardless of the prior probability.
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Figure 2. Optimal developmental programmes with linear rewards for correct phenotypic development and linear penalties for incorrect development. Each row of three
panels depicts a cue validity (0.55, 0.75, 0.95) and each column of three panels a prior probability of E1 (0.5, 0.7, 0.9). Within each panel, the horizontal axis depicts
developmental time and the vertical axis the organism’s estimate of being in E1. All organisms start with the same estimate (the large white circle). In each time period,
organisms sample cues, update estimates and make developmental decisions. Beige lines represent possible estimates across development. Decisions are depicted by
coloured circles: black represents waiting, blue specializing towards P1, red specializing towards P0, purple a random choice between specializing towards P1 and P0,
and green a random choice between waiting and specializing towards P1 and/or P0. Pies depict situations in which organisms with the same estimate make different
decisions. The area of a circle is proportional to the probability of reaching a particular state. Within a time period, these probabilities sum to one.
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When cues are informative (e.g. 0.7 or 0.9), plasticity often

drops to zero—in some cases well before the end of the onto-

geny. More accurate cues imply more consistent cue sets,

resulting in more certain posteriors (at the time of adoption).

The more certain an organism is, the more counter-evidence

it will need to revise its estimate (to the point where switch-

ing phenotypic development is adaptive). If such counter-

evidence exceeds what can be obtained over the remainder

of ontogeny, plasticity terminates. If such counter-evidence

exceeds what can be obtained within the next time period,

but is feasible over the remainder of ontogeny, current experi-

ence can shape an organism’s phenotype only at a later

developmental stage (lagged effects) [20]. We refer to states—

combinations of age, received cues and prior phenotypic

development—as critical if the organism is insensitive to sub-

sequent cues (i.e. phenotypic development has been set

regardless of what cues follow).

When cues are poor (e.g. 0.55), the prior probability may

affect plasticity. If the prior is 0.9, there is little reason to attend

to cues; individuals commit to a phenotype early on and so an

adoption does not result in phenotypic divergence. If the prior

is 0.5, all the individuals have to go on are the poor cues. In

this case, individuals retain plasticity through ontogeny, largely

tracking noise, and so an adoption results in some phenotypic

divergence. If the prior is 0.7, individuals either receive cues con-

sistent with the prior and commit early on, or receive cues

inconsistent with the priorand largely track noise. The combined

result is a little phenotypic divergence.
(b) Optimal policies
We now turn to the optimal developmental policies (figure 2

and electronic supplementary material, figures A2.1–A2.8).

Most policies are plastic (i.e. phenotypic decisions depend

on estimates of the environmental state) at the onset of devel-

opment. An exception occurs when cues are poor and the

prior is 0.9; in this case, individuals largely ignore cues and

rely on their prior.

Although most policies start out plastic, plasticity typi-

cally declines across ontogeny (i.e. fewer individuals switch

phenotypic trajectories), and often drops to zero. As noted,

this is why some doppelgängers do not phenotypically

diverge despite receiving opposite cues. These critical states

result from experience or from a combination of age and

experience, but rarely from age alone (which occurs if plas-

ticity drops to zero for all individuals at the same age,

regardless of past experience). An age-dependent drop in

plasticity occurs if the prior is 0.5, cues are weakly informa-

tive, and rewards are increasing (electronic supplementary

material, figures A2.6–A2.8). Faced with a high probabi-

lity of mismatch, organisms receive one cue and develop

accordingly, trying to capture the rewards of expertise.

More commonly, plasticity depends on experience, and

individual differences in plasticity result from stochasticity in

cues [21,47]: some individuals obtain consistent cue sets and

reach a critical state, becoming insensitive to cues early in onto-

geny; others obtain heterogeneous cue sets and reach critical

states only much later, if at all. In some cases, plasticity
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Figure 3. Fitness of mature phenotypes with linear rewards for correct phenotypic development and linear penalties for incorrect development. Each row of three
panels depicts a cue validity (0.55, 0.75, 0.95) and each column of three panels a prior probability of E1 (0.5, 0.7, 0.9). The height of each bar measures the expected
fitness difference from baseline (an X denotes no difference). A fitness of 1 represents a perfect match with the environment. Negative fitness differences result from
mismatch penalties exceeding benefits of proper calibration. The light-grey bar labelled ‘S’ denotes a pure specialist, the dark-grey bar ‘O’ the optimal policy, and the
light-grey bar ‘G’ a pure generalist. See electronic supplementary material, appendix 3, for negative fitness differences and for non-zero fitness differences for ‘G’.
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depends on a combination of age and experience. As ontogeny

proceeds, the scope for learning declines. As older individuals

have fewer opportunities to obtain cues, they reach critical

states with less certain estimates than younger individuals.

(c) Optimal policies versus non-plastic strategies
Plasticity may entail costs such as constructing and maintain-

ing machinery for sensing, interpreting and acting on cues

[31,48]. Natural selection should only favour plasticity if the

benefits outweigh such costs. And so, it is informative to

compare optimal policies, which by definition achieve

expected fitness equal to or higher than any other strategy,

with simpler alternatives. We benchmark optimal policies

against two non-plastic strategies (figure 3 and electronic

supplementary material, figures A3.1–A3.8): a ‘pure special-

ist’, which specializes maximally towards the environmental

state with the higher prior probability (picking at random if

the prior is 0.5), and a ‘pure generalist’, which specializes

halfway towards each phenotypic target.

For pure specialists, only the prior affects fitness; for pure

generalists, only the reward and penalty functions affect

fitness (see electronic supplementary material, figures A3.1–

A3.8). Both of these non-plastic strategies are unaffected by

the cue validity, as cues do not shape their phenotypes. The

prior affects the fitness of pure specialists as it determines

what fraction of individuals specializes correctly, but not the

fitness of pure generalists as they specialize to an equal

extent (halfway) for each environmental state. The fitness of

the optimal policy depends primarily on the cue validity: if

cues are moderately or strongly informative, the optimal

policy attains high fitness; if cues are weakly informative, the

optimal policy’s fitness increases with the prior.
The optimal policy performs well and strongly outper-

forms either non-plastic strategy when the prior is close to

0.5 and cues are moderately or strongly informative. In

these cases, the optimal policy benefits maximally from the

information provided by cues, outperforming pure specialists

who develop 100% mismatched phenotypes 50% of the time,

and outperforming pure generalists who develop 50% mis-

matched phenotypes 100% of the time.

(d) Phenotypic distributions
Different optimal policies generate different distributions of

mature phenotypes (figure 4 and electronic supplementary

material, figures A4.1–A4.8). If cues are highly informative,

individuals rely heavily on them and most develop highly

specialized phenotypes. In this case, ontogeny depends

little on the prior (i.e. the data swamp the prior). In contrast,

if cues are moderately informative, distributions are more dis-

persed: stochasticity in cues leads some individuals (those

who obtain consistent cue sets) to develop highly specialized

phenotypes; others (those who obtain heterogenous cue sets)

either become generalists, which are adapted to some extent

to both environmental states, or wait for some time, resulting

in lower levels of specialization [21,47].

Despite receiving a steady stream of cues throughout onto-

geny, the optimal policies may produce a substantial amount of

phenotype–environment mismatch (electronic supplementary

material, figures A5.1–A5.9). Mismatch is lower if cues are

more informative. With poor cues and a prior of 0.7 or 0.9, indi-

viduals mostly rely on the prior and ignore cues. As a result, a

fraction of the population adapts to the incorrect environment,

becoming severely mismatched. With poor cues and a prior

close to 0.5, the reward and penalty functions interact, giving

http://rspb.royalsocietypublishing.org/
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Figure 4. Distributions of mature phenotypes with linear rewards for correct phenotypic development and linear penalties for incorrect development. Each row of
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vertex complete specialization towards P0; the top vertex waiting throughout development. The interior represents a mix of all three decisions; an edge a mix of
two. A circle’s area is proportional to the number of individuals of that phenotype.
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rise either to individuals that track noise and develop generalist

phenotypes (which are partially mismatched) or spend a

fraction of ontogeny waiting before building their phenotypes.
4. Discussion
To understand the form–function fit in biology, we need

models that capture both developmental and evolutionary

dynamics. When the state of the environment varies, this fit

is often achieved through phenotypic plasticity. Though there

is a large literature on the evolutionary forces resulting in the

presence or absence of plasticity, there has been comparatively

little research on the evolution of sensitive periods.

One reason could be that some scholars regard sensitive

periods as by-products of developmental processes [8,16],

rather than adaptations. This view may be correct in some

cases, but it does not address immense variation in sensitive

periods: (i) between species in the same trait (e.g. some bird

species learn their songs exclusively in early life, others

throughout their entire lifetime; [49]), (ii) between individuals

of the same species (e.g. individuals may vary in the extent

to which the same experience shapes their development;

[41]), (iii) between traits within a single individual (e.g. cogni-

tive systems may adjust more easily than emotional systems to

a radically changed environment; [11]), and (iv) within traits

across development [19]. Our model generates such variation.

(a) Main findings
We reflect on our main results. First, matching the empirical

record [4–12], we find that sensitive periods result from experi-

ence or a combination of age and experience, but rarely from

age alone. The empirical record shows that sensitive periods

can depend on experience in at least three different ways.
Sensitive periods may be prolonged if: (i) organisms are

deprived of any relevant cues [8,16,18]; (ii) features of cues

are gradually changing [18,50]; or (iii) perceptual systems pro-

vide unstable inputs to the brain, because they are still

developing or disrupted [16]. All three of these processes

share a lack of reliable information available to the organism.

Bateson & Martin [18] note: ‘processes that bring the sensitive

period to an end are related to the gathering of crucial infor-

mation and, except in extreme cases, do not shut down until

that information has been gathered’ (p. 162).

Second, stochasticity in cues results in individual differ-

ences in the duration of sensitive periods; more consistent cue

sets result in earlier loss of plasticity [21,47]. In our modelling

framework, the noisiness of cues affects the ‘gathering of crucial

information’ and prolongs plasticity. This is consistent, for

example, with a study on auditory development in rats [51].

Pups exposed to a constant stream of white noise delay auditory

specialization well beyond the critical period observed for rats

reared in standard laboratory conditions.

Third, experience does not always result in immediate

phenotypic consequence, but may manifest later in develop-

ment. In our model, the environmental state remains stable

across ontogeny. Related models, which incorporate environ-

mental change across ontogeny, generate such lagged effects
[20,26] for the same reason: having developed a certain

posterior based on previous experience, individuals need

substantial counter-evidence to revise their estimate (to the

point where switching phenotypic development is adaptive).

Fourth, such counter-evidence may exceed what can be

obtained over the remainder of ontogeny, in which case indi-

viduals will perseverate along developmental trajectories,

despite mounting evidence suggesting they may be specializ-

ing incorrectly. These critical periods result, in part, from

imposing a fixed end to ontogeny. Future work could explore

http://rspb.royalsocietypublishing.org/
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an extension of our model in which ontogeny ends with some

probability in each time period.

(b) Robustness of findings
We impose a fitness penalty for environment–phenotype

mismatch. We assume that the fitness penalty associated

with each increment of mismatch equals the fitness reward

associated with each correct developmental increment. We

have analysed but not presented different relative penalty

magnitudes. These yield similar qualitative results, with

less waiting as penalties go to zero, and more as they

increase. With no mismatch penalty, there is no reason to

forgo phenotypic specialization. With a penalty magnitude

larger than the reward, if the penalty diminishes (i.e. initial

mismatch steps result in large fitness costs), selection may

favour organisms that wait their whole lives, refusing to

specialize for fear of mismatch.

We assume no cost of plasticity, but compare the optimal

policy to two different non-plastic strategies. We find that

selection favours phenotypic plasticity when there is high

uncertainty early in development about the environmental

state (e.g. the prior is close to 0.5) and cues are moderately

or strongly informative [19]. If plasticity were costly, selection

may favour non-plastic strategies (i.e. ignoring cues) when

cues are weakly informative. Similarly, when initial uncer-

tainty is low, it might pay to bet on the most likely

outcome (the prior) rather than invest in costly machinery

to reduce uncertainty. However, the costs of plasticity may

vary across ontogeny (e.g. due to changing trade-offs

between body parts) [19]. Introducing such a variable cost

could favour more age-dependent plasticity.

(c) Limitations and future directions
We discuss two limitations. First, we assume the environ-

mental state remains stable across ontogeny. If environmental

change or migration occur during the lifetime [20,33], organ-

isms must simultaneously infer the environmental state and
consider environmental change, a more complicated inferential

task. If environmental states are uncorrelated, selection may

favour non-plastic phenotypes (specialists if the prior is close

to 1 and generalists if close to 0.5). If environmental states are

correlated across time but moving targets, plasticity may be

prolonged. Moreover, the rate of environmental change may

itself be a variable that developing organisms estimate and

adjust to.

Second, we assume that the trait under investigation

develops independently of all other traits (i.e. no evolu-

tionary constraints on shaping developmental mechanism).

This assumption constitutes a ‘developmental gambit’ analo-

gous to the ‘phenotypic gambit’ [52] commonly assumed in

behavioural ecology.

We are just beginning to catalogue the range of variation in

phenotypic plasticity across species, individuals and traits, and

to understand the underlying developmental and physio-

logical mechanisms [53]. We need evolutionary theory to

complete this picture. Our model of incremental development

is part of the larger programme of evolutionary optimality

theory, which predicts what organisms should do, but not

how they do it. The evo-mecho approach represents a next

step in ultimate-level theorizing, offering an explanation of

how and why specific mechanisms evolve in specific ecologies

[54,55]. And, the evo-mecho approach may help explain the

evolution of developmental mechanisms capable of generating

novel phenotypes [56], mechanisms capable of modifying

their own environment [57] and even mechanisms capable of

shaping their evolutionary futures [58].
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