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Abstract

Words for numbers, numerals, are a special lexical

class, halfway between natural and mathematical lan-

guage. One would expect them to have a relatively

straightforward semantics. However, during the last

several decades, numerals proved to be a rich source of

debate in linguistics, especially in semantics and prag-

matics. The reason is that the study of numerals

requires taking into account core issues such as plural-

ity, quantification, implicature/exhaustivity, degree,

modality, imprecision and cross-linguistic variation. In

this article, we provide a thorough introduction to the

issues connected to numeral semantics and pragmatics.

We gradually develop analyses of meanings of

numerals in natural language using a multitude of ana-

lytical tools. We evaluate the competing proposals in

terms of empirical coverage and predictions.

1 | INTRODUCTION

This article provides a thorough introduction to issues connected to numeral semantics. As we
show below, establishing an adequate analysis for the meaning of numerals is far from straight-
forward, still very much so after decades of discussion in the linguistic literature. The guiding
question throughout this article will be what the compositional semantics of a numeral should
be. As will become clear, however, numerals are used in several different environments yielding
quite different meanings. Number words, it will turn out, correspond to a family of meanings,
and the question will be how these meanings are related to one another.
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As we will see, the way different uses of numerals correspond to different meanings is
linked to what kind of contribution the numeral makes to the sentence. The question what
numerals mean can therefore be operationalized by asking what semantic type we should
give to them.1 Thus phrased, the research question allows us to systematically explore the
options. We will do this as follows. We start by discussing three prominent options: that
numerals are quantifier-like in Section 2, that they are property-like in Section 3 and that
they are entity-like in Section 4. Discussing these options will allow us to identify all the
main empirical desiderata for numeral semantics, except for the issue of exhaustivity,
which we discuss in Section 5. That discussion will bring issues of scope to the table, which
will ultimately lead us to considering an analysis of numerals as degree quantifiers in
Section 6.

2 | NUMERALS AS DETERMINERS

Numerals share an obvious resemblance to determiners like “every,” “some,” “several,” “most,”
etc., in that they occur in a pre-nominal position.

(1) Every/some/several/most/twelve students came to the party.

The classical way of thinking of determiners is to see them as a particular kind of general-
ized quantifiers (Barwise & Cooper, 1981; Keenan & Stavi, 1986). In the tradition of Generalized
Quantifier Theory (GQT), pre-nominal function words like those in (1) all receive interpreta-
tions as relations between sets: they return true if and only if the set denoted by their comple-
ment noun phrase stands in a particular relation to the set denoted by their second set denoting
argument (in the case of [1], this is the verb phrase). Given this interpretation, determiners
express meanings of type hhe, ti, hhe, ti, tii. For instance, “every” denotes the subset relation,
and “some” expresses nonempty intersection.

(2) a. [[every]] = λA.λB.A ⊆ B
b. [[some]] = λA.λB.A \ B 6¼;

The type hhe, ti, hhe, ti, tii hosts a huge amount of meanings. Even if there were only four
entities of type e, this would bring the class of hhe, ti, hhe, ti, tii meanings to a staggering

22
42≈1:16× 1077. For this reason, it is an important research question within GQT which mean-

ings of this type end up lexicalized in the languages of the world. To this end, formal semantics
has tried to identify universal constraints on the class of determiners. Examples of such con-
straints include conservativity (Barwise & Cooper, 1981): relations expressed by determiners
only ever concern the first argument set and the intersection between the first and second argu-
ment set. For (1), this means that to determine the truth-value of these sentences, you only need
to look at the students and at the students who went to the party. Party guests that are not stu-
dents are irrelevant.

A much discussed set of constraints aims to establish the intuition that the meanings of natu-
ral language determiners are not concerned with the actual content of the sets they combine
with. To know whether “every A B” is true, it does not matter who is in A and B; it suffices to
just know the cardinalities of A and of A \ B.2 For instance, we could redefine (2) into the
equivalent statements in (3), using just cardinalities.
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(3) a. [[every]] = λA.λB.|A| = |A \ B|
b. [[some]] = λA.λB.|A \ B| 6¼0

If we accept the constraints proposed by GQT, then determiners are cardinality operators.
Given this, it would be a natural step to think that numerals are the ultimate example of a natu-
ral language determiner. Very clearly, the function of “twelve” in (1) is to convey the cardinality
of the set of students who came to the party. As such, the semantics of numerals like “twelve”
becomes very straightforward:

(4) [[twelve]] = λA.λB.|A \ B| = 12

It turns out that this is a pretty poor proposal for a semantics for numerals. We started with
this proposal not only because of its initial natural appeal, but also because the reasons why this
view fails will introduce a good deal of the observations that need to be accounted for. So let us
go through all the reasons to dismiss a semantics as in (4).3

First of all, while numerals share with determiners that they can occur in a pre-nominal
position, they differ in that they can co-occur with clear cases of determiners or articles. For
instance,

(5) a. Every two houses come with one parking space.
b. The twelve students that came to the party had a nice time.

For examples like (5), an analysis of “twelve” as a determiner meaning of type hhe, ti, hhe, ti,
tii makes no sense, since, given that analysis, it would be unclear how “every” and “the” con-
tribute their meaning to the sentence.

Second, the semantics of numerals is not always about the cardinality of the intersection of
two sets. Consider the example in (6).

(6) Twelve apples can fit in this shoe box.

If we take the proposal in (4) and apply it to (6), then the meaning of this sentence would
involve the intersection between two sets, namely the set of apples and the set of entities that
can fit in the box. On the assumption that this is a pretty normal shoe box, this second set is
huge. Many things fit in the box. In particular, bar perhaps a few extraordinarily big apples,
each single apple in the world is such that it will fit in the box. The sentence in (6) is now
predicted to mean that there are twelve apples that are small enough that they fit in the shoe
box. But this does not seem to be the most salient reading of this sentence (even though it is
probably an available one). On the most salient reading, the sentence does not involve counting
entities that can fit in the box, but instead it involves quantifying over groups of apples. A good
paraphrase is probably something like: any normal group of twelve apples is such that this group
fits in the shoe box.

Clearly, this is not what a GQT determiner-style denotation can give us. There are two rea-
sons for this. First of all, (6) involves some sort of generic quantification, but there is no room
for that in a proposal along the lines of (4). Second, (6) involves groups of apples, while in
meanings like (4) everything is based entirely on the number of atoms in the intersection set.
This latter issue also becomes clear from more straightforward cases of collectivity. Consider
the following picture, for instance, and the contrast between (7-a) and (7-b).
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(7) a. In this picture, twelve dots surround the square.
b. ??In this picture, every dot surrounds the square.

Numerals like “twelve” support collective predication in the sense that (7-a) expresses the
existence of a group of twelve dots such that that group has the property of surrounding the
square. A similar reading is not (easily) available for (7-b). Instead, this sentence ends up
expressing the problematic classical GQT meaning that each atomic dot has the property of sur-
rounding the square.

The contrast in (8) points to a different way in which numerals can be shown not to (gener-
ally) express relations between sets. If the position “two” and “every” occur in in (8) were a posi-
tion suitable for hhe, ti, hhe, ti, tii operators, then we would come to expect that (8-b) could
express the statement that apart from the Coen brothers there are not any other famous film-
makers from Minnesota. (8-b), in fact, is grammatically degraded.

(8) a. The Coen brothers are two famous filmmakers from Minnesota.
b. *The Coen brothers are every famous filmmaker from Minnesota.

The reader may not find this a very strong argument, however, given that (8-b) could be out
for independent reasons. Still, even if this were the case, it will be hard to see the meaning of
(8-a) as a statement about a relation between two sets: the set of famous Minnesota filmmakers
and the set of entities identical to the Coen brothers. For instance, if “two” is to express that the
cardinality of the intersection between these sets is two, then this wrongly predicts that (8-a)
entails that the Coen brothers are the only famous filmmakers from Minnesota.

By far the clearest examples of occurrences of numerals that are not determiner-like are
those in which the numeral does not occur pre-nominally. This is for instance the case in
English statements about mathematics.

(9) a. Twelve is a Fibonacci number.
b. Twelve plus twelve is twenty four.

These are extreme examples, since one may question whether such sentences are even part
of English competence. It could be that mathematical English is just an entirely separate linguis-
tic entity, with a trivial lexical overlap. While we think this is not implausable for (9), it seems
to us to be an untenable position for (8), given that such sentences can mix different meanings
of numerals, as in (10).

(10) Twelve and fifteen are two Fibonacci numbers.

4 of 18 BYLININA AND NOUWEN



One may want to distinguish then between two kinds of occurrences of numerals: on the
one hand those that express mathematical entities and on the other those that express informa-
tion about quantity. We will not dismiss this option. However, it should be clear that the ideal
scenario is one in which we will be able to clarify in what way all the occurrences of numerals
are related.

In what follows, we review three main strands of thought in the literature on numeral
semantics. Each of them is an implementation of an idea about what numerals mean, given
that determiner-like semantics for numerals is not tenable.

3 | NUMERALS AS MODIFIERS

An influential idea concerning the semantics of numerals is that they are adjective-like
(Bartsch, 1973; Chierchia, 1985; Hoeksema, 1983; Landman, 2003; Rothstein, 2013, 2017), not
just in their syntax—their ability to co-occur with determiners/articles, for instance—but also
in their meaning. On that view, a numeral expresses a cardinality property.4 For instance:

(11) [[twelve]] = λx.#x = 12

According to (11), “twelve” expresses the set of (plural) entities, each of which contains
12 atoms. (So, #α returns the number of atoms of some plurality, just like |� � �| returns the
cardinality of a set.) “Twelve” can combine with a noun, say, “students.” To talk more pre-
cisely about the meaning of this combination, we need to make a digression about
plurality.

A common noun like “student” denotes a set of atomic entities, such that each of those enti-
ties is a student. Atomic entities cannot have the property “twelve,” only plural entities can. So,
for the semantics of “twelve,” as in (11), to work, a predicate like “student” has to be able to
undergo pluralization to include plural entities in its denotation as well.5

We use * to mark the pluralization operation, following Link (1983). In particular, if
a and b are two atomic entities in the denotation of predicate P, then in the denotation of
*P there is a plural entity a t b, the plurality that consists of nothing but a and b, or, the
sum of a and b.

FIGURE 1 The set of pluralities *{a, b, c, d}
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In general, for any set of entities X, there exists an entity t X whose parts are the elements
of X as well as their parts, while nothing else is part of that individual. So, t{john, mary} is
johntmary and t{john tmary, sue, ann} is john tmary tsue tann.

We define * below in (12) (a definition commonly assumed in the literature, see Link, 1983;
Landman, 1991, and see Nouwen, 2016 for an overview) and illustrate it in Figure 1. The arcs
between the nodes correspond to inclusion, ⊏, when read from bottom to top.

(12) *Z = {tX | X ⊆ Z & X6¼;}.

Once we have plural individuals in this way, we can also express numerical properties. In
Figure 1, there are four layers. The bottom layer is the layer of atoms, entities of cardinality 1.
The layer above that has the pluralities of cardinality 2, and so forth. Structures based on plural-
izations of larger sets will contain the layer of cardinality 12.

Themeanings of “twelve” and “students” combine bymeans of what is often called predicate mod-
ification (Heim & Kratzer, 1998), which amounts simply to set intersection. This semantics of “twelve
students” is completely parallel to an adjective-plus-noun combination such as “American students”:
the modifiers denote sets of groups of twelve and sets of groups of Americans, respectively.

Just like “American” narrows down the set of student groups to arrive at the set of groups of
American students, “twelve” narrows down the set of groups of students to groups of students of
twelve.

The main advantage of a proposal like that in (11) is then that it does justice to the observation
that numerals do not introduce quantificational force, but that they are dependent on external
sources of quantification, for instance by determiners (“every twelve students”, “no American stu-
dents”) or by covert operators. In (13-a), the numeral noun phrase ends up with existential force,
just like any other bare plural in that position would gain existential force, as in (13-b).

(13) a. I have twelve students in my class.

b. I have American students in my class.

To account for such sentences, one could, for instance, adopt a silent existential operator
(or, equivalently, a type-shift) 99, as in (14).6

(14) [[99]] = λPhe, ti.λQhe, ti.9x[P(x) ^ Q(x)]

The modificational view effortlessly deals with examples involving collective predication.
Consider (7-a) once more.

(7-a) In this picture, twelve dots surround the square.

If we assume that this sentence contains covert existential force, then using the
modificational view on numerals we get to a semantics like that in (15).
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(15) 9x[#x = 12 ^ * dot(x) ^surround-the-square(x)]

The extension of “surround the square” will consist of groups surrounding the square. As is
desirable, only if one of these groups is a group of 12 dots will (7-a) be predicted to be true.

Given that on the modificational view, numerals just create predicates, it should be possible
to use numerals in predicative position. This is exactly what happened in example (8-a), which
now receives the very straightforward analysis in (16) (where cb denotes the Coen brothers).

(8-a) The Coen brothers are two famous filmmakers from Minnesota.

(16) (λx.#x = 2 ^ * famous(x) ^ * filmmaker(x) ^ * from-Minnesota(x)) (cb)= #cb = 2 ^ *
famous(cb) ^ * filmmaker(cb) ^ * from-Minnesota(cb)

What about mathematical uses of numerals? In principle, the modificational view can handle math-
ematical uses fine, as long as we are comfortable with thinking of numbers as classes of equinumerous
groups. For instance, (9-a) is false, since the extension of “being a Fibonacci number” is that in (17).

(9-a) Twelve is a Fibonacci number.

(17) {λx.#x = 0, λx.#x = 1, λx.#x = 2, λx.#x = 3, λx.#x = 5, λx.#x = 8, λx.#x = 13, λx.#x
= 21, …}

This is, in fact, very close to Frege's conception of numbers (Frege, 1884).

4 | NUMERALS AS NUMBER-DENOTING WORDS

One may feel, however, that numerals should denote numbers, whatever it may be that num-
bers are. It seems intuitive that “twelve”—at least in some uses—simply means whatever con-
cept we associate to the number “12”:

(18) [[twelve]] = 12

We will assume that the meaning in (18) belongs to the semantic domain of degrees Dd.
Degrees are like entities of type e, except that their domain is ordered. That is, numbers like
“12” are similar to heights, weights, degrees of tiredness, etc., in that they are part of fixed
orders. Just like the height of the Dom tower in Utrecht exceeds the height of either of the two
authors of this article, 12 exceeds 9. Entities of type e do not come with such a natural fixed
ordering. (See Kennedy [2007] for discussion of degrees and degree semantics.)

On such a view, at least two uses of numerals should be distinguished. Those in which this
simple numerical concept is conveyed, as in, for instance, (9-a) and those in which the numeral
occurs in a pre-nominal position and conveys information about group cardinality.

(9-a) Twelve is a Fibonacci number.

Sentences like (9-a) are straightforward under (18), they express a simple set membership
statement: number twelve belongs to the set of Fibonacci numbers. The extension of “being a

BYLININA AND NOUWEN 7 of 18



Fibonacci number” would then simply be a set of numbers:

(19) {0, 1, 2, 3, 5, 8, 13, 21, 34, …}

The meanings of other expressions of mathematical language would be similarly simple:

(20) a. [[plus]] = λdλd
0
.d + d

0

b. [[times]] = λdλd
0
.d × d

0

Beyond unquestionably mathematical discourse, seeing numerals as number-denoting expres-
sions provides a natural understanding, for example, of their role as differential expressions in com-
parative constructions, where they seem to contribute a similarly arithmetic meaning:

(21) a. [[There are more A's than B's]] = |A| > |B|
b. [[There are two more A's than B's]] = |A|≥|B| + 2
c. [[There are three times more A's than B's]] = |A|≥|B| × 3

When a numeral appears in a pre-nominal position, the number semantics in (18) is not
enough for the combination of the numeral and the noun to work compositionally—types
d and he, ti cannot combine in a straightforward way. There is a way to connect them, however.
On quite a number of approaches to numeral semantics, noun phrases combine with numerals
intermediated by a silent counting operator, often represented as MANY.7

(22) [[MANY]] = λdλx.#x = d

On this proposal, “twelve students” has the structure [[ twelve MANY ] students ]. The com-
bination of “twelve” and MANY has exactly the same semantics as “twelve” has lexically under
the modifier view. Let us subscript “twelve” with m for “modificational” and with n for “num-
ber-denoting”:

(23) [[twelven MANY]] = [[twelvem]] = λx.#x = 12

Due to the equivalence in (23), the number view can successfully account for the same
range of constructions as the modifier view. The number view probably gives a more straight-
forward account of mathematical constructions, but has to introduce an additional element
(structurally or as a type-shift) for pre-nominal cases.

FIGURE 2 Schematic

overview of the type landscape

for numeral semantics. The

shaded cells indicate the two

possible basic meanings

discussed so far
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As a further illustration of interpretational equivalence of the modifier and the number
view, one can introduce an element that would be dual to MANY and map the modificational
meaning of the numeral onto the number meaning. Let us call it CARD:

(24) [[CARD]] = λPιd. 8 x[P(x) ! #x = d]

The effects of this operator applied to the modifier interpretation of “twelve” is as follows:

(25) [[CARD]]([[twelvem]]) = [[twelven]] = 12

We have defined CARD for illustration of the equivalence of the modifier and number views—
in practice, CARD is not used in existing analyses of numeral constructions. Our purpose is to show
that there are several ways of thinking of numeral semantics that, given the availability of corre-
spondences between meanings of different types, end up with equivalent empirical coverage. The
ensuing theoretical landscape is depicted as a landscape of types in Figure 2.

This is not to say that there are no ways of distinguishing the modifier and the number view.
Since we probably want to have both d-type and he, ti-type meanings for numerals, the question
becomes which shift is the more natural one: CARD, which assumes degrees can be
reinterpreted as properties of entities, or MANY, which assumes that the pre-nominal position
may contain a degree slot.

Here, we present a potential argument in favor of a type d slot in structures containing pre-
nominal numerals. To do so, we turn from bare numerals to modified numerals, such as “at
most three”. It would be safe to assume that such expressions are not number-denoting—there
is no single number such that “at most three” refers to it. So, “at most three” cannot be assigned
type d—the type expected of the first argument of MANY. Instead, modified numerals can be
analyzed as quantifiers over degrees, type hdt, ti (see Kennedy, 2015). The type mismatch can
then be resolved by the same means as with quantifiers over individuals, say, “every book.” One
way of doing this is via movement—Quantifier Raising (Heim & Kratzer, 1998).

As potential evidence for QR with modified numerals, consider the Dutch verb “hoeven”,
which exhibits NPI properties. As illustrated by (26), the grammaticality of a sentence with
“hoeven” depends on the presence of a negative element that has “hoeven” in its scope:

(26) a. *Jan hoeft te scoren DUTCH

Jan has to score
b. Niemand hoeft te scoren

nobody has to score

The (Dutch equivalent of) downward-monotone “at most three” in the complement of the
NPI verb licenses it:

(27) Jan hoeft maximaal drie boeken te lezen DUTCH

Jan has maximally three books to read

If the modified numeral is a degree quantifier that undergoes QR, with the landing cite higher
in the structure than the position occupied by “hoeven,” the latter's licensing requirements are met.

This is an argument in favor of the availability of a type d slot in numeral structures. Given
this, it would be natural to think that, accordingly, numerals are of that type. An interesting fact
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about scope and licensing of “hoeven” is at odds with this, however. As (28) shows, “hoeven” is
licensed even by a bare numeral in its complement, if this numeral is “zero”:

(28) Jan hoeft nul boeken te lezen DUTCH

Jan has zero books to read

Does this mean that bare numerals are also quantifiers that take scope? We turn to this pos-
sibility below.

5 | EXHAUSTIVITY AND SCOPE

In the previous sections, we have built two analyses of numeral semantics that, for the basic
pre-nominal cases, give equivalent results:

(29) [[Twelve students came to the party]] =
9x[#x = 12 ^ * student(x) ^ * came-to-the-party(x)]

Notice that this is an at least (lower-bound) reading of the sentence. The existence of the
group of twelve students that came to the party is compatible with, and in fact entailed by, there
being a group of thirteen students that came to the party.8

However, numerals systematically get both at least and exactly readings. One illustration of
this ambiguity is the fact that in a situation in which John took (exactly) eleven biscuits,
(30) can have both a positive and a negative answer:

(30) Q: Did John take ten biscuits?
(31) A: Yes, he took eleven.

A: No, he took eleven.

One of the much-debated questions in the literature on numeral semantics is how these
readings are related to each other. One prominent option is to derive the exactly reading from
the at least one. This can be done with a pragmatic mechanism of Gricean scalar implicature,
or its counterpart that is more embedded into grammar—the exhaustivity operator EXH that
attaches to a propositional node. (See Spector [2013] in this journal for an overview of the rele-
vant discussion that leads to such a view).

The idea of an exhaustivity operator is that it denies stronger alternatives to the proposition
it is attached to:

(32) [[EXH S]] = 1 iff
[[S]] = 1 and for any stronger alternative S

0
to S: [[S

0
]] = 0

An example of EXH in action when numerals are not involved could be any noncardinality
scale, say, a scale of temperature:

(33) [[EXH The soup is warm]] = 1 iff

The soup is warm ^ The soup is not hot
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With numerals, it gives the exactly interpretation (again, see Spector [2013] for details and
discussion):

(34) EXH Twelve students came to the party½ �½ �=
9x #x=12^�student xð Þ^�came-to-the-party xð Þ½ �^
¬9x #x>12^�student xð Þ^�came-to-the-party xð Þ½ �

This shows that the modifier or number view on numeral semantics suffices to account for
both the at least and the exactly reading, on the assumption of the availability of an exhaustivity
operator. A view like this, however, also makes quite specific further predictions about read-
ings. In the presence of more than one propositional node, there are different potential attach-
ment sites for EXH, giving rise to potential ambiguity. Consider (35), for instance:

(35) You are allowed to eat two biscuits

There are two propositional nodes for EXH to attach to. One within the scope of the modal
predicate and one taking scope over the modal. This leads to two distinct readings:

(36) a. ◊[9x[#x = 2 ^ * biscuit(x) ^ * eat(y, x)] ^ allow > EXH

¬9x[#x > 2 ^ * biscuit(x) ^ * eat(y, x)]]
b. ◊9x[#x = 2 ^ * biscuit(x) ^ * eat(y, x)] ^ EXH > allow

¬◊9x[#x > 2 ^ * biscuit(x) ^ * eat(y, x)]

This is, so far, a good prediction. The most prominent readings of sentences like (35) is the
one in (36-b), where the exhaustivity operator takes scope at the matrix level: you are allowed
to eat two biscuits and you are not allowed to eat more. The reading in (36-a) is rather weak,
since it merely asserts that taking exactly two biscuits is allowed, without saying anything about
other quantities. This reading is therefore more likely to surface in situations where maximizing
informativity is not required, for instance, when we reformulate (35) as a question.

(37) Am I allowed to eat two biscuits?

On its most salient reading, (37) does not ask whether it is the case that the maximum num-
ber of biscuits one is allowed to eat is two. Rather, it asks for permission to eat (exactly) two
biscuits.

In principle, then, the ambiguity displayed in (36) is desirable. Unfortunately, the way
things are set up right now—a lower-bounded semantics via the number or modifier route with
a free scoping exhaustivity operator—over-generates. Consider (38):

(38) Some students answered three of the questions correctly.

This sentence has one reading in which the numeral is construed doubly bounded: there are
some students such that they answered exactly three of the questions correctly. To derive this
reading, the exhaustivity operator would need to be in the scope of the subject quantifier. If this
operator has the freedom to attach at any propositional node, however, then we would also
expect a much stronger reading, namely:
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(39) 9x9y[ * student(x) ^ #y = 3 ^ * question(y) ^ * answer.correctly(x, y)]
^ ¬9x9y[ * student(x) ^ #y > 3 ^ * question(y) ^ * answer.correctly(x, y)]

This says there are students that answered three questions correctly, but no student
answered more than three questions. Such a strong reading is unavailable for (38).9

Why would there be a difference between sentences with a modal existential quantifier,
(35), and sentences with a nominal existential quantifier, (38)? In fact, such contrasts are quite
familiar from the literature on degree constructions. Heim (2000) showed that degree phrases
can scope over intensional operators, but not over nominal ones.

(40) Rod A is 5 cm long. Rod B is allowed to be exactly 1 cm longer than that.
(41) Rod A is 5 cm long. Some rods are exactly 1 cm longer than that.

While (40) has a strong reading, saying that Rod B is not allowed to be longer than 6 cm, no
such strong reading exists for (41). That is, (41) cannot be intended to convey that no rod is lon-
ger than 6 cm.

Data like (40)/(41) are usually interpreted as displaying a constraint on degree construc-
tions, known in the subsequent literature as the Heim-Kennedy generalization:10

(42) The Heim-Kennedy generalization: degree operators cannot move to take scope over
nominal quantifiers.

It is beyond the scope of this article to discuss the fine details of this generalization. (See
Nouwen and Dotlačil (2017) for recent discussion on differences in degree-related scope
between nominals and modals.) For the current purposes, it suffices to notice that (42) raises
the question why we would observe a degree-oriented constraint like this for numerals. On
neither the number nor the modifier view do the interpretations involve any kind of
scope-taking degree operators. The only scope-taking operator is EXH, which clearly does
not target degree.

This leads us to an alternative to the number/modifier view, namely one in which numerals
are degree quantifiers.

FIGURE 3 Schematic

overview of the type landscape

for numeral semantics. The

shaded cells indicate the three

possible basic meanings

discussed so far
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6 | NUMERALS AS DEGREE QUANTIFIERS

The strong reading of examples like (35) lead Kennedy (2015) to propose a semantics for
numerals that is both doubly bounded and quantificational.

(35) You are allowed to eat two biscuits.

On Kennedy's account, twelve denotes a set of degree properties, namely those properties
whose maximal value is 12:

(43) [[twelve]] = λP.max(P) = 12

To see how this works for (35), assume the following (simplified) logical form:11

(44) allow [ you eat [[ 99 [ twohhd, ti, ti MANYhd, he, tii ] biscuits ]] ]

To resolve the type clash, two needs to move (QR), leaving a d type trace, as illustrated in
(45), which leads to the semantics in (46).

(45) twohhd, ti, ti λd [ allow [ you eat [[ 99 [ d MANYhd, he, tii ] biscuits ]] ]
(46) max( λd.◊9x[#x = d ^ * biscuit(x) ^ * eat(y, x)] ) = 2

The denotation in (46) is equivalent to (36-b)—two is the highest number of biscuits that
you are allowed to eat, the permission does not extend to three or any other higher number of
biscuits. The reading with lower EXH in (36-a) would be captured under the degree quantifier
analysis by the lower QR landing site for the numeral.

Treating numerals as degree quantifiers derives all the necessary exactly readings. Importantly, it
bans the problematic exactly readings that are wrongly predicted to be available under other theories.

An important property of this analysis is that it does not derive exactly readings from the at
least ones, but produces them directly. At least readings are still available under the degree
quantifier view, however: they can be derived from exactly readings via a type-shift—more pre-
cisely, a succession of type-shifts that, step-wise, turn a quantifier into a predicate and then into
a term. In the domain of individuals, these type-shifts have been introduced by Partee (1987)
under the names of BE and IOTA, respectively:

(47) a. BE = λQ.λx.Q({x})
b. IOTA = λP.ιx.P(x)

Applied in succession, BE and IOTA turn a quantifier over individuals into an individual-denoting
expression—for example, they take all properties of Mary as input and return Mary as output.

(48) IOTA(BE(λP.P(Mary))) = Mary

In exactly the same way, Kennedy (2015) derives a type d numeral denotation from the
hdt, ti one. If [[twelve]] is the set of intervals that end in 12, then BE([[twelve]]) is the set of
degrees that each interval in [[twelve]] shares—that is, {12}:
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(49) BE([[twelve]]) = {12}

IOTA can be then applied to (49) to give us the number that the singleton in (49) contains:

(50) IOTA(BE([[twelve]])) = 12

IOTA(BE([[twelve]])), a degree-denoting expression, can be interpreted in situ, in exactly the
same way as under the number view described above. Again, as in the number view, the result
will be an at least reading.

The degree quantifier view has roughly the same empirical bite as the number view and the
modifier view, all three being related to one another by type-shifting and operator paths, as
illustrated in the updated type landscape in Figure 3.

However, there are two differences between the degree quantifier view and the number/modi-
fier view that we would like to sum up again. First, for Kennedy (2015) but not others, numerals
are quantifiers that undergo QR as a means of scope-taking. This has the benefit of explaining why
we observe the Heim-Kennedy generalization for bare numerals. Second, according to Ken-
nedy (2015), the at least readings are derived from the exactly ones, not the other way around.

Whether this property of the analysis makes desirable predictions is less clear. For an argu-
ment against the exactly analysis for numerals based on the polarity profile of the numeral
“zero” see Bylinina and Nouwen (2018). In short, under the degree quantifier analysis, “zero”
gives rise to a meaning that is indistinguishable from that of “no.” As such, one comes to pre-
dict that “zero” and “no” also license negative polarity items to the same degree. This is, how-
ever, not the case empirically, compare (51-a) and (51-b) (Bylinina & Nouwen, 2018; Zeijlstra,
2007):

(51) a. No students have visited me in years.
b. *Zero students have visited me in years.

As Bylinina and Nouwen argue in detail, this pattern can be made sense of under the view
that the basic meaning of “zero” (and, consequently, other numerals) is an at least meaning,
with an additional derivational step that turns it into an exactly reading.

This does not mean that the degree quantifier analysis has to be abandoned altogether.
Rather, this can be a reason to explore the connection between the two properties of this analy-
sis that we pointed out above: the quantificational nature of the numeral meaning and its
exactly property. In principle, they are independent from each other. One can keep the quanti-
fier semantics for numerals, but make it an at least semantics. (52) is a quantificational meaning
of the numeral “twelve.” Unlike its exactly counterpart, the meaning in (52) is a set of intervals
that include 12 (not necessarily end in 12):

(52) [[twelve]] = λP.P(12)

The numeral interpreted as in (52) cannot be interpreted in situ—it has to QR due to the
type mismatch, as in Kennedy (2015). However, after QR, it will produce an at least reading—if
it is not strengthened by other means.

The strengthening cannot occur by a freely inserted propositional EXH operator—this
would undermine the explanation of why we observe Heim-Kennedy effects with bare
numerals. Nothing prevents the strengthening from happening as quantificational modification,
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however. If there is an operator available that combines with the at least numeral quantifier
and turns it into an exactly numeral quantifier, one can keep the explanation of the Heim-
Kennedy effects observed with numerals and preserve the desirable direction of the derivational
relation between at least and exactly readings. Let us call this operator MAX:

(53) [[MAX]] = λDhhd, ti, ti.λP.max(P) �\D

MAX in (53) takes a set of intervals and passes on only those of them that end in the num-
ber that all the input intervals share.

When combined with a quantificational non-upper bound “twelve,” as in (52), MAX returns
the quantificational upper bound “twelve,” equivalent to Kennedy's (2015) “twelve”:

(54) [[MAX twelve]] = λP.max(P) �{12}

The view we sketched here fills in an empty slot in the available types of numeral semantic
analyses in the literature, by assuming that the semantic type of numerals is independent of the
derivational relation between at least and exactly readings.

7 | CONCLUSION

We introduced three main views on the semantics of bare numerals: the number view, the mod-
ifier view and the degree quantifier view. We pointed out how these analyses are related to each
other via type-shifts or operators, but also identified points of important differences between
such analyses that lead to differing empirical predictions. We showed ways to test such
predictions.

One important aspect our review underlines is why numerals are such an interesting topic
of enquiry. As we illustrated above, the question we posed—what is the semantics of
numerals—cannot be seen independent of a whole range of research questions central to
semantics and pragmatics: What are the sources of quantificational force in sentences? What is
semantic plurality? How are scope shifts constrained? What is the source of exhaustification?
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ENDNOTES
1For the uninitiated, in formal linguistic semantics, meanings are distinguished in terms of types. The meaning
of a sentence is a proposition, something that yields a truth-value given some state of affairs. A truth-value is
type t. A verb phrase expresses a property, a function that takes an entity and returns true for entities that have
the property in question and returns false otherwise. This is another way of saying that verb phrases express sets
of entities. If we assume that the subject expresses an entity, type e, then the verb phrase will denote a function
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of e to t, which we will write as he, ti. Using basic types like e and t, we can build arbitrarily complex semantic
objects, like properties (he, ti), binary relations (he, he, tii), quantifiers (hhe, ti, ti, see below), etc. Functions are
standardly written in λ-notation, so that λα.β is a function that maps any object α to β.
2For the discussion of potential constraints on quantifier meanings in natural language, such as monotonicity,
extensionality, isomorphism closure, and conservativity, see Van Benthem (1984) and subsequent literature.
3Similarly, there are arguments against a GQT analysis of “many” and other “quantity words” (Rett, 2018).
4A related approach that views numerals as modifiers can be found in Ionin and Matushansky (2006). The goal
there is not just to account for simple numerals like four or eight, but also for complex ones, like four hundred.
5Note that we are interested in semantic plurality. Whether and how it corresponds to morphosyntactic plurality
is outside the scope of this article. In English-like languages, numerals more often than not require the noun to
be marked for plural, which makes numeral “one” an odd exception that requires explanation. In other lan-
guages, however—one example being Turkish—nouns are systematically morphologically singular in combina-
tion with numerals. For a defense of a syntactic agreement view on number marking on nouns with numerals,
see, for example, Krifka (2003) and Ionin and Matushansky (2006). Semantically speaking, both the nominal and
the VP predicate in sentences with numerals need to be plural for all of the theories we discuss here to work.
6Parallel to this, one may want to also have an operator introducing generic quantification. See Buccola (2017)
for intricacies and difficulties with such a move.
7There are many variations on the definition in (22). Hackl (2000) made MANY a parametrized existential deter-
miner. As we have seen, however, it is desirable to sever quantificational force from the interpretation of the
numeral. Krifka (1989) proposed that nouns come with an argument slot that addresses measurement or cardi-
nality information. The MANY in (22) is closest to Buccola and Spector (2016) and Bylinina and Nouwen (2018).
8The sentence in (29) illustrates lower-boundedness with distributive predicates. The situation is different when
the predicate is collective. The existence of a group of thirteen students who lifted a piano together does not guar-
antee the existence of a smaller group that did the same.

(i)[[Twelve students lifted the piano together]] =
9x[#x = 12 ^ *student(x) ^ *lifted-the-piano-together(x)]
(9x[#x = 13 ^ *student(x) ^ *lifted-the-piano-together(x)]
Still, these collective cases are in a sense lower-bounded. A sentence like “twelve students lifted the piano
together” does not exclude the possibility that also there was a different group of students, one of more than
twelve, that lifted the piano together, too. For a detailed discussion of maximality in relation to distributivity and
collectivity see Buccola and Spector (2016). We will be looking primarily at distributive contexts.
9Questions have been raised about the correctness of this observation and a proper empirical study is required to
clarify the facts. At the same time, there are reasons to think that the alleged lack of stronger readings in this
configuration is not specific to numerals. In (i), the expected inference “No kid did all of the homework” is also
not clearly there (Benjamin Spector, p.c.):

(i) Some kids did some of the homework.
If the status of the numeral example (39) is the same as that of (i), an independent explanation might be more
correct. That is, the theoretical consequences of the observation in (38), of course, are conditioned by its empiri-
cal accuracy.
10However, see Beck (2012) for an alternative view in which the contrast in question is linked to properties of
whatever occupies the differential position, in this case exactly.
11Kennedy (2015), in fact, assumes that the MANY operator contains existential quantification. Here, we adopt a
more flexible approach, as per the discussion above.
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