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MODELING HONEY BEE COLONIES IN WINTER USING A
KELLER--SEGEL MODEL WITH A SIGN-CHANGING

CHEMOTACTIC COEFFICIENT\ast 
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Abstract. Thermoregulation in honey bee colonies during winter is thought to be self-organized.
We added mortality of individual honey bees to an existing model of thermoregulation as an approach
to model the elevated losses of bees that are reported worldwide. The aim of this analysis is to obtain
a better fundamental understanding of the consequences of individual mortality during winter. This
model resembles the well-known Keller--Segel model. In contrast to the often studied Keller--Segel
models, our model includes a chemotactic coefficient of which the sign can change as honey bees
have a preferred temperature: When the local temperature is too low, they move toward higher
temperatures, whereas the opposite is true for too high temperatures. Our study shows that we can
distinguish two states of the colony: one in which the colony size is above a certain critical number of
bees in which the bees can keep the core temperature of the colony above the threshold temperature
and one in which the core temperature drops below the critical threshold and the mortality of the
bees increases dramatically, leading to a sudden death of the colony. This model behavior may help
explain the globally observed honey bee colony losses during winter.
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1. Introduction. The reported global losses of honey bee colonies could have
severe consequences for food production [14, 20, 22]. Especially during winter, honey
bee colonies experience high mortality of individual bees with the result that the
colony goes extinct before the next spring season [34, 32, 10]. For honey bees, the
key to survive the winter period is the generation and preservation of heat. It has
been demonstrated that colonies do not have a centralized mechanism to monitor
and adjust in-hive temperature and also that the thermoregulation does not depend
on communication between bees [25, 15]. Instead, each individual honey bee has
a sensory-motor system that responds to external stimuli, such as local temperature
differences in the colony, and thermoregulation during winter is therefore hypothesized
to be self-organized [35, 15, 16, 21]. This self-organization is the result of several
processes. First, bees produce heat through flight muscle activities [11, 12]. Below a
certain temperature the bee starts shivering with her flight muscles, whereas above this
temperature she remains at rest. Second, honey bees have a thermotactic movement
which is based on temperature differences in their local neighborhood [15]. When
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840 BASTIAANSEN ET AL.

a bee is too warm, she will move in the direction of lower temperature. If she is
too cold, she will advance toward higher temperature. Based on these processes, a
model for the local bee density and the local temperature has been introduced in [35].
However, in this model the mortality of individual bees is not included---all bees stay
alive, surviving until the next spring season. In this article, we formulate an extended
model that does take the death of bees into account. Our model describes a honey
bee colony during winter; no young bees emerge and are added to the colony. The
aim of analysis in this article is to obtain a better fundamental understanding of the
consequences of individual mortality of honey bees during winter.

The thermotactic movement of honey bees is dictated by local temperatures. The
movement of organisms that arises in the direction of a gradient in the concentration
of a substance---often a chemical [19, 30]---or in temperature has been observed fre-
quently in nature. This process is generally called chemotaxis and has originally been
described by Keller and Segel in the modeling of slime molds [19]. A generalization
of this model is given by the following two-component PDE [17, 30]:

(1.1)

\Biggl\{ 
\partial T
\partial t = \Delta T + h(\rho , T ),

\partial \rho 
\partial t = \nabla [\nabla \rho  - \chi (T )\rho \nabla T ] + g(\rho , T ).

In this equation, \rho is the density of the organisms and T the concentration of the chem-
ical (temperature in our case). The functions h and g specify the reaction terms---
creation/loss and growth/mortality. Evolution of the chemical T arises from diffusion
and movement of the organisms \rho by chemotaxis. The function \chi is the so-called
chemotactic coefficient. When \chi > 0, movement is directed toward higher chemical
concentrations; when \chi < 0, movement is away from it. Numerous studies have been
conducted on this Keller--Segel model for various choices of functions h, g, and \chi ---see,
for instance, the review papers [30, 17, 5] and references therein. The focus is often on
global existence results or on finite-time blow-up [18]. However, these studies focus on
models with a positive chemotactic coefficient (\chi > 0) and no mortality of the organ-
isms (g \geq 0). This is intrinsically different from the setting we consider here. In fact,
we are not aware of in-depth studies of Keller--Segel models in the mathematical liter-
ature of the type considered in this article---although the possibility of a chemotactic
coefficient that changes sign has been mentioned in some previous studies [36, 17].

The thermotactic movement of honey bees is more subtle than can be described
by taking a chemotactic coefficient \chi > 0; bees do not always move toward the loca-
tion with the highest temperature, but they have a preferred temperature T\chi . This is
reflected in their movement: When the local temperature T is too low, T < T\chi , they
move toward higher temperatures; when T > T\chi , they move away to lower tempera-
tures. This means that the chemotactic coefficient \chi (T ) changes sign at T\chi , and hence
it can become negative, which is very different from the generalized Keller--Segel mod-
els (1.1), where \chi has a fixed, positive sign. Moreover, to be able to study bee losses,
we need to incorporate mortality of the bees. This leads to the following model:

(1.2)

\Biggl\{ 
\partial T
\partial t = \Delta T + f(T )\rho ,

\partial \rho 
\partial t = \nabla [\nabla \rho  - \chi (T )\rho \nabla T ] - \theta (\rho , T )\rho .

Here \rho \geq 0 is the bee density and T the local temperature. Although our model
still has the structure of (1.1) (where h(\rho , T ) = f(T )\rho models the heat generation
by bees and g(\rho , T ) = \theta (\rho , T )\rho the individual mortality of bees), our setting, with \chi 
changing sign from positive to negative, generates very different dynamics compared
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MODELING HONEY BEE COLONIES IN WINTER 841

to the models considered in the mathematical literature. This model is an extension
of the bee model in [35], which also includes a chemotactic coefficient \chi that changes
sign. To that model, we have added bee mortality \theta (\rho , T ) > 0. On the other hand,
(1.2) also is a simplification of the model introduced in [35]. For instance, we assume
that the diffusion coefficients are constant, which is different from [35], where these
are functions of \rho . This is not a major modification since the functions describing
diffusion in [35]---which come from observations---are indeed almost constant.

In [35], the functions f and \chi have also been based on observations. In our
analysis, we found that the precise form of the functions f and \chi does not alter the
qualitative aspects of the results. To clarify the presentation and to enable explicit
asymptotic analysis, we have simplified these functions, based on those in [35]. As
previously discussed, it is important that the function \chi switches signs from \chi (T ) > 0
for small T to \chi (T ) < 0 for large T . Therefore, we choose \chi to be a step function;
similarly, based on the data in [35], f is chosen to be a step function as well:

(1.3) f(T ) =

\Biggl\{ 
flow, T < Tf ;

fhigh T > Tf ;
\chi (T ) =

\Biggl\{ 
+ \chi 1, T < T\chi ;

 - \chi 2, T > T\chi .

Here flow, fhigh, \chi 1, \chi 2 > 0, Tf is the temperature where f changes value, and T\chi is
the temperature where \chi (T ) changes sign (Tf < T\chi ). The temperature T\chi can be
thought of as the preferred temperature for the bees, as bees prefer to move toward
locations with this temperature.

In nature, honey bees form combs for brood and storage of honey and pollen
(which are also offered by beekeepers in hives), and bees are found to cluster in
between the combs (i.e., the intercomb spaces), with the highest temperature in the
center [28, 27]. For the modeling, we take a cross section of this cluster from the center
to the edge and thus study the cluster in one spatial dimension (but without going
explicitly into polar coordinates---for simplicity). Therefore, we analyze the model on
[0, L], where x = 0 is the center of the colony and x = L is the edge of it. However,
we stress that, based on numerical simulations, the dynamics of the model in polar
coordinates are qualitatively similar.

The above equations need to be completed by a set of four boundary conditions.
Bees do not leave the colony in winter, and therefore we impose no-flux boundary
conditions at x = L, leading to a (bee) mass conservation in the system when mortality
is absent. Also, the temperature at the edge of the colony at x = L is equal to the
ambient temperature Ta, which we assume to be fixed and to be below the preferred
temperature T\chi in winter. Furthermore, because of the assumed symmetry, we need
to impose boundary conditions for both T and \rho at the center of colony.

Finally, initial data should be provided. However, we note that the precise initial
configuration has only very limited impact on the long-term behavior of the model,
and as such we refrain from discussing this in more detail here.

Summarizing, the complete model is given by

(1.4)

\Biggl\{ 
\partial T
dt = \partial 2T

\partial x2 + f(T )\rho ,

\partial \rho 
dt = \partial 2\rho 

\partial x2  - \partial 
\partial x

\bigl[ 
\chi (T )\rho \partial T

\partial x

\bigr] 
 - \theta (\rho , T )\rho .

Tx(0, t) = 0, \rho x(0, t) = 0,(1.5)

T (L, t) = Ta < T\chi , (\rho x  - \chi (T )\rho Tx) (L, t) = 0,(1.6)

(1.7) \rho (x, 0) = \rho 0(x),

where the subscript x denotes derivatives with respect to x.
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842 BASTIAANSEN ET AL.

Remark 1. In [35], the boundary of the honey bee colony is not fixed at some
value L but is a free boundary; i.e., it is allowed to move in time. This leads to more
complex conditions at the boundary; see section 3.

The novel modeling aspect of the present work is the inclusion of a nontrivial
mortality rate \theta ; only the model for \theta = 0 has been studied before. We formulate a
mortality coefficient \theta based on observations. During winter, bees die from aging, and
therefore the mortality of bees is highly influenced by the amount of work a bee has to
perform; moreover, it is amplified by parasites such as the mite Varroa destructor [2, 3,
32]. We postulate that there are three distinctive effects that contribute to individual
mortality: (i) the effect of the local temperature (\theta T ); (ii) the effect of the length of
the resting times between bouts of heat generation, which is closely related to the
effective refresh rates of heat-generating bees (\theta D); (iii) the effect of parasitic mites
in the colony (\theta M ). The effective mortality coefficient is then given by the product of
these effects, i.e.,

(1.8) \theta (T, \rho ) = \theta 0\theta T (T ) \theta D(\rho ) \theta M (\rho ),

where \theta 0 is a constant that needs to be tuned to align with observations.
The first effect, of temperature, represents that mortality does not increase when

the (local) temperature is above a certain threshold, T\theta > Ta. If the temperature is
too low, i.e., T (x) < T\theta , a bee in that location has to work (too) hard to generate
heat, reducing her life span. Mathematically, we once again strongly simplify this
effect and describe this by the step function

(1.9) \theta T (T ) =

\Biggl\{ 
1 if T < T\theta ,

0 if T \geq T\theta .

The second effect comes from the ratio between local bee density \rho and colony size
\rho tot, which is called the refresh rate by recovered bees. To heat up the colony, bees
work together; each bee can generate heat by shivering her flight muscles, but only for
around 30 minutes, after which she needs to recover and refill reserves by consuming
honey [29]. Therefore, at each moment, bees at the periphery of the colony can become
(too) cold and have to work hard to generate heat, while bees inside the colony, at
warmer locations, rest and recover from earlier heat generation bouts before starting
to generate heat again. After a while, the bees rotate so that recovered bees can take
over the heating duty, enabling the heating bees to recover [28]. Therefore, if there
are a lot of bees in the colony, bees can rest and recover longer between heating bouts.
If the colony is relatively small and the opportunities to recover are short, bees may
have to work more frequently, reducing their life span. So, the number of bees at the
periphery of the colony (that are currently performing heating duties) relative to the
total bee population influences the mortality. Mathematically, the contribution of the
refresh rate by recovered bees to the mortality is modeled as

(1.10) \theta D(\rho ) =
\rho 

(\rho tot)\gamma 
, (\gamma > 0),

where \gamma > 0 is some unknown exponent.
The third contribution stems from the (currently excessive) presence of the par-

asitic mite V. destructor in honey bee colonies [32]. Although there is a general
agreement that there is no single explanation for the extensive colony losses and that
interactions between different stresses are likely to be involved, the presence of V. de-
structor in colonies places an important pressure on bee health. Varroa destructor

D
ow

nl
oa

de
d 

12
/3

1/
20

 to
 1

31
.2

11
.1

2.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODELING HONEY BEE COLONIES IN WINTER 843

0 L

Tχ

x
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ρ
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)

(a) \rho (x) and T (x) for a type I solution

0 x∗ L

Tχ

x

T
(x
)

ρ
(x
)

(b) \rho (x) and T (x) for a type II solution

Fig. 1. Plots of a type I solution (a) and a type II solution (b). The bee density \rho (x) has a
maximum at x = x\ast , the location where T (x\ast ) = T\chi , in the type II solutions. When \rho tot < \rho tot,c,
a type I solution is obtained, and when \rho tot > \rho tot,c, a type II solution is found.

reduces the body weight and protein content of individual bees, which is found to
shorten their life span [33, 1]. Thus, if the number of mites per bee increases, bee
mortality increases as well. Because mites may jump to neighboring bees when their
host bee dies, this fraction increases when colony size decreases. Mathematically, we
model this effect as

(1.11) \theta M (\rho ) = 1 +
m

\rho tot
,

where m is the number of mites present in the colony.
In this article, we study the model in (1.4) with boundary conditions (1.5)--(1.6).

First, we analyze system (1.4) in the absence of bee mortality, so we set \theta = 0. Under
that assumption, we study the steady-state solutions of the model in section 2. There,
we find two types of steady-state configurations, type I and type II, distinguishable

by the colony size, \rho tot =
\int L

0
\rho (x) dx. We find that there exists a critical colony size

\rho tot,c such that steady states are of type I---see Figure 1(a)---when \rho tot < \rho tot,c and
of type II---see Figure 1(b)---when \rho tot > \rho tot,c. When the colony size is below the
critical value \rho tot,c, there are insufficient bees in the colony to increase the core tem-
perature above the bees' preferred temperature T\chi . Therefore, bees cluster together
at the colony's core, and the corresponding steady states are denoted by type I---see
Figure 1(a) for a side view of this steady state. On the other hand, when the colony
size lies above the critical size \rho tot,c, there are enough bees to keep the colony's core
temperature above the bees' preferred temperature T\chi . As a result, the distribution
of bees has a peak at the location with temperature T\chi . This steady state is denoted
as a type II solution in this article; a side view of this configuration is given in Fig-
ure 1(b). The latter type of bee distribution, with bees clustering near the edge of
the colony, is also observed in real honey bee colonies [26].

Moreover, the simplicity of the model enables us to derive analytic expressions
for these two types of steady-state solutions in section 2. There, we find that it is
possible to obtain a closed-form expression for the critical colony size \rho tot,c that forms
the threshold between the two types of steady-state solutions---see (2.20). We find
that \rho tot,c increases (almost linearly) when the ambient temperature Ta decreases.
Thus, a larger colony is needed to adequately heat the colony when it is colder.

In section 3, we explore the effects of the addition of a moving boundary to
the model---like in the original model in [35]. This leads to a more complex model
formulation. However, the steady-state analysis is not altered qualitatively; again the
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844 BASTIAANSEN ET AL.

same two types of solutions exist, which are again distinguishable by the total number
of bees in the colony.

Subsequently, in sections 4 and 5, we take the mortality of individual bees into
account; hence, the colony size decreases. Compared to their movement, the mortality
of bees takes place on a much slower timescale. Therefore, the solutions closely follow
the steady-state configurations, with the (decreasing) \rho tot acting as the slowly varying
parameter. We choose realistic values for the parameters and study the evolution of
\rho tot using numerical simulations. These simulations reveal a speedup in the decrease
of the colony size when \rho tot decreases below \rho tot,c; see Figure 9. For a type I solution,
the colony goes extinct very quickly. Therefore, the survival of a colony is increased
when it remains sufficiently long in a type II configuration. Here, sufficiently long in
practice means beyond the end of the winter season: A colony survives the winter if it
succeeds in remaining of type II until the beginning of the next spring season (when
the bees leave the colony to forage and young bees are produced). As simulations
show, bee colonies remain of type II for a longer period when there are (i) fewer
mites, (ii) higher ambient temperatures and (iii) a larger initial colony size (at the
start of winter). In section 5, we give details of the precise effects on the decline of
\rho tot over a winter period of the three mortality parameters mentioned, and we also
discuss their impact on the survival of the colony.

As a short encore, in section 6, we consider the possibility of multiple combs
in a hive so that the colony is divided in parts occupying several intercomb spaces,
which are connecting by moving bees going from the one intercomb space to the other
(through the comb or going around the comb). For this, we present a simple extension
of (1.4) that takes into account multiple intercomb spaces and the movement of bees
between them. Using simulations, we show how having multiple combs is beneficial
for the survival of a bee colony.

Finally, we briefly discuss the implications of our findings and indicate future lines
of research in the concluding section 7.

Remark 2. When \rho tot < \rho tot,c the steady-state configuration is of type I. For
these solutions, T < T\chi over the whole domain, and therefore \chi > 0 everywhere.
Hence, these types of solutions are essentially covered by the classical Keller--Segel
theory. Of specific interest is the existence of an energy functional [6]

(1.12) \scrE [\rho , T ] :=
\int L

0

\biggl( 
1

\chi 
\rho log \rho  - T\rho +

1

2
T 2
x

\biggr) 
dx,

which is bounded from below and ever decreasing when \chi > 0 everywhere [6]. From
this it can be deduced that type I configurations are stable solutions to (1.4) in the
absence of mortality. We are not aware of a similar generic, simple argument for type
II solutions when \chi does change sign (since T (0) > T\chi and T (L) = Ta < T\chi ). At least,
it can be checked that the energy functional (1.12) no longer suffices, as the energy
can grow under these conditions. We note that some less generic results are available
that establish, e.g., global existence in models in which the chemotactic coefficient
may change sign [36].

2. Steady states. In this section, we first study stationary solutions of sys-
tem (1.4) without mortality, i.e., \theta (\rho , T ) \equiv 0. For clarity of presentation we also
additionally take flow = fhigh = \=f first; at the end of the section we comment on the
additional effects in case flow \not = fhigh. Then, steady-state configurations (T (x), \rho (x))
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of (1.4) must satisfy

(2.1)

\biggl\{ 
Txx + f(T )\rho = 0,

\rho xx  - (\chi (T )\rho Tx)x = 0.

The second equation can be integrated from 0 to x, and because of the no-flux bound-
ary conditions for the local bee density (1.6), we find

(2.2)

\biggl\{ 
Txx + f(T )\rho = 0,

\rho x  - \chi (T )\rho Tx = 0.

Since f(T ) > 0 for all T \in \BbbR , it follows from the first equation that

(2.3) \rho =  - Txx/f(T ).

Substituting this into the second equation of (2.2) and multiplying the result with
f(T ) leads to

(2.4)  - Txxx +

\biggl( 
f \prime (T )
f(T )

+ \chi (T )

\biggr) 
TxTxx = 0.

Introducing S := Tx and R := Sx yields

(2.5)

\left\{       
Tx = S,

Sx = R,

Rx =
\Bigl( 
\chi (T ) + f \prime (T )

f(T )

\Bigr) 
SR.

Now, since f(T ) \equiv \=f , this system reduces to

(2.6)

\left\{     
Tx = S,

Sx = R,

Rx = \chi (T )SR.

Note that since the local bee density satisfies \rho \geq 0, it follows from condition (2.3)
that R = Txx \leq 0.

This system needs to be accompanied by three boundary conditions. Naturally,
the steady-state solution should satisfy the boundary conditions of the original PDE.
However, these only give us two boundary conditions since all solutions of system (2.6)
satisfy the no-flux boundary condition at x = L for \rho automatically. This no-flux

boundary condition does imply that the colony size in the domain \rho tot :=
\int L

0
\rho (x)dx

needs to remain the same, i.e., mass conservation. This leads to a third boundary
condition by using the expression for \rho in terms of Txx in (2.3)---given a constant f .
Substituting (2.3) into \rho tot leads to the relation S(L) - S(0) =  - \rho tot \=f . To summarize,
the boundary conditions for solutions of (2.6) are
(2.7)
T (L) = Ta (where Ta < T\chi ), S(0) = 0, S(L) =  - \=f\rho tot.

Note that this last condition introduces the nontrivial impact of \rho tot on the nature of
the steady-state solutions.
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S

R

S = −f̄ρtot

(a) \=\chi > 0

S

R

S = −f̄ρtot

(b) \=\chi < 0

Fig. 2. Sketches of the (R,S) phase plane for the ODE in (2.6) in case of a constant \chi , i.e.,
with \chi (T ) \equiv \=\chi . The dashed red lines indicate the line \{ R = 0\} on which both Sx = 0 and Rx = 0.
The dashed green line is the line \{ S =  - \=f\rho tot\} , and the solid green line indicates a solution that
satisfies the boundary conditions S(0) = 0 and S(L) =  - \=f\rho tot.

From the fact that the function \chi (T ) is a step function, it follows that the dy-
namics of solutions of (2.6) are governed by the 2D subsystem of S and R. If we for
a moment assume that \chi (T ) \equiv \=\chi is constant, we find, depending on the sign of \=\chi ,
two qualitatively different ODEs; see Figure 2(a) for a sketch of the (R,S)-plane for
\=\chi > 0 and Figure 2(b) for \=\chi < 0. Here only the lower part of the plane is relevant
since R \leq 0.

From the boundary condition S(0) = 0, we find that at x = 0 the solution starts
on the half-line \{ S = 0, R \leq 0\} . On this half-line the flow of the ODE dictates that
Sx = R \leq 0, and therefore the solution is contained in the region \{ S \leq 0, R \leq 0\} .
The other boundary condition, S(L) =  - \=f\rho tot, indicates that the solution must end
at x = L, on the half-line \{ S =  - \=f\rho tot, R \leq 0\} , the dashed green lines in Figure 2.
In general, for a fixed L, only one solution satisfies these constraints; in Figure 2 we
have sketched these solutions for both \=\chi > 0 and \=\chi < 0.

However, in our model \chi is a piecewise constant function that changes sign at
T = T\chi ; see (1.3). Thus, if T < T\chi , the chemotactic constant \chi (T ) is positive, and the
phase portrait is as in Figure 2(a); for T > T\chi , \chi (T ) is negative, and its phase portrait
is given in Figure 2(b). Next, we construct solutions by combining both phase planes
in Figure 2.

The boundary condition T (L) = Ta < T\chi ensures that close to the colony's edge,
\chi (T ) > 0. Moreover, from the fact that S(x) \leq 0 for all x \in [0, L] and Tx = S, we
know that the temperature is decreasing (or constant if \rho tot = 0). This results in
two possible scenarios that we denote by type I and type II, depending on the heat
production of the bees:

I: the temperature stays below T\chi in the whole colony; i.e., T (x) < T\chi for all
x \in [0, L];

II: the temperature is larger than T\chi at x = 0, and hence there exists a point x\ast 

such that T (x) > T\chi for x < x\ast and T (x) < T\chi for x > x\ast .
Both cases lead to different forms of steady-state solutions. In the first situation the
solution is described by system (2.6) with \=\chi > 0 for all x; see Figure 3(a) for a sketch
of the solution in the (R,S)-plane. However, in the second situation the solution
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R

S

S = −f̄ρtot

(a) (R,S)-plane for a type I solution

R

S

S = −f̄ρtot

x = x∗

(b) (R,S)-plane for a type II solution

Fig. 3. Plot of the phase plane for a type I solution (a) and a type II solution (b). The
corresponding plots of T (x) and \rho (x) can be found in Figure 1.

first follows the solution in the phase plane for \=\chi < 0 and then switches at x = x\ast 

to the phase plane for \=\chi > 0; see Figure 3(b) for the combined phase plane. The
corresponding solutions T (in blue) and \rho (in red) for the type I solutions are plotted
in Figure 1(a) and for the type II solutions in Figure 1(b).

The clear distinction between the two types of solutions is the absence/presence
of a peak in the local bee density \rho . Observe that bees cluster at the center of the
colony in type I solutions, whereas for a type II solution they form a band at some
location x = x\ast . It has been observed that bees in colonies also form these bands [26].

2.1. Explicit expressions for the steady-state solutions. In the previous
section, we qualitatively found two types of steady-state configurations. We can also
determine closed-form solutions since system (2.6) can be solved explicitly. In this
section, we determine these expressions and use them to find a criterion to distinguish
between the two types; we show that there exists a critical colony size \rho tot,c at which
the solution type changes: When \rho tot < \rho tot,c, the steady-state solution is of type I,
and when \rho tot > \rho tot,c, it is of type II.

2.1.1. Type I solutions. In type I solutions, the temperature does not exceed
T\chi , and therefore \chi (T ) = \chi 1 > 0 for all x \in [0, L]. Then the last two equations in
system (2.6), for S and R, can be written as a second-order differential equation in S:

(2.8) 0 = Sxx  - \chi 1SSx.

This equation can be integrated once and yields the first-order ODE

(2.9) Sx =
\chi 1

2

\bigl( 
S2  - C1

\bigr) 
,

where C1 is an integration constant that is not yet determined. This constant C1

must be positive since we know that Sx \leq 0 for all x. The solution to the above
equation is given by

(2.10) S(x) =  - 
\sqrt{} 
C1 tanh

\Bigl( \chi 1

2

\sqrt{} 
C1x+ C2

\Bigr) 
,

where C2 is another constant. The boundary conditions for S in (2.7) imply that
C2 = 0, while C1 must satisfy

(2.11)
\sqrt{} 
C1 tanh

\Bigl( \chi 1

2

\sqrt{} 
C1L

\Bigr) 
= \=f\rho tot.
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0 1 2 ρtot,c 3 4 5
0

20

Tχ

ρtot

T
c
o
r
e

(a) Tcore as function of \rho tot

−4 −2 0 2 4
22

24

Tχ

26

28

Ta

T
c
o
r
e

(b) Tcore as function of Ta

Fig. 4. Plot of the core temperature Tcore as function of the colony size \rho tot (a) and the ambient
temperature Ta (b). The blue lines indicate the core temperature for type I solutions, whereas the
red lines indicate the core temperature for a type II solution. The dashed lines indicate solutions
that are not realistic. Parameter values used are \=f = 1, \chi 1 = 1, \chi 2 = 1, L = 10, T\chi = 25, and
Ta = 0 (a) or \rho tot = 3 (b).

We obtain the temperature profile by integrating the expression for S once,

(2.12) T (x) = Tcore  - 
2

\chi 1
log

\Bigl[ 
cosh

\Bigl( \chi 1

2

\sqrt{} 
C1x

\Bigr) \Bigr] 
,

where Tcore is the temperature at x = 0. With the last boundary condition, T (L) =
Ta, the temperature Tcore is determined as

(2.13) Tcore = Ta +
2

\chi 1
log

\Bigl[ 
cosh

\Bigl( \chi 1

2

\sqrt{} 
C1L

\Bigr) \Bigr] 
.

In Figure 4(a), we plot Tcore as a function of \rho tot by combining (2.13) and (2.11).
Finally, \rho can be determined from (2.3) yielding

(2.14) \rho =  - Txx/ \=f =  - Sx/ \=f =
C1\chi 1

2 \=f
\bigl[ 
cosh

\bigl( 
\chi 1

2

\surd 
C1x

\bigr) \bigr] 2 .
A plot of this steady-state solution is given in Figure 1(a).

Note that in the above expressions, the constant C1 > 0 is still present. Hence,
for different choices of C1, we find different solutions. However, this does not lead
to a solution for all C1 > 0 because the condition Tx = S(x) < 0 also needs to be
satisfied for all x \in [0, L]. Hence, the maximum temperature is achieved at x = 0,
i.e., Tmax = Tcore. Also, for a type I solution, we assume that T (x) < T\chi for all
x \in [0, L] and hence also Tcore < T\chi . Therefore, this type I solution ceases to exist
when Tcore = T\chi and at that point the solution switches to become of type II. Together
with (2.13), this leads to

(2.15) T\chi  - Ta =
2

\chi 1
log

\Bigl[ 
cosh

\Bigl( \chi 1

2

\sqrt{} 
C1,cL

\Bigr) \Bigr] 
,

where C1,c is the critical value for the parameter C1 that leads to T (0) = T\chi . Rewrit-
ing this relation, we obtain an expression for this critical value:

(2.16)
\sqrt{} 
C1,c =

2

L\chi 1
arccosh

\Bigl( 
exp

\Bigl[ \chi 1

2
(T\chi  - Ta)

\Bigr] \Bigr) 
.
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−25 0 Tχ = 25

2

4

Ta

ρ
to

t,
c

(a) \rho tot,c as function of Ta

2.5 ρtot,c 2.75

−0.5

0

0.5

1

ρtot

x
∗

(b) x\ast as function of \rho tot

Fig. 5. Plot of the critical colony size \rho tot,c as function of the ambient temperature Ta, accord-
ing to (2.19) (a) and a plot of x\ast as function of \rho tot for a type II solution. Parameter values used
are \=f = 1, \chi 1 = 1, L = 10, and T\chi = 25; in (b), Ta = 0 and \chi 2 = 1.

In (2.11), we have related the constant C1 to the colony size via a boundary condition.
We now substitute this critical value C1,c into (2.11) to obtain the critical colony size

\rho tot,c =

\sqrt{} 
C1,c tanh

\bigl( 
\chi 1

2

\sqrt{} 
C1,cL

\bigr) 
\=f

(2.17)

=
2

\=fL\chi 1
arccosh

\Bigl( 
exp

\Bigl[ \chi 1

2
(T\chi  - Ta)

\Bigr] \Bigr) 
tanh

\Bigl( 
arccosh

\Bigl( 
exp

\Bigl[ \chi 1

2
(T\chi  - Ta)

\Bigr] \Bigr) \Bigr) 
(2.18)

=
2

\=fL\chi 1

\sqrt{} 
1 - exp [ - \chi 1(T\chi  - Ta)](2.19)

\cdot log

\biggl( \sqrt{} 
exp [\chi 1(T\chi  - Ta)] - 1 + exp

\Bigl[ \chi 1

2
(T\chi  - Ta)

\Bigr] \biggr) 
.

A sketch of the critical colony size \rho tot,c as function of the ambient temperature Ta is
given in Figure 5(a).

Since bees produce heat, logically, the presence of more bees leads to a larger
core temperature Tcore. Only when enough bees are present can Tcore > T\chi (and the
steady-state solution becomes a type II configuration). The critical colony size \rho tot,c
at which this happens depends on the ambient temperature Ta as well as the heat
production capabilities of the bees (modeled by \=f). When f is described by the step
function (1.3), (2.19) does not specify the correct critical colony size. Using the same
arguments that led to (2.19), one can derive that the correct description of \rho tot,c is
given by

(2.20) \rho tot,c =
2

\chi 1L
log

\biggl( \sqrt{} 
exp [\chi 1(T\chi  - Ta)] - 1 + exp

\Bigl[ \chi 1

2
(T\chi  - Ta)

\Bigr] \biggr) 
\cdot 
\biggl\{ 

1

flow

\sqrt{} 
1 - exp ( - \chi 1[T\chi  - Ta]) +

\biggl( 
1

fhigh
 - 1

flow

\biggr) \sqrt{} 
1 - exp ( - \chi 1[T\chi  - Tf ])

\biggr\} 
.

2.2. Type II solutions. Next, we analyze the type II steady-state solutions,
which are characterized by the fact that \chi (T ) does change sign. Hence, there is a
point x\ast \in [0, L) such that \chi (T ) < 0 for x \in [0, x\ast ) and \chi (T ) > 0 for x \in (x\ast , L]. The
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construction of such a solution therefore entails solving both of these equations and
matching them at x = x\ast ; that is, at this matching point, we require T , S, and Sx to
be continuous.

2.2.1. The first region where \bfitx \in [0, \bfitx \ast ). In the first region, \chi (T ) =  - \chi 2 <
0, and therefore, in a similar way as for the type I solution, system (2.6) reduces to

(2.21) 0 = Sxx + \chi 2SSx.

Following the same approach as before---integrating this once---yields

(2.22) Sx =  - \chi 2

2

\bigl( 
S2 +D1

\bigr) 
,

where it follows from the boundary condition S(0) = 0 and the fact that Sx(0) =
 - \=f\rho (0) > 0 that the constant D1 must be positive. Then the general solution to this
equation is

(2.23) S(x) =  - 
\sqrt{} 

D1 tan
\Bigl( \chi 2

2

\sqrt{} 
D1x+D2

\Bigr) 
, (x < x\ast ) ,

where the boundary condition S(0) = 0 enforces D2 = 0. The constant D1 will be
determined when we match this solution to the solution in the second region.

2.2.2. The second region where \bfitx \in (\bfitx \ast , \bfitL ] and the matching of the
two parts. The solution in the second part has to satisfy the same equation (2.8) as
the type I solution. The general solution to this equation is

(2.24) S(x) =  - 
\sqrt{} 

E1 tanh
\Bigl( \chi 1

2

\sqrt{} 
E1x+ E2

\Bigr) 
, (x > x\ast ) ,

where E1 and E2 are (so far) unknown constants. A relation between these con-
stants can be determined by using the boundary condition S(L) =  - \=f\rho tot. Moreover,
matching solution (2.23) to solution (2.24), by assuming that S and Sx are continuous
at the switching point x = x\ast , gives two additional relations between the constants
E1 and E2 and constant D1 of the solution in the first part. This yields the following
set of conditions:\sqrt{} 

E1 tanh
\Bigl( \chi 1

2

\sqrt{} 
E1L+ E2

\Bigr) 
= \=f\rho tot,(2.25) \sqrt{} 

D1 tan
\Bigl( \chi 2

2

\sqrt{} 
D1x

\ast 
\Bigr) 
=

\sqrt{} 
E1 tanh

\Bigl( \chi 1

2

\sqrt{} 
E1x

\ast + E2

\Bigr) 
,(2.26)

\chi 2D1 cos
 - 2

\Bigl( \chi 2

2

\sqrt{} 
D1x

\ast 
\Bigr) 
= \chi 1E1 sech

2
\Bigl( \chi 1

2

\sqrt{} 
E1x

\ast + E2

\Bigr) 
.(2.27)

A priori, it seems like the constants can be determined uniquely from these equations.
However, the value x\ast for the switching point is still unknown and, more important,
depends on the constants D1, E1, and E2. Therefore, these three conditions do not
form a closed system of equations. To find the additional constraints, the temperature
profile needs to be taken into account. This profile can be found by integrating S once
and is given by
(2.28)

T (x) =

\Biggl\{ 
Tcore +

2
\chi 2

ln
\bigl[ 
cos

\bigl( 
\chi 2

2

\surd 
D1x

\bigr) \bigr] 
, (x < x\ast ) ,

Ta +
2
\chi 1

ln
\bigl[ 
cosh

\bigl( 
\chi 1

2

\surd 
E1L+ E2

\bigr) \bigr] 
 - 2

\chi 1
ln
\bigl[ 
cosh

\bigl( 
\chi 1

2

\surd 
E1x+ E2

\bigr) \bigr] 
, (x > x\ast ) ,
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where we have used the boundary condition T (L) = Ta and the fact that T (0) = Tcore.
Now, T needs to be continuous at x = x\ast , and also T (x\ast ) = T\chi by definition. This
leads to the two additional conditions

Tcore +
2

\chi 2
ln

\Bigl[ 
cos

\Bigl( \chi 2

2

\sqrt{} 
D1x

\ast 
\Bigr) \Bigr] 

= T\chi ,(2.29)

Ta +
2

\chi 1
ln
\Bigl[ 
cosh

\Bigl( \chi 1

2

\sqrt{} 
E1L+ E2

\Bigr) \Bigr] 
 - 2

\chi 1
ln

\Bigl[ 
cosh

\Bigl( \chi 1

2

\sqrt{} 
E1x

\ast + E2

\Bigr) \Bigr] 
= T\chi .(2.30)

Finally, constraints (2.25)--(2.27) and (2.29)--(2.30) give five algebraic relations for the
five unknown constants, x\ast , Tcore, D1, E1, and E2, which can be solved numerically.
The constants x\ast and Tcore are given in Figures 5 and 4, where \rho tot and Ta are varied.
Note that in the region where the curves are dashed, x\ast becomes negative, which is
unrealistic, and this solution does not exist there---precisely when this happens, a
steady state changes from a type II to a type I configuration (or vice versa).

Remark 3. In this paper, we do not explicitly study the (spectral) stability of the
stationary states constructed here---see, however, Remark 2, by which the stability
of type I solutions can be settled. It is natural to expect that the (linear) stability
of type II solutions can be (formally) settled by an approach similar to the present
analysis.

3. The effect of a moving boundary. In this section, we study the extension
of the model to a moving boundary instead of a fixed boundary at x = L to show how
results carry over to this setting. We also note that this is the setting in which the
model originally was formulated in [35]. Thus, we let the boundary of the colony be
time dependent, i.e., L = L(t). The movement of this boundary needs to be such that,
in the absence of mortality, no bees are created or lost, and hence the colony size \rho tot
needs to remain constant. Therefore, we assume that d

dt\rho tot =
d
dt

\int L(t)

0
\rho (x, t)dx = 0,

which results in the following equation for L(t):

(3.1) \rho (L, t)Lt + \rho x(L, t) + \chi (T (L, t))\rho (L, t)Tx(L, t) = 0.

Moreover, we need to replace the no-flux boundary condition at x = L. Following [35],
we obtain a new boundary condition by defining the local density of bees at the end
x = L(t) of the colony to be constant \rho L. Therefore, for the system with moving
boundary (3.1), the full set of boundary conditions is

Tx(0, t) = 0, \rho x(0, t) = 0,(3.2)

T (L(t), t) = Ta, \rho (L(t), t) = \rho L.(3.3)

3.1. Stationary states in the system with a moving boundary. The sta-
tionary solutions found in section 2 are not influenced by the addition of a moving
boundary to the model. Namely, to find steady-state solutions of the model with a
moving boundary, we need to set dL

dt = 0 in (3.1). This reduces this equation to the
boundary condition

\rho x(L, t) + \chi (T (L))\rho (L)Tx(L) = 0

as before (1.6). Therefore, the steady-state solutions of the model with a moving
boundary are exactly the same as those for the model with a fixed boundary. However,
whereas previously we fixed the domain at a certain length L, this length L now will be
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selected and still needs to be determined. For that we use the boundary condition (3.3)
since the length L is selected such that \rho (L) = \rho L. Using the expression for \rho in (2.3),
the fact that Tx = S and expression (2.10) yield the condition for a type I solution,

(3.4)
\chi 1

2
C1 sech

\Bigl( \chi 1

2

\sqrt{} 
C1L

\Bigr) 2

= \=f\rho L,

and for a type II solution, using (2.24), the condition

(3.5)
\chi 1

2
E1 sech

\Bigl( \chi 1

2

\sqrt{} 
E1L+ E2

\Bigr) 2

= \=f\rho L.

Either of these conditions forms, together with the condition (2.11) for type I and
(2.25)--(2.27) and (2.29)--(2.30) for type II solutions previously found, a complete set
of equations for all the constants, which now also include the value of L.

Interestingly, the constants for the type I solution can be expressed in closed form
by taking the square of (2.11) and adding this to (3.4):

C1 =
2

\chi 1

\=f\rho L + \=f2\rho 2tot,(3.6)

L =
2arctanh

\bigl( 
\=f\rho tot/

\surd 
C1

\bigr) 
\chi 1

\surd 
C1

.(3.7)

Using this, we plot L as a function of \rho L in Figure 6(a). Clearly, L decreases when
\rho L increases. Moreover, L \rightarrow \infty and

\surd 
C1 \rightarrow \=f\rho tot when \rho L \downarrow 0 and L \rightarrow 0 when

\rho L \rightarrow \infty . Similarly, the core temperature Tcore in expression (2.13) follows the same
pattern: Tcore \rightarrow \infty when \rho L \downarrow 0 and Tcore \downarrow Ta when \rho L \rightarrow \infty ; see also Figure 6(b).

Since for Type I solutions the temperature remains below T\chi , this should also
hold for the core temperature. Therefore, because Tcore increases as \rho L \downarrow 0, there
exists a critical \rho L,c: Type I solutions only exist for \rho L > \rho L,c. In Figure 7, L and
Tcore are also given as functions of \rho tot. Here we see a generalization of the results on
a fixed domain; there is a critical colony size \rho tot,c below which type I solutions can
exist and above which only type II solutions can exist.

For a type II solution, the constraints (3.5), (2.25)--(2.27), and (2.29)--(2.30) do
not lead to any closed-form expression. With the aid of a root-finding algorithm,
we can find L as a function of \rho tot as well as the relation between Tcore and \rho tot;
see Figure 7. Comparing these to the plots on a domain with fixed boundary, i.e.,
Figure 4, one sees similar behavior.

The most prominent difference between the model with and the model without a
moving boundary is the computational difficulty in handling the moving boundary. To
obtain realistic values for the steady-state lengths L, the value of \rho L needs to be chosen
very small. This makes it difficult to determine a solution of the above constraints and
leads to subtleties in the numerical simulations. Moreover, the boundary condition
\rho (L) = \rho L is quite artificial. Especially when the mortality is added, this is unrealistic,
as this boundary condition forces a fixed local bee density at x = L, while the colony
size decreases. When \rho tot \downarrow 0, this leads to sudden rapid changes in L and unrealistic
bee density profiles. Hence, in the setup of [35], the moving boundary model is not
adequate to study bee losses. For the study of the model with mortality, we therefore
decided to stick to the most simple model with constant length L to avoid these
problems.
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(a) steady-state length L as function of \rho L
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Fig. 6. Plots of the steady-state length L and the corresponding core temperature Tcore for
a type I solution on a domain with moving boundary as function of \rho L. The dotted lines in (b)
denote Tcore = T\chi and Tcore = Ta and \rho L = \rho L,c. The dashed blue part of the plots correspond to
parameter combinations in which a type I solution does not exist because Tcore > T\chi . Parameters
used are \=f = 1, \chi 1 = 1, \rho tot = 3, Ta = 20, T\chi = 25, and \rho tot = 3.
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Fig. 7. Plots of the steady-state L and Tcore for a solution on a domain with moving boundary
as function of \rho tot. The blue lines indicate type I solutions, whereas the red lines indicate the type
II solutions; dashed lines are solutions that are not realistic. Parameters used are \=f = 1, \chi 1 = 1,
\chi 2 = 1, T\chi = 25, \rho L = 0.0305, and Ta = 20.

4. The effect of mortality. In sections 2 and 3.1, we studied the steady-state
solutions of the bee model (1.4) without mortality, i.e., \theta = 0. We showed in those
sections that for each value for the colony size, \rho tot, there exists a steady state. We
will denote this steady state by (Ts, \rho s)(x; \rho tot). Simulations indicate that this is the
only steady state and that it is the only attractor of the system; for a type I solution,
this can be proven using an energy functional; see Remark 2.

In this section, we add mortality of bees to the system, i.e., \theta \not = 0. Because the
bees die on a much longer timescale than that in which their movement happens, we
assume the mortality coefficient to be small. Therefore, the number of bees, \rho tot, only
decreases slowly, and the bees have enough time to rearrange themselves. This means
that the system can be approximated by the so-called quasi-stationary states given
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by (Ts, \rho s)(x; \rho tot(t)), where the only time dependence comes from the (slow) change
in \rho tot.

To find the evolution of \rho tot(t) =
\int L

0
\rho (x, t) dx, we determine its derivative us-

ing (1.4) with boundary conditions as

(4.1)
d\rho tot
dt

(t) =  - 
\int L

0

\theta (\rho (x, t), T (x, t)) \rho (x, t) dx.

Note that the system conserves mass if \theta = 0, i.e., when there is no mortality.
The mortality rate \theta as formulated in the introduction, in (1.8), thus leads to

(4.2)
d\rho tot
dt

(t) =  - \theta 0
\rho tot(t)\gamma 

\biggl( 
1 +

m

\rho tot(t)

\biggr) \int L

0

1T (x,t)<T\theta 
\rho (x, t)2 dx,

where 1 is the indicator function. Even in the present most simplified setting, this
expression is (too) hard to fully study analytically. In section 5, we therefore use
numerical simulations to study the evolution of \rho tot. However, it is possible to use
asymptotic analysis to determine what happens when \rho tot is small (under the quasi--
steady-state assumption).

Specifically, we set \rho tot = \varepsilon \~\rho tot, where 0 < \varepsilon \ll 1 and \~\rho tot = \scrO (1) with respect
to \varepsilon . Since \varepsilon is small, \rho tot < \rho tot,c in this case, and the steady-state configuration is

of type I. Hence, from (2.11) we obtain C1 = \scrO (\varepsilon ). So we set C1 = \varepsilon \~C1 and using
Taylor approximations obtain

(4.3) \~C1 =
2 \=f \~\rho tot
\chi L

+\scrO (\varepsilon 2).

Then, by (2.14), we have

(4.4) \rho (x, t) = \varepsilon 
\~\rho tot(t)

L
+\scrO (\varepsilon 2).

Also, (2.13) along with the expansion (4.3) reveals T (x) < Tcore < T\theta since T\theta > Ta.
Hence, for small \rho tot the evolution of \rho tot in (4.2) is to leading order given by

d\rho tot
dt

(t) =  - \theta 0
\varepsilon \gamma \~\rho tot(t)\gamma 

\biggl( 
1 +

m

\varepsilon \~\rho tot(t)

\biggr) \int L

0

\biggl( 
\varepsilon 2\~\rho tot(t)

2

L2
+\scrO (\varepsilon 3)

\biggr) 
dx

=  - \theta 0
L

m+ \varepsilon \~\rho tot(t)

\varepsilon \gamma  - 1\~\rho tot(t)\gamma  - 1
+\scrO 

\bigl( 
m\varepsilon 2 - \gamma + \varepsilon 3 - \gamma 

\bigr) 
.(4.5)

Thus, if m \not = 0, we have

d\~\rho tot
dt

=  - m\theta 0
L

\varepsilon  - \gamma \~\rho tot(t)
1 - \gamma +\scrO (\varepsilon 1 - \gamma ),(4.6)

and if m = 0, we have

d\~\rho tot
dt

=  - \theta 0
L
\varepsilon 1 - \gamma \~\rho tot(t)

2 - \gamma +\scrO (\varepsilon 2 - \gamma ).(4.7)

As a consequence, \~\rho tot is to leading order given by

(4.8) \~\rho tot(t) =

\left\{           
\~\rho tot(0)e

 - \theta 0
L t if m = 0 and \gamma = 1,\bigl[ 

\~\rho tot(0)
\gamma  - 1  - (\gamma  - 1) \theta 0L \varepsilon 1 - \gamma t

\bigr] 1
\gamma  - 1 if m = 0 and \gamma \not = 1,

\~\rho tot(0)e
 - \theta 0m

L t if m \not = 0 and \gamma = 0,\bigl[ 
\~\rho tot(0)

\gamma  - \gamma \theta 0m
L t\varepsilon  - \gamma 

\bigr] 1
\gamma if m \not = 0 and \gamma \not = 0.
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t

ρtot

(a) m = 0, \gamma < 1;
m \not = 0, \gamma < 0

t

ρtot

(b) m = 0, \gamma = 1;
m \not = 0, \gamma = 0

t

ρtot

(c) m = 0,\gamma \in 
(1, 2);
m \not = 0, \gamma \in (0, 1)

t

ρtot

(d) m = 0, \gamma = 2;
m \not = 0, \gamma = 1

t

ρtot

(e) m = 0, \gamma > 2;
m \not = 0, \gamma > 1

Fig. 8. The qualitative different possible solutions to the colony size evolution ODE (4.5) in
the absence of mites (m = 0) and in the presence of mites (m > 0).

In Figure 8, the qualitative different possible evolutions of \rho tot(t) are shown based on
the parameters \gamma and m. Clearly, the presence of mites has an amplifying effect on
the decline of bees in a colony. When mites are present (m \not = 0), the death rate is of
higher order compared to a colony without mites (m = 0). Thus, (the last) bees in
colonies with mites are expected to die faster than those in colonies without.

5. Simulations. In this section, we give the results of the numerical simulations
we performed on system (1.4) with the mortality rate given in (1.8). As one of the key
goals of this research is to better understand colony deaths during the winter period,
we are interested in the evolution of the colony size, \rho tot(t). Because the model only
includes mortality of bees and no birth of new bees---since bees do not reproduce in
winter---\rho tot(t) will decrease over time, and limt\rightarrow \infty \rho tot(t) = 0. Moreover, simulations
indicate (almost) all bees have died after a finite (extinction) time te. Numerically,
we can obtain the value te such that \rho tot(te) \approx 0. To overcome the winter period, a
colony needs to survive until the new flowering season in spring; that is, the time to
extinction needs to satisfy te > tf , where tf is the time between the start and end of
the winter season (tf \approx 2 \cdot 106 minutes, or 5 months). Thus, it is of great interest to
determine how the extinction time te is prolonged or shortened by the various causes
of death. By the complexity of the differential equation for \rho tot(t), (4.2), we resort to
numerical simulations.

For the simulations in this section, we have chosen parameter values that are rela-
tively realistic. No major changes were observed in simulations with other parameter
combinations (provided that T\theta < T\chi ). In this section, we have used functions f and
\chi that were adapted from [35] and were simplified to be piecewise constant. More
specifically, we have used

(5.1) f(T ) =

\Biggl\{ 
3 if T < 15,

0.6 if T \geq 15,
\chi (T ) =

\Biggl\{ 
1 if T < 25,

 - 1 if T \geq 25.

Little information was available on the parameters present in the mortality term \theta .
The only data we are aware of stipulate that a healthy colony (i.e., one with no mites;
m = 0) with ambient temperature Ta = 0 and initial size1 of \rho tot(0) = 10 loses roughly
half of the colony in 100 days (\approx 1.5\cdot 105 minutes) [32]. Because of this, we have tuned

1In reality, colonies typically have around 10000 to 15000 bees. Since we model a cross section
of a colony, the value for \rho tot(0) does not match with those values; instead, we have used [35] to
determine the typical value of \rho tot(0) for a cross section. In this way, the used values for \rho tot(0)
correspond to colonies with a realistic number of bees.
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Fig. 9. The evolution of \rho tot(t) for m = 20, \rho tot(0) = 10, and Ta varied from Ta =  - 9 (dark
blue) to Ta = +9 (red) with increments of 3 for simulations with \gamma = 1 (a) and simulations with
\gamma = 2 (b). The dotted lines indicate the critical colony size \rho tot,c below which the solution is of type
I (recall that \rho tot,c depends on Ta). The simulations in this figure show that Ta crucially influences
the critical colony size \rho tot,c and therefore the moment at which the speedup in the decrease of \rho tot(t)
sets in; as long as \rho tot(t) > \rho tot,c the precise value of Ta does not alter the evolution much.

the values for \gamma , T\theta , and \theta 0 to be in line with these measurements. Ultimately, this led
to two choices: (i) \gamma = 1, T\theta = 21, \theta 0 = 4 \cdot 10 - 3 and (ii) \gamma = 2, T\theta = 21, \theta 0 = 4 \cdot 10 - 2.
For other exponents \gamma \geq 1, results are expected to be similar. Initial data \rho 0(x)
for the numerical simulations constitute the steady-state configuration corresponding
to the given initial total population \rho tot(0) (obtained via numeric simulation of the
model without mortality, i.e., \theta = 0, up to t = 500).

In this section, we vary the parameters m (number of mites in the colony), Ta (the
ambient temperature), and \rho tot(0) (the initial colony size) to determine their impact
on the colony size evolution \rho tot(t) in general and the extinction time te specifically.
From our numerical simulations (see Figures 9--11), a sudden speedup in colony size
decline can be seen, after which the colony quickly dies out. On better inspection, we
have determined that this speedup happens when the colony configuration changes
from type II to type I (see Figures 1 and 3). That is, when the colony size decreases
below the critical size \rho tot,c, the colony is unable to survive much longer. In the sim-
ulation results (see Figures 9--11), we have indicated the critical colony size \rho tot,c. In
section 2, we derived an expression for \rho tot,c; see (2.20). Note that \rho tot,c is influenced
(only) by the ambient temperature Ta (and not by the number of mites m or initial
colony size \rho tot(0)).

In order to perform the numerical simulations, we have used a finite difference
scheme to discretize space in (1.4). The resulting (time-dependent) ODE has been
solved using MATLAB's ode15s function. Next, we give the results of the numerical
simulations when varying Ta, m, and \rho tot(0).

The effect of the ambient temperature Ta. First, we vary the ambient temperature
Ta between Ta =  - 9 (dark blue) and Ta = 9 (red) while taking m = 20 and \rho tot(0) =
10. We give the results in Figure 9. We also denote the critical colony size \rho tot,c
by dotted black lines. This is the critical value below which the solution is of type
I. When Ta is smaller, \rho tot,c is larger; see also Figure 5, of which an analog can be
given for (2.20). We observe that since Ta influences the critical colony size, \rho tot,c,
a change in Ta directly effects the survival of individual bees in a colony. Therefore,
the extinction time te is smaller when Ta is decreased. Ecologically, this means that
more bees are needed to create enough heat for the colony in harsher winters.
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Fig. 10. The evolution of \rho tot(t) for Ta = 0, \rho tot(0) = 10 and m varied between m = 0 (dark
blue) and m = 40 (red) with increments of 5 for simulations with \gamma = 1 (a) and simulations with
\gamma = 2 (b). The dotted black line indicates the critical colony size \rho tot,c below which the solution
is of type I. The simulations show the impact of m on the survival of individual bees---which is
particularly large for small m values but is diminished for larger m values.

The ambient temperature, however, does not have a significant impact on the
evolution of \rho tot(t) when bees still form a type II configuration. Therefore, especially
the ambient temperature toward the end of the winter period is crucial for the survival
of a colony. If it is very cold at the start of the winter, this is predicted to have only
little impact, whereas a cold end of the winter can dramatically decrease the extinction
time te.

The effect of the number of mites in a bee colony m. Next, we vary the influence of
the mites by increasing the parameter m from m = 0 (no mites; dark blue) to m = 40
(red). The simulations for Ta = 0 and \rho tot(0) = 10 are given in Figure 10. When a
colony is pestered by lots of mites, individual bees during winter may have a lower
body condition [1, 33, 7]. Therefore, when there are more mites in a colony (larger
m), bees die faster, as is indeed observed in the figure. However, the number of mites
does not play any role in the value of \rho tot,c. Therefore, mites mainly influence the rate
of the death of bees for type II configurations; when there are more mites, a healthy
type II solution degrades faster into an unhealthy type I configuration. Moreover, the
simulations indicate that mites have a significant impact on the survival of the colony.
Especially the transition from a colony with no mites to a colony with a few mites
has a huge impact; for a very large number of mites, the effect of adding the same
number of mites on the extinction time te is diminished.

The effect of initial colony size \rho tot(0). We also ran several simulations for dif-
ferent initial colony sizes, \rho tot(0); see Figure 11. We choose Ta = 0, m = 5 and vary
\rho tot(0) between \rho tot(0) = 5 (dark blue) to \rho tot(0) = 10 (red) Clearly, having more bees
in a colony ensures that the colony survives for a longer period because \rho tot(t) > \rho tot,c
for a longer time period. However, simply increasing the initial colony size does not
necessarily increase the extinction time te by much: When \rho tot(0) is close to the
critical size \rho tot,c, a larger initial colony size indeed leads to a vast improvement.
However, for larger \rho tot(0), the effect of increasing the initial colony size does not
lead to a much longer survival time. For instance, in Figure 11, the difference in the
time to extinction between simulations with \rho tot(0) = 5 and \rho tot(0) = 10 is enormous
compared to the difference between those with \rho tot(0) = 15 and \rho tot(0) = 20.
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Fig. 11. The evolution of \rho tot(t) for m = 5, Ta = 0, and \rho tot(0) ranging from \rho tot(0) = 5 (dark
blue) and \rho tot(0) = 40 (red) with increments of 5 for simulations with \gamma = 1 (a) and simulations
with \gamma = 2 (b). The black dotted line indicates the critical colony size \rho tot,c. These simulations
show the effect of increasing the initial colony size, which leads to improvements for the survival
of the colony. These improvements are large for smaller initial colony sizes but become smaller for
larger colony sizes.

6. Multiple honeycombs. In the previous sections, we have inspected the
model (1.4) that describes the evolution of T and \rho in the space between two hon-
eycombs. However, in reality, bees use multiple honeycombs, and the colony divides
itself in parts, with each part clumping together in one intercomb space when it gets
too cold, and they have to stick together to create enough heat to warm the hive.
Bees connect these parts by moving through and around the combs separating the
intercomb spaces. It is possible to extend the model (1.4) to include multiple of these
intercomb spaces. As a short encore, in this section we briefly discuss how and present
a simple example of such an extended model.

A straightforward way to extend the model (1.4) is to copy the model for each in-
tercomb space and then add movement of bees between the colony parts. Specifically,
an extended model (for N intercomb spaces) can have the following form:
(6.1)\Biggl\{ 

dTi

dt = d2Ti

dx2 + f(Ti)\rho i +
\sum 

j \not =i I
T
ij(Ti, Tj , \rho i, \rho j),

d\rho i

dt = d2\rho i

dx2  - d
dx

\bigl[ 
\chi (Ti)\rho i

dTi

dx

\bigr] 
 - \theta (\rho i, Ti) +

\sum 
j \not =i I

\rho 
ij(Ti, Tj , \rho i, \rho j).

(i \in \{ 1, . . . , N\} )

Here, Ti and \rho i denote, respectively, temperature and local bee density in the ith
intercomb space. The functions ITij and I\rho ij should be constructed such that they
capture the effect of interactions between combs, e.g., bee movement between combs.

Multiple choices are possible to model these interaction terms. Here, we refrain
from going into the details of the nature of interactions between bees and temperature
in the case of multiple combs. Instead, and as an example, we---once again---choose a
strongly simplified setup: If the core temperature of a colony part gets below a critical
temperature Tc---this temperature needs to be chosen above but close to the temper-
ature T\chi ---bees in that intercomb space try to escape to warmer intercombs spaces
at a certain rate depending on the difference between core temperatures. Specifically,
we have chosen the interaction functions

ITij = 0, (i, j \in \{ 1, . . . , N\} ),
I\rho ij =  - 1Ti,core<Tc

\alpha (Tj,core  - Ti,core)\rho i,

+ 1Tj,core<Tc \alpha (Ti,core  - Tj,core)\rho j , (i, j \in \{ 1, . . . , N\} ),
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Fig. 12. Evolution of \rho tot(t) in a simulation with two colony parts, each occupying the space
between two combs (one in red, one in blue). Simultaneously shown are two simulations with the
whole colony in one intercomb space (dashed-dotted lines), one of which started with \rho tot(0) = 20
(blue) and one with \rho tot(0) = 10 (red). The dotted black lines indicate the critical biomass \rho tot,c
below which the solution is of type I. For these simulations, we have used the parameters Ta = 0,
m = 5, \gamma = 1, and \alpha = 1.

where 1 is the indicator function and \alpha a parameter that measures the movement
rate of bees (per temperature difference between intercomb spaces).

In Figure 12, we show a simulation of a colony that consists of two parts occupying
spaces between combs, both of which are initially occupied with the same number of
bees, i.e., \rho 1,tot(0) = \rho 2,tot(0) = 10. At first, both colony parts lose roughly the same
number of bees due to mortality, similar to the case with the whole colony in one
intercomb space. Then, when the core temperate of a colony part decreases below
Tc, the remaining bees evacuate one of the intercomb spaces---the colder one---and
move to the other, which is (relatively) warmer. As a result, one intercomb space is
left with no bees, and the other one has all of them. The rest of the simulation then
continues as if it were a simulation with the whole colony in one intercomb space.

From Figure 12, it is clear why this is beneficial for a bee colony. By evacuating
one intercomb space, the bees can cluster together and make sure only one colony
part dies---and not both. The figure also suggests that use of multiple combs might
constitute another strategy for bees in their thermoregulation, which helps to improve
the survival of the colony: In simulations, colonies occupying two intercomb spaces
have a longer extinction time te compared to colonies with the same initial total
number of bees clustered in only one intercomb space; for instance, in Figure 12,
clearly having two colony parts with \rho tot(0) = 10 leads to a larger te than having one
with \rho tot(0) = 20 does.

This idea extends to colonies with more combs. However, here it becomes impor-
tant to stipulate how bees move between the intercomb spaces that are warm enough
(i.e., those with Ti,core > Tc). As, in principle, bees can move freely between intercomb
spaces, it seems logical that ``quite soon"" they have distributed themselves equally
over the warmer intercomb spaces---justifying the initial equal bee distribution in the
simulations with two intercomb spaces in Figure 12. This idea could be modeled by a
diffusive motion between intercomb spaces---though for this work we have not studied
this in (any) detail. All in all, the simulation of Figure 12 clearly shows that allow-
ing for (bee) dynamics between intercomb spaces may prolong the extinction time
and thus improve a colony's survival. Choosing the optimal movement strategy and
(mathematically) understanding the associated mechanism is the subject of ongoing
research.
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7. Discussion. In this article, we postulated and analyzed a (highly) simplified
model for honey bee colonies in winter. During this winter period, mortality of in-
dividual honey bees is high, especially in the presence of parasites, and linked to a
colony's capability to generate and preserve heat. Therefore, thermoregulation is the
most important process in the colony to understand, which is modeled as a combined
effect of heat-generating shivering and an individual thermotactic movement toward
a preferred temperature T\chi . This leads to a model of Keller--Segel type in which the
chemotactic coefficient \chi changes sign at the bees preferred temperature T\chi .

Because of this change of sign in the chemotactic coefficient \chi , the model (in
absence of mortality) possesses two different types of steady-state solutions, depending
on the number of bees \rho tot in a colony. When a colony has too few individuals, a
colony's core temperature does not exceed the preferred temperature, and bees cluster
together with the highest density in the core; alternatively, when enough bees are in
a colony, the core temperature does exceed the preferred temperature, and bees form
an (isolating) band at the edge of the colony---in agreement with observations [28,
27]. Other recent models were developed to simulate thermoregulation in honey bee
clusters (see, for example, [13, 24]). These models do not explore the consequences
of individual bee mortality on colony survival and the decrease in thermoregulatory
ability of a colony. Hence, they do not explore the role of colony size and how changes
in colony size affect thermoregulation during winter.

We added mortality to the model of honey bee colonies during winter. Since mor-
tality of bees in winter has been linked to the amount of work a bee has to perform [1],
we postulated that mortality is influenced by (i) the effect of local temperature, (ii)
the effect of effective refresh rates allowing recovery after a bout of generating heat,
and (iii) the effect of parasitic mites in a colony. As mortality is important on a long
timescale compared to bee movement, a colony closely follows the mentioned steady
states, with \rho tot acting as a slowly decreasing parameter. In simulations, we observed
a sudden rapid decline in the number of bees when the colony's form changed from
type II to type I, i.e., when \rho tot decreased below the critical value. This suggests the
rapid decline is related to the failing of a bee colony's thermoregulation when too few
bees are left in a colony. For now, it remains unclear precisely how this rapid decline
sets in from the mathematical point of view; inferring its origin forms an interesting
avenue for further mathematical research.

For a colony to survive winter, (enough) bees need to survive until the new flow-
ering season in spring. Therefore, it is important to understand how long a colony
can survive in winter and how that is related to colony size at the start of winter.
Our simulations support the following findings. The colder the ambient temperature
(especially toward the end of winter), the more bees are needed to keep the colony in
the type II form and thus the sooner a colony is expected to die when the size becomes
smaller than the critical threshold. Moreover, when mites are present, more bees die
because of the elevated mortality rate, and a colony thus collapses earlier. Finally,
when a colony has more bees, it is expected to survive longer. However, the correspon-
dence between a colony's size and its expected lifetime is highly nonlinear and follows
the law of diminishing returns. Future studies could investigate the relation between
colony size before winter and survival changes at the beginning of the next spring.

In this context, it is also of interest to understand the behavior of bees in a
colony with multiple combs. In this article, we briefly considered a simple model
where the bee colony is divided over two intercomb spaces; simulations show that
a (good) distribution of bees over multiple intercomb spaces enhances the colony's
survival and improves its expected lifetime. A careful analysis and modeling of more
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refined multicomb models might be illuminating; it is expected that such analysis
reveals the most optimal way to distribute bees over multiple intercomb spaces and
might indicate why bees produce multiple combs in reality.

The model studied in this article has deliberately been chosen to be as simple as
possible to allow for explicit mathematical analysis. However, results are expected
to hold for more complicated models, including those with more realistic functions
for, e.g., the chemotactic movement and a bee's heat generation. Specifically, the
increase in mortality due to failed thermoregulation should persist in more realistic
models. Therefore, it is interesting to explore how a colony's thermoregulation can be
optimized with the aim to improve a colony's winter survival time. During the year,
beekeepers should reduce the mite load in the colony [33]. Moreover, they have the
opportunity just before winter starts to increase the size of the colony by eventually
merging small colonies that are expected to die during winter.

From a more mathematical perspective, there are also a lot of new research op-
portunities. The introduction of a chemotactic coefficient that changes sign leads to
new, different behavior compared to the (Keller--Segel type) models typically consid-
ered in the mathematical literature, such as the presence of two different types of
steady-state solutions. Classical methods no longer suffice in this context, and novel
methods need to be developed---even to infer (global) stability of these steady-state
solutions in absence of mortality. There are also additional lines of research possible
in case mortality is present. A significant next step would be a mathematical analysis
of the impact of a slowly varying mortality. This would embed the present study
in the strongly evolving research field of pattern formation under slowly varying cir-
cumstances, which also has a very direct relevance within developmental biology and
studies on the effect of climate change (see [9, 8, 23, 31, 4] and references therein).

Acknowledgments. We thank Jan Just Keijser and the National Institute for
Subatomic Physics Nikhef for providing computing power to run the numerical sim-
ulations.
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