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ABSTRACT: Volatile fatty acids (VFA) produced by fermentation of organic-rich
wastewater streams can, after efficient recovery from the dilute fermentation broth,
serve as a circular source of carbon and be catalytically upgraded into various
valuable platform molecules. Waste-derived VFA, that is, a mixture of acetic,
propionic, and butyric acids, can thus be converted into mixed ketones, which in
turn are valuable intermediates for light aromatics synthesis. Here, an integrated
process is presented for the recovery and in-line catalytic conversion of VFA
extracted from a fermentation broth by adsorption on a nonfunctionalized resin adsorbent. Gas-phase ketonization of the VFA was
studied with and without co-fed water, which is inevitably coextracted from the broth, over TiO2 anatase catalysts to assess catalyst
performance, including stability as a function of time on stream. While VFA conversion over bare TiO2 at 375 °C proceeded at 90%
conversion with 100% selectivity to ketones, the presence of water in the feed resulted in an activity drop to 40%. Catalyst stability
toward water could be greatly improved by dispersing the titania on a hydrophobic carbon support. The carbon-supported catalyst
showed superior performance in the presence of excess water, providing a quantitative yield toward ketones at 400 °C. The approach
thus allows coupling of VFA recovery from a fermentation broth with successful catalytic upgrading to mixed ketones, thus providing
a novel route for the production of value-added products from waste streams.
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■ INTRODUCTION

Wastewater streams can serve as a feedstock for the production
of value-added chemicals, thus simultaneously minimizing the
amount of waste and contributing to a circular carbon
economy by closing carbon loops. This approach is also
attractive from an economical point of view, as such streams
are generated in large volumes and typically have a negative
market value. One particularly attractive strategy is the
fermentation of organic-rich waste streams, for example,
those produced by agriculture1 or by the dairy or2 pulp and
paper industries.3 Such waste streams can be used for the
fermentative production of short-chain carboxylic acids
(mainly acetic, propionic, and butyric acid), the so-called
volatile fatty acids (VFA).4,5 Nowadays, about 90% of these
short-chain carboxylic acids are produced via chemical routes
that use petrochemical feedstock (e.g., carboxylation of
methanol or ethylene, oxidation of butyraldehyde, or ethylene
hydroformylation) and have a negative environmental impact.5

For example, the emissions of carbon dioxide from the
petrochemical production of HAc have been reported to be 3.3
t CO2 eq/t.5 The global potential VFA production capacity
from dairy industry wastewater alone was estimated at 9.15 Mt
acetate, 5.39 Mt butyrate, and 6.47 Mt propionate.5 Another
potential source of renewable carbon is food waste, a major
component (22−54%) of municipal solid wastes.4 According
to the Food and Agriculture Organization (FAO), one-third of
global food production is wasted along the food supply chain.

In 2012, approximately 89 Mt of food wastes were produced in
the European Union.6 Most of these food wastes are currently
incinerated for energy recovery (with concomitant GHG
emission) or worse, disposed of in a landfill with null recovery
of resources.7 Thus, these values show that a significant
fraction of VFA demand can be potentially covered by utilizing
waste streams as the feedstock.
The composition and yield of VFA strongly depend on

process parameters and operational factors, such as temper-
ature, pH, retention time, additives, organic loading rate, and
substrate, and can be optimized toward the production of
specific short-chain acid compositions.4,5 These short-chain
carboxylic acids have a broad range of applications and serve as
solvents, food additives, and raw materials for production of
chemicals (e.g., esters and vinyl acetate).5,8 Recently, waste-
derived VFA have been attracting more widespread interest as
a potential renewable carbon source for the production of
bioplastics9−12 and biohydrogen.11,13,14 Alternatively, VFA
could be converted by catalytic ketonization15,16 to mixed
ketones, which are valuable platform chemicals and can be
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used as precursors for fuel components, lubricants, or alkylated
aromatics.17−22 For example, we recently showed that VFA-
derived ketone mixtures can be efficiently converted to light
aromatics by zeolite catalysis.23

Catalytic ketonization involves the coupling reaction of two
carboxylic acids to give a ketone and carbon dioxide and water
as byproducts, with a resulting atom efficiency of ketone
formation of 65%. Ketonization of small carboxylic acids has
received considerable attention, often in the context of studies
aimed at the upgrading of biooils.15,16,24−42 Amphoteric
(reducible) metal oxides, such as TiO2,

24−31 CeO2,
27,32−39

and ZrO2,
29−31,35−42 have been extensively studied and

became the benchmark of ketonization catalysis, but also
zeolites43 have been used as solid catalysts. Ketonization
reactions are typically run in the gas phase26−30,33−39,42 at
elevated temperatures (>300 °C), but liquid-phase reactions
have also been reported.24,32,41 For example, Pham et al.24

observed high activity and selectivity to ketone using a
hydrophobic Ru/TiO2/C catalyst in the aqueous-phase
ketonization of acetic acid. Wang and Iglesia26 reported on
kinetic studies in the gas-phase ketonization of acetic acid over
TiO2 polymorphs (anatase and rutile), showing that
ketonization turnover rates are higher on anatase TiO2. Most
studies focused, however, on the ketonization of pure, single
carboxylic acids only, with only a limited number of studies
being available on carboxylic acid mixtures30,33,34 or the
application of real feeds (such as pyrolysis oil44). Nonetheless,
the development of new, more sustainable value chains
requires insights into how different steps in the route affect
each other, for example, by the study of integration of
separation and conversion technology with all its associated
challenges. Indeed, to the best of our knowledge, the
connection between fermentative VFA production, separation,
and subsequent product diversification by ketonization of the
mixed carboxylic acids obtained has not yet been reported.
The composition of VFA produced from wastewater varies

depending on the substrate, type of microbial culture, and
process parameters, yet the most common acids produced are
acetic, propionic, and butyric acids. The fermented waste
streams typically have very low VFA concentrations (around 1
wt %), too dilute for efficient and industrially relevant further
direct conversion. The broth also contains significant amounts
of ions of various salts, such as Na+, K+, H2PO4

−/HPO4
2−, Cl−,

and SO4
2− (Table S1),45,46 which might poison a solid catalyst.

Besides, water is known to inhibit the ketonization
reaction.24,28,39,41 Finally, other short-chain oxygenated com-
pounds, such as the lactic acid or even alcohols and
aldehydes,47 which can be coproduced during fermentation,
are also anticipated to influence catalyst performance. Loṕez-
Nieto et al. suggested, for example, that the presence of such
oxygenated compounds can favor aldol condensation reactions
instead of ketonization over a metal oxide catalyst at low
temperatures (<300 °C).48,49 Taken together, this makes the
direct conversion in the broth undesirable and requires the
VFA to be (selectively) recovered and concentrated prior to
further conversion. Several extraction techniques have been
proposed in the literature for VFA separation from dilute
aqueous solutions, including liquid−liquid extraction and
adsorption on an affinity agent.5,45,50−52 Excitingly, Reyhani-
tash et al.52 very recently observed that a nonfunctionalized
polystyrene−divinylbenzene (PS−DVB) resin adsorbent al-
lows for very efficient VFA extraction from such dilute and
complex solutions, through hydrophobic and hydrogen

bond−π interactions. This adsorbent also proved highly stable
during several VFA adsorption−desorption cycles and,
importantly, showed exceptional selectivity toward VFA
extraction. This allows for extraction of the VFA only, with
neither the lactic acid or inorganic salt impurities in the feed
being coextracted.52,53 Moreover, the use of temperature-
profiled desorption enabled fractionation of VFA. The
achieved concentration of butyric acid was as high as 91 wt
% with the initial concentration in the feed being as low as 0.25
wt %.46,52 Using such a PS−DVB adsorbent, a process scheme
depicted in Figure 1 could then be envisaged for stepwise
extraction and catalytic conversion of VFA to mixed ketones.

While the resin is highly selective for extraction of VFA over
other (in)organics, water itself is significantly coadsorbed as
well. Indeed, a weight loading of 10 wt % of VFA of the resin is
obtained, with the remaining ∼90 wt % on the resin consisting
of coadsorbed water.52 While a small amount of water might be
beneficial for the process,54,55 such an excess amount of water
is expected to be detrimental for downstream ketonization
because of the active site blockage by competitive adsorp-
tion.24,28,39,41 To reduce the water amount, the adsorbent can
be subjected to a drying step at 70 °C prior to desorption,
making use of the low-temperature waste heat available at any
facility.46 Such a pretreatment step would allow for the removal
of up to 80 wt % of water, thus increasing the VFA/water
molar ratio from 0.02 to 0.1. While this is a considerable
reduction, it would still leave a significant amount of excess
water on the resin. Liberation of the (wet) extracted acids by
thermal desorption to the gas phase is subsequently required to
allow in-line catalytic upgrading by ketonization over a catalyst
to a mixture of ketones, provided that this stoichiometric
excess of water (wrt the moles of VFA) can be dealt with.
Mitigation of water inhibition has been studied in liquid-phase
ketonization,24,41,56 but hardly in the gas phase.

Figure 1. Schematic overview of the process for the production of
mixed ketones via integrated VFA production from wastewater
streams, separation, and catalytic conversion.
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Here, we report on VFA mixture ketonization over TiO2
catalysts and the effect of coextracted water present in the feed
on catalytic performance. Furthermore, results are presented
on the integrated recovery/gas-phase ketonization of VFA
mixtures extracted from a model solution representing
fermented wastewater extracted by adsorption on the non-
functionalized PS−DVB resin-based adsorbent (Lewatit VP
OC 1064 MD PH, Lenntech). By thermal treatment, the acids
were liberated and directly converted over a TiO2 ketonization
catalyst to yield a mixture of ketones with high selectivity.
Additionally, we show that dispersing the TiO2 on a
hydrophobic carbon support greatly improves the tolerance
of the catalyst against water inhibition.

■ RESULTS AND DISCUSSION
First, the gas-phase continuous-flow ketonization of a synthetic
VFA mixture, mimicking the gas-phase composition expected
upon desorption from a resin adsorbent used for VFA
extraction, was studied in a conventional fixed bed reactor to
investigate catalyst performance with time on stream. TiO2 was
selected as the prototypical ketonization catalyst24−31 and
synthesized via a sol−gel method as reported elsewhere.57 A
self-synthesized TiO2 (pure anatase, Figure S2) was chosen
rather than commonly used commercial TiO2 P25, an anatase/
rutile mixture, to allow for a fair performance comparison with
the hydrophobized titania, which is phase-pure anatase as
detailed below. The prepared TiO2 catalyst material possessed
a BET surface area of 80 m2/g, as measured with N2
physisorption, which is slightly lower than previously reported
(97 m2/g) (Table S2). Figure 2a illustrates the results of the
ketonization of a VFA mixture consisting of acetic (HAc),
propionic (HPr), and butyric (HBu) acids over TiO2 as a
function of time on stream. At 375 °C, conversion of the acids
was around 90%, showing full selectivity toward ketones (no
byproducts were detected at a closed mass balance; CO2 and
H2O liberated upon ketone formation were not quantified);
only a slight sign of deactivation was seen over time, with
conversion decreasing from 92 to 89% over 3.5 h on stream.
Both the expected symmetric ketones [acetone (HAc/HAc),
3-pentanone (HPr/HPr), and 4-heptanone (HBu/HBu)]
produced via homoketonization, together with the non-
symmetric ketones [2-butanone (HAc/HPr), 2-pentanone
(HAc/HBu), and 3-hexanone (HPr/HBu)] formed via cross-
ketonization were all observed. The isomeric 2- and 3-
pentanones could not be tracked separately because of the
overlapping peak in the GC chromatogram. The distribution of
products (Figure 3) was found to be close to binomial, in
agreement with the previous results observed for unbranched
acids, suggesting that the difference in the length of the alkyl
chain influences the extent of adsorption on the catalyst surface
only slightly.30,34,36 The reactivity of carboxylic acids is known
to decrease slightly with increasing carbon chain length; thus,
the selectivity of VFA ketonization marginally shifted toward
the symmetric ketones of acids with shorter chains. However,
only traces of acetone were detected (∼0.1%), in line with the
binomial distribution dictated by the low fraction of HAc in
the VFA mixture.
Given that during the VFA extraction from the fermentation

broth considerable amounts of water are coextracted and
expected to codesorb with the VFA, the effect of excess water
on ketonization activity was assessed as a function of time on
stream (Figure 2a). The reaction was performed at the same
space velocity of the acids, with the VFA feed mixture now

containing 60 vol % of water, corresponding to the gas-phase
composition expected upon VFA desorption from a resin
mildly dried at 70 °C. As anticipated, the presence of water
leading to a considerable drop in activity was observed, with

Figure 2. Composition of the reaction mixture of VFA and VFA + 60
vol % H2O mixture over (a) TiO2 and (b) TiO2/C at 375 °C. (c)
Composition of the reaction mixture of the VFA + 60 vol % water
mixture at 400 °C (WHSV = 3.6 h−1).
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the ketone yield dropping from ∼90 to ∼40%, and the
corresponding average ketone formation rate decreased from
38.3 to 16.8 mmol·(h·gcat)

−1. This decrease in activity is
nevertheless considered reversible.28 Water only affected
activity, as selectivity stayed almost the same, with no
significant changes in the product distribution (Figure 3).
The catalyst stability against water inhibition could be

improved by dispersion of the catalyst on a hydrophobic
carbon support, as was previously reported for the liquid-phase
ketonization.24,41 The carbon-supported titania was prepared
using the method similar to the method described by Pham et
al.,24 who used this approach for the aqueous-phase
ketonization of acetic acid. The synthesized TiO2 on the
carbon material was characterized by N2 physisorption
experiments (Table S2), X-ray diffraction (XRD), and
transmission electron microscopy (TEM). Impregnation of
the activated carbon with titanium dioxide resulted in a
decrease of the surface area and pore volume, expected because
of the micropore blockage by titania.24,58 XRD (Figure S2)
showed the synthesized carbon-supported titania to be pure
anatase. The XRD pattern of carbon-supported TiO2 showed,
however, a significant shift. The peak position of the (101)
plane shifted from 2θ = 29.5° for TiO2 to 2θ = 29.8 for TiO2/
C, with the corresponding d-spacing values of 3.52 and 3.48 Å,
respectively. The d-spacing change indicates a lattice distortion
induced by TiO2−support interactions via support species
diffusion into the oxide microstructure or due to rearrange-
ment of the oxide atoms at the interface with the support.24

The TEM images, shown in Figure S2, suggest that TiO2 is
well distributed over the carbon support.
The synthesized TiO2/C catalyst was then tested in the VFA

ketonization reaction with the same TiO2 loading. The results
illustrated in Figure 2b showed that TiO2/C has a higher
activity than TiO2 with the pure (water-free) VFA feed; this
increase in VFA conversion came at the expense of some olefin
production, however, as the unwanted side reaction (included
in others in Figure 2b). The formation of olefins has been
previously reported over TiO2 catalysts (P25 and pure anatase)
as a secondary conversion pathway, with the ketone/olefin

selectivity increasing with the surface area of tested titanias.31

Two reaction pathways for conversion of ketones to olefins
were proposed in the literature. Baylon et al.59 proposed
secondary (cross) aldol condensation to diketone alcohol
followed by decomposition to the corresponding iso-olefin and
acid; the acid, in turn, can undergo further ketonization.
Oliver-Tomas et al.31 suggested the formation of olefins via
secondary reduction of ketones to alcohols followed by
subsequent dehydration to the olefin. The hydrogen source
for this reduction is assumed to come from cyclization of the
ketone condensation product. In the VFA ketonization over
TiO2/C in the presence of water (Figure 2b), such consecutive
olefin formation reactions were suppressed, as was again the
overall activity of the catalyst. Total ketone yield decreased
from ∼90 to ∼60% (and the average ketone production rate
dropped from 35.2 to 22.7 mmol·(h·gcat)

−1), which is
nevertheless considerably better than the 40% yield seen for
unsupported TiO2 (Figure 2a). The distribution of ketone
products (Figure 3) was found to be comparable for both
titania materials, implying no (or only weak) interactions of
the acid carbon chains with the functional groups of the carbon
support, that is, no significant differences in competitive
adsorption. In contrast, Da Silva et al.60 reported that the
adsorption capacity of acetic, propionic, and butyric acids on
activated carbon increased as a function of chain length. To
further improve the catalytic conversion, the temperature was
increased to 400 °C (Figure 2c), leading to almost complete
conversion (>95%) of the VFA in the presence of 60 vol % of
water when the TiO2/C catalyst was used. The average ketone
formation rate at 400 °C was 31.5 and 37.3 mmol·(h·gcat)

−1 for
TiO2 and TiO2/C, respectively. Furthermore, olefin produc-
tion at this temperature was still very minor, at the same level
as at 375 °C (Figure 2b), indicating strong suppression of
consecutive reactions to olefins by the water, ultimately
resulting in higher selectivity toward ketones.
The continuous flow catalytic reactions, thus, show that a

(wet) VFA mixture can be selectively converted over TiO2
catalysts to a mixture of ketones, with negligible deactivation
over time. Furthermore, water inhibition can be dealt with by
catalyst hydrophobization and adjustment of the reaction
temperature. We then moved to the batchwise integrated
desorption/ketonization reaction of VFA adsorbed on the PS−
DVB resin (Lewatit VP OC 1064 MD PH, Lenntech). The
polymeric resin was saturated with VFA using a model solution
by a procedure reported elsewhere.52 The model solution
representing fermented wastewater comprised of the acid
mixture (acetic, propionic, butyric, and lactic acids; 1 wt % in
total) and mineral salts (KCl, Na2SO4, and Na2HPO4). Prior
to desorption, the resin was dried at 70 °C under a flow of
nitrogen to reduce the water content. Analysis of the liquid
collected after this drying step showed that about 80% of total
water amount had been removed from the resin, as expected;
however, up to 40% of the extracted VFA were removed as
well. Such loss of VFA during drying can be minimized,
however, as reported by van Beek,53 by adjusting the
temperature ramp and flow parameters to selectively remove
only the water. After drying, a desorption step at 165 °C led to
the liberation of the adsorbed acids, which were subsequently
fed over a fixed bed reactor with (carbon-supported) TiO2 at
400 °C (Figure S1b). Because the acids have different boiling
points and affinities for the adsorbent, the composition of the
gas phase upon desorption may change over time, thus
potentially affecting the final product distribution. Reyhanitash

Figure 3. Distribution of the ketone products; calculated indicates the
statistically expected distribution given the initial ratio of acids used.
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et al.46,52 reported on the fast breakthrough of acetic acid
compared to propionic and butyric acids, the latter two having
a stronger affinity for the resin. The reaction products were
collected in a liquid nitrogen cold trap until VFA desorption
from the resin was complete and subsequently quantified. The
results (Figure 4) clearly demonstrated that recovered VFA

could be cleanly converted to ketones also in this “batch”
desorption mode, with the carbon-supported catalyst again
showing improved performance in the presence of water. The
amount of acetone in the collected product mixture was below
the detection limit because of the necessary dilution with
ethanol. No olefinic products were detected this time in the
product mixture. The distribution of ketone products obtained
over carbon-supported TiO2 was similar to the continuous flow
reactions again following a binomial distribution. These results
suggest comparable desorption of VFA from the adsorbent.
However, for bare TiO2, a slightly different distribution of
ketones was observed, with the formation of more 3-hexanone.
The origin of this phenomenon is not yet clear and requires
additional work.

■ CONCLUSIONS
In conclusion, the ketonization of a VFA mixture extracted
from a model fermentation broth by adsorption on a PS−
DVB-based resin is thus demonstrated. The catalytic perform-
ance studied with increasing time on stream showed that over
both TiO2 and TiO2/C, the VFA ketonization reaction
proceeded at high selectivity toward ketones and with good
stability over time. The presence of coextracted water resulted
in a considerable drop in activity because of competitive
adsorption and active site blockage. The effect of water,
however, was found to be beneficial for the suppression of
consecutive formation of olefins. In order to enhance
hydrostability, dispersing TiO2 over a hydrophobic carbon
support significantly improved stability in water and allowed
the selective and efficient conversion of the extracted VFA.
Overall, the results show that waste-derived VFA extracted by

adsorption on a PS−DVB resin could be successfully converted
to ketones offering a promising route for the production of
ketones and other valuable circular platform chemicals.
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