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Abstract
The current study used theories on expertise development (the holistic model of image 
perception and the information reduction hypothesis) as a starting point to identify and 
explore potentially relevant process measures to monitor and evaluate expertise develop-
ment in radiology residency training. It is the first to examine expertise development in vol-
umetric image interpretation (i.e., CT scans) within radiology residents using scroll data 
collected longitudinally over five years of residency training. Consistent with the holistic 
model of image perception, the percentage of time spent on full runs, i.e. scrolling through 
more than 50% of the CT-scan slices (global search), decreased within residents over resi-
dency training years. Furthermore, the percentage of time spent on question-relevant areas 
in the CT scans increased within residents over residency training years, consistent with 
the information reduction hypothesis. Second, we examined if scroll patterns can predict 
diagnostic accuracy. The percentage of time spent on full runs and the percentage of time 
spent on question-relevant areas did not predict diagnostic accuracy. Thus, although scroll 
patterns over training years are consistent with visual expertise theories, they could not 
be used as predictors of diagnostic accuracy in the current study. Therefore, the relation 
between scroll patterns and performance needs to be further examined, before process 
measures can be used to monitor and evaluate expertise development in radiology resi-
dency training.
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Introduction

The interpretation of medical images is central in radiology. Image interpretation is con-
sidered to be a highly complex task (Drew et al. 2013; Krupinski 2011; Van der Gijp et al. 
2014). Errors in medical image interpretation can have significant impact on patient safety, 
so high-quality residency training programs are crucial for patient safety. Process measures 
are increasingly valued as additional sources of information about residents’ competence 
(Kok 2019), for example in the context of (formative) assessment and monitoring. Pro-
cess measures such as computer-log data (time-stamped information on interactions with 
the computer, for example, scrolling, panning, windowing and zooming) and eye tracking 
data (time-stamped information on where a person looks, how long and in what order; Kok 
and Jarodzka 2016) provide information that goes beyond outcome variables, for example, 
about the efficiency of visual search and strategies use (Drew et al. 2013; Manning et al. 
2006; Venjakob et al. 2012; Van der Gijp et al. 2017).

Whereas eye-tracking data is relatively time-consuming to collect, computer-log data 
can often be collected unobtrusively. Most radiological tasks are computer-based, which 
means that process-level data is, or can be made, available (Pecaric et al. 2017). This pro-
cess-level data, in turn, could be used to monitor and assess learning and make training 
more adaptive. However, this requires that we know which process measures reflect devel-
oping expertise and predict performance.

In this study, we use theories on expertise development as a starting point to identify 
and explore potentially relevant measures. Most studies on expertise development employ 
cross-sectional expert-novice comparison designs (for reviews see Brams et al. 2019; Van 
der Gijp et al. 2017). The current study advanced previous studies on image interpretation 
by analysing scroll data of volumetric images collected longitudinally.

The current study had two aims. First, we investigated residents’ visual expertise devel-
opment in image interpretation by examining their scroll patterns in multiple computed 
tomography (CT) tasks, using scroll data of CT-scan questions collected during semi-
annual progress tests over five years of radiology residency training. Second, we examined 
whether scroll patterns were predictive for diagnostic accuracy.

Theoretical background

Process measures

The increasing use of digital technology in medical education and practice allows for 
extracting large numbers of metrics that could relate to learning and thus inform teaching 
and curriculum development. In radiology, studies have shown that click-level process data 
can provide information about the process of radiograph interpretation (Pecaric et al. 2017). 
CT scans additionally require learners to scroll through a large set of stacked images. Scroll 
movements constitute an essential human–computer interaction during volumetric image 
interpretation, as they normally allow observers (i.e., radiology residents) to go through the 
stack of slices in their own pace, and to go back and forth between slices (Den Boer et al. 
2018; Van der Gijp et  al. 2015). Scroll data might thus reveal how efficiently a resident 
interprets CT scans. Since there are many potentially relevant metrics that could be tracked 
in volumetric image interpretation, it is important to select specific metrics that contribute 
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to our goal of mapping expertise development (Elias 2011). As such, theories of expertise 
development formed our starting point for defining these specific metrics and we cover 
them in the following paragraphs.

Theories of visual expertise

Efficient visual search behaviour develops with increasing expertise as a result of acquiring 
an extensive and structured knowledge base. This efficient search behaviour is explained 
in two central theories of visual expertise (which are not mutually exclusive): the holistic 
model of image perception (Kundel et al. 2007) and the information-reduction hypothesis 
(Haider and Frensch 1999).

The holistic model of image perception states that experts are quicker to form a global 
impression of a radiograph than are novices. Experts’ global impressions are also more 
informative than those of novices and serve to guide subsequent detailed inspection of sus-
picious areas (Kundel et al. 2007). Support for this holistic search was found in previous 
studies on expertise development which revealed that expert radiologists are able to cor-
rectly identify abnormal images within approximately one-fourth of a second (e.g., Kun-
del et al. 2007). Likewise, experts are generally quicker to spot abnormalities than novices 
(Van der Gijp et al. 2017).

The information-reduction hypothesis claims that redundant and task-irrelevant infor-
mation (e.g., healthy lung tissue in a chest CT scan) is strategically ignored by experts dur-
ing perceptual encoding in favour of task-relevant information (Haider and Frensch 1999). 
For instance, in a chest CT scan the liver is usually redundant and healthy lung tissue is 
task-irrelevant information, while abnormal lung tissue forms task-relevant information. 
This was, for example, found by Manning et al. (2006), who compared the detection and 
localisation of pulmonary nodules in chest X-rays between radiographers and radiologists. 
They concluded that radiologists inspected less of the image area than radiographers due to 
radiologists’ ability to skip (task-irrelevant) areas.

In radiology, the holistic model of image perception and the information-reduction 
hypothesis are endorsed by studies that used cross-sectional eye-tracking data, 2D images 
(e.g., X-rays) and/or video-recorded CT-scans and found to coexist during radiological 
interpretation (e.g., Bertram et  al. 2013; Cooper et  al. 2009; Kok et  al. 2012; Krupinski 
1996; Kundel et al. 2007; Mallett et al. 2014). These studies have shown that experts form 
a global impression faster and spent more time on task-relevant areas compared to nov-
ices, which makes those measures potentially relevant measures of expertise development 
in volumetric images.

Measures of expertise development in volumetric images

The high prevalence of human–computer interactions, such as scrolling and changing 
viewing direction in volumetric image interpretation adds to its complexity and in addition 
makes it more time-consuming than 2D image interpretation (Den Boer et al. 2018; Van 
der Gijp et al. 2015). It is not known whether findings from expertise research on 2D image 
interpretation, such as experts’ ability to quickly form a global impression of the image and 
to strategically ignore irrelevant image parts, generalize to volumetric image interpretation.

Forming a global impression of an image might be different between 2D and volumetric 
image interpretation (Van der Gijp et al. 2015). Whereas such a global impression can literally 
be formed within a single glance in 2D images (Kundel et al. 2007), for volumetric images, 
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readers would have to ‘dive into’ the whole volumetric set of images to form an impression. 
Den Boer et  al. (2018) and Venjakob et  al. (2012) showed that this process of forming an 
impression is reflected in full runs: back and forward movements through more than 50% of 
the slices. In a think-aloud study, Den Boer et al. (2018) found that global characteristics of the 
image were mostly detected within the full runs, and that the analysis of these findings took 
place during oscillations (back-and-forth movements over smaller numbers of slices). It is thus 
likely that, with increasing expertise, the time needed for those full runs declines as experts 
are quicker in forming a global impression.

The finding that experts spend more time looking at question-relevant information com-
pared to question-irrelevant information, defined by the information-reduction hypothesis 
(Haider and Frensch 1999), can easily be generalized to volumetric images: scroll data can 
reveal on which slices time is spent, and slices can be coded as showing task-relevant informa-
tion (the abnormality) or irrelevant or redundant information. From an information-reduction 
hypothesis perspective, expertise could be reflected in the percentage of time spent on ques-
tion-relevant areas. This variable is comparable to the variable ‘number of eye-fixations on 
task-relevant areas’ used in eye-tracking studies on image interpretation (e.g., Manning et al. 
2006). Indeed, this metric not only reflects expertise in 2D static images, but also in videos 
(e.g., Balslev et al. 2012 in paediatrics, Bertram et al. 2013 in video recording of CT scans and 
Mallett et al. 2014 in 3D CT colonographic videos) and even in a laparoscopic surgery train-
ing (Wilson et al. 2010). Thus, the time spent on full runs and the time spent on relevant slices 
are considered promising measures coming from established expertise theories.

Diagnostic accuracy

Although a high level of experience is assumed to be related to more accurate diagnoses, there 
is yet limited evidence that scroll-data or even eye-tracking metrics relate to observers’ diag-
nostic accuracy. However, such a relationship is required if those metrics are to be used for 
assessment or adaptive instruction (Kok 2019).

A recent study by Kelly et al. (2016) investigated the relation between eye-tracking metrics 
and diagnostic accuracy at different levels of visual expertise in chest radiograph interpreta-
tion. They examined the development of chest radiograph interpretation skill through medi-
cal training by measuring both eye movements and diagnostic accuracy. Their study revealed 
significant correlations between eye-tracking metrics (e.g., time to first eye fixation on abnor-
mality) and the diagnostic accuracy of medical interns, 2nd-year medical residents, 4th-year 
radiology residents and radiologists. It is unclear whether these findings hold true for volumet-
ric images and whether these findings generalise to scroll data, since this topic is investigated 
sparsely.

In sum, it needs to be further examined if scroll patterns can predict residents’ diagnostic 
accuracy. Specifically, if scroll patterns develop as expected based on visual expertise theories, 
they might be a predictor of diagnostic accuracy.

Current study: the use of longitudinal scroll data to examine expertise 
development in volumetric image interpretation

The overall aim of the current study was to gain insight in radiology residents’ expertise 
development in volumetric image interpretation over their five-year residency program, 
to be able to align residency training with residents’ level of understanding in the future. 
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To accomplish this, a data analysis was conducted on data collected between September 
2013 and April 2018, including longitudinal data of all Dutch radiology residents who par-
ticipated in semi-annual mandatory progress tests (The Dutch Radiology Progress Test or 
DRPT; Ravesloot et al. 2017).

Study part 1: the identification of residents’ scroll patterns

The first part of our study focused on the identification of scroll patterns in CT-scans. 
Specifically, we investigated if residents’ longitudinally collected scroll data of CT-scan 
questions were in line with the holistic model of image perception and/or the information-
reduction hypotheses. The study is restricted to focal diseases, that is, abnormalities that 
are located at a specific location where the rest of the scanned body part is relatively unaf-
fected (Kok et al. 2012). The time spent on relevant slices is a promising measure, but this 
measure is only relevant for focal and not for diffuse diseases.

We hypothesized that the average percentage of time spent on full runs on a single 
DRPT (PercTimeFullRunsAvg) decreased within residents over time, because we expected 
that growing knowledge results in more informative and quicker initial impressions 
(Hypothesis 1a).

Furthermore, we hypothesized that the average percentage of time spent on question-rel-
evant areas in a single DRPT (PercTimeRelAreaAvg) increased within residents over time, 
because we expected that a growing knowledge base improves residents’ ability to differen-
tiate between question-relevant and question-irrelevant information (Hypothesis 1b).

Study part 2: predicting residents’ diagnostic accuracy with residents’ scroll 
patterns

Subsequently, we investigated whether scroll patterns were predictive for diagnostic accu-
racy (DiagAcc), i.e. the proportion of correct answers on CT-scan questions in a DRPT. 
We expected a negative relation between PercTimeFullRunsAvg and DiagAcc, as it was 
expected that a decrease in PercTimeFullRunsAvg (i.e., quicker global search) on DRPTs 
over residency training years would be related to more accurate diagnoses (Hypothesis 2a). 
Furthermore, we expected a positive relation between PercTimeRelAreaAvg in CT-scan 
questions and DiagAcc (Hypothesis 2b), as it was expected that an increase in PercTim-
eRelAreaAvg on DRPTs over residency training years relates to more accurate diagnoses.

Methods

Participants

The current study used logfiles and test results of all Dutch radiology residents who 
participated in semi-annual DRPTs between September 2013 and April 2018, who pro-
vided permission to use their data and who had eligible data for the variable relative 
training time (Ntotal = 654 npertimepoint ± 300; see Fig.  1). Specifically, logfiles of CT-
scan questions tracked the exact slice number that was depicted in the viewing direc-
tion, axial, sagittal, or coronal, at any moment. A total of 9 DRPTs was examined (the 
autumn 2015 test failed due to technical reasons). The number of DRPTs made per 
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resident varied from 1 to 9 (mean =4.1, SD = 2.3), as this was dependent on residents’ 
years of training at the beginning of 2013 and the number of years the resident needed 
to complete the (five-year) residency program. For example, a resident who had com-
pleted 25 months of residency training at the beginning of 2013 and who completed 
the residency program in five years, participated in five DRPTs between September 
2013 and April 2018.

Instruments

Dutch radiology progress test

The DRPT is a semi-annual progress test that is mandatory to all Dutch radiology resi-
dents. It consists of 180 test items (up to 2013: 200 items), covering all radiology sub-
domains (Rutgers et  al. 2018). Support for the external validity of this progress test 
can be found in Ravesloot et al. (2015b). As it is a progress test, all residents make the 
same DRPT at the same timepoint irrespective of their training stage. The test includes 
image questions that intend to test residents’ image interpretation skills (e.g., includ-
ing CT-scans and MRI series) and non-image questions that aim to test residents’ fac-
tual radiological knowledge. Log data generated during image questions of the DRPTs, 
providing detailed information on how images were manipulated by residents (i.e., 
scroll movements and change of viewing direction over time), and test scores were col-
lected for all DRPTs. Cronbach’s alpha for test reliability of image questions in DRPTs 
made between 2005 and 2009 varied between .87 and .91 when corrected for number 
of items with the Spearman Brown formula (Ravesloot et al. 2015a). In addition, Cron-
bach’s alpha for test reliability of all questions in DRPTs made between 2003 and 2016 
varied between .83 and .93 (Rutgers et al. 2018). We find it reasonable to assume that 
image questions in DRPTs made between September 2013 and December 2018, the 
time period of the current study, had a similar test reliability.

Fig. 1   Number of residents per DRPT, categorised according to their relative training time (to control for 
differences in pace, training time was standardized to a five-year scale). Note that the relative time in train-
ing is a continuous factor in the dataset, but is binned here for illustration purposes
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Selection of image questions

The current study used a subset of questions per DRPT, selected on three criteria in 
order to obtain a homogeneous set of questions to investigate. First, only image ques-
tions that needed the interpretation of a single CT-scan were included (n = 83). Second, 
only CT-scan questions in which residents needed to provide a diagnosis were selected 
(leaving n = 78); we excluded questions that only asked to mark a normal anatomical 
structure representing only a part of the image interpretation task. Third, only questions 
with a question-relevant CT-scan volume covering less than 50 percent of the total pro-
vided CT-scan volume were included (leaving n = 48). The third criterium ensured the 
inclusion of only focal diseases (localized abnormalities) and the exclusion of CT-scan 
questions concerning diffuse diseases (distributed abnormalities). From a theoretical 
perspective, Kok et al. (2012) showed that diffuse diseases evoke different visual search 
strategies than focal diseases. Therefore, it is better to discriminate between these types 
of diseases in image interpretation studies. From a methodological perspective, varia-
tion in the variable PercTimeRelArea (i.e., percentage of time spent on question-relevant 
areas) could be too low for questions with a high coverage rate.

In total, 48 CT-scan questions were selected with an average of five questions per 
DRPT (min = 2, max = 9). A more detailed description of the question-selection process 
can be found in “Appendix 1”.

Selected image questions

The included CT-scan questions (n = 48) cover six radiology subdomains (see Table 1). 
Three question formats can be distinguished. First, marker questions (n = 2) in which 
residents needed to flag an abnormality that was in correspondence with a provided 
diagnosis (e.g., “Place the marker in the subarachnoid haemorrhage within the interpe-
duncular cistern”). Second, multiple choice questions (n = 32) in which residents either 
needed to select the most likely diagnosis from a given set of diagnoses or needed to 
indicate if a provided statement was correct (e.g., “the round lesion in the right lower 
lobe likely indicates a round atelectasis”). Third, long list menu questions (n = 14) in 
which residents needed to select the most likely diagnosis in a drop-down menu display-
ing 1000 + possibilities.

Procedure

DRPTs were taken in a computer hall at a university in the Netherlands, using digi-
tal test software VQuest (“Volume Quest”, http://www.vques​t.eu) that is found to be 
valid, accurate, and user-friendly (Ravesloot et  al. 2015b; Rutgers et  al. 2018). Ques-
tions were displayed page-by-page and residents were able to navigate back and forth 
between questions. Informed consent for collecting and using logfile data was obtained 
from all individual participants included in the study via a digital form at the start of 
each DRPT.

CT scans of image questions were displayed in gray scale and were presented on a 
15.6-inch conventional computer monitor with a 1366 × 768 pixel resolution. In all CT-
scan questions, residents were allowed to scroll through the stack of images, to pan the 
image, to change window-level settings and to zoom in and out. Moreover, CT images 

http://www.vquest.eu
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could either be viewed in sagittal, coronal, and axial viewing direction (x, y, z; 35 out 
of 48 questions), or only in axial viewing direction (z; 13 out of 48 questions). Figure 2 
shows a typical example of a CT-scan question as displayed to residents in a DRPT.

Residents’ training time

Not all residents went straight through the five-year residency program, because of, for 
example, part-time work or research engagement. To correct for differences in pace, train-
ing time (TrTime) was standardized to a five-year scale at the time of each test (see Eq. 1). 
For six residents we were unable to derive the date of training enrolment (StartDate), these 
were excluded from all analyses (leaving ntotal = 648). TrTime was treated as a continuous 
variable; residents made multiple DRPTs over time (varying from 1 to 9 measures) and the 
variable contained all possible time points in months between zero and five relative train-
ing years due to the fact that DRPTdates were not connected to a specific training stage.

Percentage of time spent on full runs

Figure 3 shows a graphical representation of a logfile of a CT-scan question made by a 
resident, to indicate how the PercTimeFullRuns (scroll movements through more than 50% 
of the slices) was derived from the log data. First, we identified full runs in each CT-scan 
question in a similar manner as Den Boer et al. (2018). Specifically, we calculated the dif-
ference in slice number between each local extreme minimum and a previous local extreme 
maximum (and vice versa). In case the difference between two extremes (i.e., slice num-
bers on z-axis) made up more than 50% of the slices, the run was viewed as a full run. The 
PercTumeFullRuns was the duration of all full runs in milliseconds divided by the total 
amount of time spent on that question.

(1)TrTime =

(
DRPTdate − StartDate

EndDate − StartDate

)
∗ 5.

Fig. 2   Example of a CT-scan question as displayed to residents in a DRPT
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Percentage of time spent on question‑relevant areas

To derive the PercTimeRelArea, percentage of time spent on question-relevant areas by 
residents in each CT-scan question, three expert radiologists of the radiology depart-
ment of UMC Utrecht (DR, AG, CR) determined the question-relevant CT-scan area 
of each question. See "Appendix 1" for more information on how the question-relevant 
area was determined. Subsequently, we continuously compared residents’ scroll posi-
tion (in slice number in x, y or z direction) of the current viewing direction (default 
z-axis; axial view) to the question-relevant slice numbers on that axis. In case a resident 
viewed a question-relevant slice number the time was logged (see for a graphical exam-
ple Fig.  3). Finally, we divided the total time spent on question-relevant areas by the 
total time spent on each question to derive the PercTimeRelArea.

Diagnostic accuracy

Residents received a score of 1 for correct answers and a score of 0 for incorrect 
answers. These scores were used as an indicator of their diagnostic accuracy (DiagAcc).

Dutch radiology progress test difficulty

As an indicator of DRPT difficulty (DRPTdiff), we calculated the average difficulty of 
the selected questions per DRPT. Question difficulty was defined by the proportion of 
correct answers on that question, also known as the P value. DRPTdiff was rescaled on a 
scale from − 0.5 to 0.5: a value of 0 corresponded to a DRPT with an average question 
difficulty of 0 (i.e., 50 percent of the residents provided the correct answer). Since the 

Fig. 3   Graphical representation of a logfile of a CT-scan question made by a resident. Note that this ques-
tion was viewed only in axial direction by the resident
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DRPTdiff was based on the proportion correct, a higher score for DRPTdiff indicates a 
less difficult DRPT.

Data analysis

The data used had a very specific structure. Not only were questions nested within DRPTs 
within residents, questions also differed per DRPT, residents made different DRPTs at a 
certain training stage (i.e., TrTime) and participated in a different number of DRPTs (i.e., 
dependent on residents’ StartDate). At first glance, the nesting suggested the use of longitu-
dinal multilevel models with the item level as the lowest level of analysis. However, due to 
the specific data wave structure this was not possible. Specifically, while checking the neces-
sity of the second level (DRPT level) in a three-level model, we would test the interdepend-
ency hypothesis stating that ‘residents values on the outcome variable (e.g., PercTimeFull-
Runs and PercTimeRelArea) are more alike on questions within DRPTs than on questions 
between DRPTs’. When comparing values on the outcome variable between DRPTs we are 
in fact comparing residents to themselves (i.e., residents made multiple DRPTs) and to oth-
ers (i.e., residents only made a set of DRPTs) at the same time, making the model invalid. 
We illustrate this with a part of the dataset: 304 residents participated in the first DRPT and 
306 residents participated in the second DRPT of which 237 residents also participated in 
the first DRPT. From this it follows that 69 residents in the second DRPT were new in the 
dataset and 67 residents of the first DRPT left the dataset. Consequently, comparisons on the 
outcome variable between the first and the second DRPT would be based on comparisons 
within residents over DRPTs and between residents simultaneously, resulting in an invalid 
model. Hence, we needed to aggregate all data (i.e., scroll data and data of test results) on 
the DRPT level and use this level as the lowest level of analysis in all analyses. We therefore 
also corrected for differences in difficulty on the DRPT level (DRPTdiff) in all analyses, 
instead of correcting for differences in question difficulty. In order not to neglect the item 
level, we conducted explorative analyses on the item level using descriptive statistics.

Study part 1: the identification of residents’ scroll patterns

Before examining if the average percentage of time spent on full runs (PercTimeFullR-
unsAvg) decreases within residents over time (H1a) and if the average percentage of time 
spent on question-relevant areas (PercTimeRelAreaAvg) increases within residents over 
time (H1b), we inspected the data visually on the item level using IBM SPSS Statistics 
Version 25. Specifically, we plotted the dependent variables PercTimeFullRuns and Perc-
TimeRelArea against the predictor TrTime for each selected CT-scan question. Hence, these 
plots were cross-sectional; displaying all data of residents on one CT-scan question on one 
DRPT. These plots were used to inspect if all questions showed roughly the same data 
pattern, in order to determine if aggregation on the DRPT level was appropriate. In addi-
tion, we fitted a linear line in all plots to see if expected relations between TrTime and the 
dependent variables PercTimeFullRuns (i.e., decrease over TrTime) and PercTimeRelArea 
(i.e., increase over TrTime) were visible cross-sectionally.

Second, after assumption checks, we performed two two-level longitudinal regression 
analyses with the dependent variables PercTimeFullRunsAvg (H1a) and PercTimeRelAr-
eaAvg (H1b). The first level represented the DRPT level (measurements within residents) 
and the second level the resident level (measurements between residents). For the analy-
sis of each aggregated dependent variable, we ran multiple successive models in HLM6 
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to determine the best fitting model (in line with the longitudinal multilevel-analysis strat-
egy described in Hox et al. 2018): Step by step we extended the intercept only model that 
included a fixed effect for TrTime and random intercepts on the resident and the DRPT 
level (Model 1), with a fixed effect for DRPTdiff (Model 2) and with a random slope for 
TrTime (Model 3). We used full maximum likelihood estimation in all analyses. Only 
regression coefficients of the best fitting models were interpreted. Model equations of the 
best fitting models are displayed in “Appendix 3”.

Study part 2: predicting residents’ diagnostic accuracy with residents’ scroll patterns

Before examining if the PercTimeFullRunsAvg and PercTimeRelAreaAvg are predictive for 
DiagAcc (H2a and H2b), we inspected the data visually on the item level using IBM SPSS 
Statistics Version 25. Similar to Study Part 1, we plotted the PercTimeFullRuns and Perc-
TimeRelArea against the TrTime per CT-scan question. This time, however, we set mark-
ers by DiagAcc (correct versus incorrect). These cross-sectional plots were used to inspect 
if all questions displayed roughly the same data pattern regarding DiagAcc in specific, in 
order to determine if aggregation on the DRPT level was appropriate.

Second, we performed a two-level longitudinal logistic regression analysis, using the 
number of questions correct per number of (for the current study selected) questions in a 
DRPT as outcome variable. Note that DiagAcc (i.e., correct versus incorrect answers) is 
aggregated on the DRPT level by calculating the number of correct answers per DRPT for 
each resident and the total number of questions made per DRPT. Similar to the first part 
of the study, the first level represented the DRPT level (measurements within residents) 
and the second level the resident level (measurements between residents). Furthermore, in 
order to deal with the proportional outcome variable, we used a logit-link function on the 
first level. Specifically, we performed a logit transformation to be able to scale the outcome 
variable, the first level variance (the resident level) was fixed (cf. Hox et al. 2018). We ran 
multiple successive models in SuperMix Version 1.10 to determine the best fitting model 
in line with the general analysis strategy described in Sommet and Morselli (2017). Step by 
step we extended the intercept only model that included a fixed effect for TrTime and a ran-
dom intercept on the DRPT level, with fixed effects for DRPTdiff, PercTimeFullRunsAvg 
and PercTimeRelAreaAvg, and with a random slope for TrTime. We chose SuperMix as it 
provides the possibility to use adaptive quadrature estimation (i.e., number of quadrature 
points is set to 20), an estimation procedure that is more accurate than the penalized-quasi 
likelihood estimation which is available in HLM6 (Rabe-Hesketh et al. 2005). Only regres-
sion coefficients and odds ratios of the best fitting model were interpreted. Model equations 
of the best fitting models are displayed in Appendix 3.

Significance level, outliers, missing values, and the calculation of the explained 
variance

For all statistical analyses, in both Study Part 1 and 2, a significance level of α = .05 was used 
as boundary of significance. For all dependent and independent variable combinations we 
visually inspected question-level (cross-sectional) plots for outliers. As there were no clear 
outliers on the item level, we did not exclude any cases of the data aggregated on the DRPT 
level. Furthermore, due to technical failure nine logfiles of random resident and question 
combinations were missing in the item level dataset, since this number is negligible in regard 
to the size of the dataset we treated these missing values as missing listwise in all analyses.
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As measure of effect size we reported the explained variance (R2) on the first level 
(within residents) of the best fitting multilevel models when compared to their correspond-
ing unconditional means models with no predictors at the first and second level (i.e., reduc-
tion of unexplained variance; e.g., Hox et al. 2018; LaHuis et al. 2014). While the uncondi-
tional means model in longitudinal multilevel analyses generally overestimates the within 
level variance (first level) and underestimates the between level variance (second level) 
(e.g., Hox et  al. 2018), our main interest was in the variable TrTime. Comparison with 
the intercept only models was the only way to provide an indication of the explained vari-
ance by the variable TrTime in each dependent variable, that is PercTimeFullRunsAvg and 
PercTimeRelAreaAvg.

Results

Study part 1: the identification of residents’ scroll patterns

Scroll patterns on the item level

Cross-sectional scatterplots of PercTimeFullRuns and PercTimeRelArea against TrTime 
did not reveal differences in data patterns between CT-scan questions: neither for specific 
radiological subdomains nor for question format. Overall, in cross-sectional plots of Perc-
TimeFullRuns against TrTime (see Fig. 4), the slope parameter of the fitted linear trend line 
suggested a negative relation in 36 out of 48 questions: Residents that were further in the 
training program spent a lower percentage of time on full runs (i.e., the holistic phase of 
image perception). In addition, in cross-sectional plots of PercTimeRelArea against TrTime 
(see Fig. 5), the slope parameter of the fitted linear trend line suggested a positive relation 
in 41 out of 48 questions: Residents that were further in the training program spent a higher 
percentage of time on question-relevant areas. These findings should, however, be inter-
preted with caution, as we did not perform statistical analyses.

Fig. 4   Example of a cross-sectional scatterplot of the percentage of time spent on fullruns (PercTimeFull-
Runs) against residents relative training time (TrTime) on a specific CT-scan question. This question was 
used as example, since the slope of the linear fitted trendline (i.e., − 0.92) was closest to the average of the 
slopes of trendlines in the cross-sectionplots of all 48 questions (i.e., − 0.81)
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Scroll patterns on the DRPT level

Descriptive statistics of the dependent variables PercTimeFullRunsAvg and PercTimeRelAr-
eaAvg are displayed in Table 2. DRPTs had an average question difficulty of 0.14 (min = 0.02, 
max = 0.24, SD = 0.07; i.e., 64 percent of the residents provided the correct answer).

For both two-level longitudinal regression analyses (i.e., dependent variables PercTime-
FullRunsAvg and PercTimeRelAreaAvg) the assumptions of linearity and the absence of 

Fig. 5   Example of a cross-sectional scatterplot of the percentage of time spent on relevant area (PercTim-
eRelArea) against residents relative training time (TrTime) on a specific CT-scan question. This question 
was used as example, since the slope of the linear fitted trendline (i.e., 1.19) was closest to the average of 
the slopes of trendlines in the cross-sectionplots of all 48 questions (i.e., 1.32)

Table 2   Descriptive statistics of 
residents’ PercTimeFullRuns and 
PercTimeRelArea Averaged on 
DRPT level by Relative Time in 
Training

Whereas relative time in training (TrTime) was used as a continuous 
factor in all analyses, it is binned here for illustration purposes
a Some residents are more than once present in one relative training 
time interval since they made more than one DRPT within the binned 
interval

Relative time in 
training

na PercTimeFullRuns 
averaged per DRPT

PercTimeRelArea

averaged per 
DRPT

Mean SD Mean SD

0–0.5 271 20.3 10.5 43.0 14.1
0.5–1 287 20.9 9.9 46.3 13.2
1–1.5 293 19.4 9.7 49.4 12.8
1.5–2 272 18.6 9.7 49.6 12.0
2–2.5 282 18.4 9.3 49.1 12.2
2.5–3 276 18.5 9.7 51.9 11.4
3–3.5 270 17.8 9.7 50.3 12.0
3.5–4 258 18.2 9.1 51.9 12.6
4–4.5 239 16.6 9.1 50.7 11.6
4.5–5 188 17.1 9.3 52.0 12.2
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multicollinearity were met. The assumption of normality of first level residuals was some-
times slightly violated, which is why all reported results are based on estimations with 
robust standard errors (cf. Dedrick et al. 2009; Hox et al. 2018). In addition, the assump-
tion of homoscedasticity was violated to a minor degree. In line with Goldstein (1999), we 
modelled the first level variance as function of the predictor TrTime (i.e., heterogeneous 
variances) in an attempt to minimise the violation of homoscedasticity. This, however, did 
not solve the issue. Furthermore, since there was no theoretical basis to model the variance 
as function of the predictor TrTime, all reported results are based on the initial models 
described in the method section: models with fixed effects for the independent variables 
that are examined and random intercepts on the resident and the DRPT level.

Average time spent on full runs per DRPT

For the two-level longitudinal model with the dependent variable PercTimeFullRunsAvg, 
a model that included fixed effects for TrTime and DRPTdiff as well as random intercepts 
on DRPT and resident level (Model 2) was the best fitting model. Model results are dis-
played in Appendix 2 and Table 3. The explained variance on the first level by the predic-
tors TrTime and DRPTdiff is 0.03, based on a comparison with the intercept only model as 
explained in the Method section. This indicates that only three percent of the variation in 
the percentage of time spent on full runs per DRPT within residents can be explained by 
TrTime and DRPTdiff.

The intercept of 20.2 of Model 2 refers to the average percentage of time spent on full 
runs on a DRPT with an average question difficulty of 0 (i.e., 50 percent of the residents 
provided the correct answer), of residents who are at the start of the five-year residency 
training program. Regarding H1a, a significant negative linear relation between TrTime and 
PercTimeFullRunsAvg was found (b = − 0.94), indicating that moving one year forward in 
the radiology training program led to a decrease of the percentage of time spent on full 
runs per DRPT of 0.94 percent point. The absolute decrease in time spent on full runs 
depended on both the total time spent on CT-scan questions within a certain DRPT and 
the number of questions within that DRPT, since DRPTs varied within and between resi-
dents we could not calculate this absolute decrease in time. We do know, however, that 

Table 3   Results of multilevel analysis; outcome variable PercTimeFullrunsAvg

b = coefficient; SE = Standard error; p = p-value; Vcomp = Variance component
SD = Standard deviation
a Measured on a scale from − 0.5 to 0.5

Predictors M2: TrTime + DRPTdiff

Fixed effects b SE p

Intercept 20.19 0.52 < .001
TrTime − 0.94 0.14 < .001
DRPTdiffa 6.70 2.35 .005

Random effects Vcomp SD p

σe
2 81.56 9.03

σ2
µ0 10.84 3.29 < .001

Deviance 19,350.0



452	 D. van Montfort et al.

1 3

residents spent on average 122.9 s (SD = 124.1) on a CT-scan question. Therefore, regard-
ing H1a, the absolute decrease in time spent on full runs when moving one year forward in 
the radiology training program was most likely in the range of a few seconds per DRPT. A 
significant positive linear relation between DRPTdiff and PercTimeFullRunsAvg was found 
(b = 6.70). In terms of the overall intercept an increase of the average question difficulty on 
a DRPT towards 0.1 (i.e., 60 percent of the residents provided the correct answer), led on 
average to an increase of 0.67 percent point in the percentage of time spent on full runs. 
This indicates an increase in residents’ global search; the holistic phase of image percep-
tion, on that DRPT. Note that the observed DRPTdiff ranged between 0.02 and 0.24, there-
fore a maximum increase in the percentage of time spent on question-relevant areas on a 
DRPT in light of the current data is 1.6 percent point. Moreover, the absolute increase in 
percentage of time spent on full runs per DRPT was most likely in the range of a few sec-
onds per increase of .1 in DRPTdiff.

Average time spent on question‑relevant areas per DRPT

For the two-level longitudinal model with the dependent variable PercTimeRelAreaAvg, a 
model that included fixed effects for TrTime and DRPTdiff as well as random intercepts on 
the DRPT and the resident level (Model 2), was the best fitting model. Model results are 
displayed in “Appendix 2” and Table 4. The explained variance on the first level by the 
predictors TrTime and DRPTdiff is 0.17, based on a comparison with the intercept only 
model as explained in the Method section. This indicates that 17 percent of the variation in 
the percentage of time spent on question-relevant areas per DRPT within residents can be 
explained by TrTime and DRPTdiff.

The intercept of 53.1 of Model 2 refers to the average percentage of time spent on ques-
tion-relevant areas on a DRPT with an average question difficulty of 0 (i.e., 50 percent of 
the residents provided the correct answer), for residents that are at the start of the five-year 
residency training program. Regarding H1b, a significant positive linear relation between 
TrTime and PercTimeRelAreaAvg was found (b = 1.7), indicating that moving one year 
forward in the radiology training program led on average to an increase of the percent-
age of time spent on question-relevant areas per DRPT of 1.7 percent point. Similar to 

Table 4   Results of multilevel analysis; outcome variable PercTimeRelAreaAvg

b = coefficient; SE = Standard error; p = p value; Vcomp = Variance component
SD = Standard deviation
a Measured on a scale from − 0.5 to 0.5

Predictors M2: TrTime + DRPTdiff

Fixed effects b SE p

Intercept 53.16 0.64 < .001
TrTime 1.70 0.18 < .001
DRPTdiffa − 57.47 2.74 < .001

Random effects Vcomp SD p

σe
2 133.04 11.53

σ2
µ0 5.30 2.30 .008

Deviance 20,467.9
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the PercTimeFullRunsAvg this change was most likely in the absolute time range of a few 
seconds per DRPT. A significant negative linear relation between DRPTdiff and PercTim-
eRelAreaAvg was found (b = − 57.5). In terms of the overall intercept, this indicates that an 
increase of the average question difficulty on a DRPT towards 0.1 (i.e., 60 percent of the 
residents provided the correct answer), led on average to a decrease of 5.8 percent point 
in the percentage of time spent on question-relevant areas on that DRPT. Note that the 
observed DRPTdiff ranged between 0.02 and 0.24, therefore a maximum decrease in the 
percentage of time spent on question-relevant areas on a DRPT in light of the current data 
is 13.8 percent point. Moreover, the absolute decrease in time spent on question-relevant 
areas per DRPT was most likely in the range of 10 s per increase of .1 in DRPTdiff.

Study part 2: predicting residents’ diagnostic accuracy with residents’ scroll 
patterns

Predicting diagnostic accuracy on the item level

Cross-sectional scatterplots of PercTimeFullRuns against TrTime did not reveal differences 
in the spread of data points that were marked as either correct or incorrect (i.e., diagnostic 
accuracy) between CT-scan questions: neither for specific radiological subdomains nor for 
question format. The cross-sectional plots of the PercTimeRelArea against TrTime, on the 
contrary, revealed a difference in the spread of data points that were marked as either correct 
or incorrect between marker questions (n = 2), in which residents need to flag an abnormal-
ity, and other question formats (i.e., multiple choice and long list menu questions, n = 46). 
Specifically, marker questions showed a strong division between residents who provided the 
correct answer and residents who provided an incorrect answer: The former clearly spent 
more time on question-relevant area (see Table 5). Such a strong distinction was absent in 
plots of multiple choice questions, in which residents needed to select the most likely diag-
nosis from a given set of diagnoses, and in plots of long list menu questions, in which resi-
dents needed to select the most likely diagnosis out of 1000 + possibilities (see Table 5).

Predicting diagnostic accuracy on the DRPT level

The relation between PercTimeRelArea and DiagAcc differed between marker questions 
and the other question formats. Unfortunately, we were not able to run a separate analysis 

Table 5   Descriptive statistics of residents’ diagnostic accuracy on question-level

Marker Multiple choice Long list menu

Correct Incorrect
n = 568

Correct Incorrect Correct Incorrect n = 1643

n = 291 n = 6053 n = 3262 n = 2111

PercTimeRelArea
 Mean 19.87 5.38 48.34 46.98 58.91 58.50
 SD 16.62 6.87 22.90 25.56 28.17 31.17

PercTimeFullRuns
 Mean 17.59 19.84 20.89 21.04 14.23 16.78
 SD 17.27 16.41 18.58 18.66 15.45 15.07
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for the marker questions, since there were only two marker questions in the dataset. There-
fore, we excluded marker questions when aggregating the data on the DRPT level, in order 
to perform two-level logistic regression analyses with as binary outcome the number of 
questions correct per number of questions in a DRPT. DRPTs excluding marker questions 
had an average question difficulty of 0.13 (min = 0.03, max = 0.24, SD = 0.07; i.e., 63 per-
cent of the residents provided the correct answer). For the two-level longitudinal logistic 
regression analyses the assumptions of normality of second level residuals and the absence 
of multicollinearity were met.

Diagnostic accuracy aggregated on the DRPT level

A two-level longitudinal logistic regression model that included fixed effects for TrTime, 
DRPTdiff, PercTimeFullRunsAvg and PercTimeRelAreaAvg as well as a random intercept 
on the DRPT level (Model 2), was the best fitting model that included all variables of inter-
est. The results of Model 2 are displayed in Appendix 2 and Table 6.

The intercept of − 1.08 of Model 2, indicates that on average the proportion of questions 
estimated to be correct is 0.25 for residents on a DRPT with an average question difficulty of 
0 (i.e., 50 percent of the residents provided the correct answer) at the start of the five-year res-
idency training program and with a percentage time spent on relevant areas of zero. Regard-
ing H2a and H2b, the odds ratios of the fixed effects for PercTimeFullRunsAvg and Perc-
TimeFullRunsAvg were not significantly different from 1, indicating that both the percentage 
of time spent on full runs and the percentage of time spent on relevant area did not signifi-
cantly predict the number of questions correct per number of questions in a DRPT (i.e., diag-
nostic accuracy; H2a, OR = 1.001; H2b; OR = 1.003). There was a significant positive rela-
tion between TrTime and the number of questions correct per number of questions in a DRPT 
(i.e., diagnostic accuracy), OR = 1.40. This indicates that residents were 1.40 times more 
likely to have a larger proportion of questions correct on a DRPT if they moved one year for-
ward in the training program. There was a significant positive relation between DRPTdiff and 
DiaggAcc, OR = 162.92. Indicating that in easier DRPTs residents were more likely to have 

Table 6   Results of multilevel analysis; outcome variable number of questions correct per number of ques-
tions on a DRPT

b = regression coefficient (logit(NumberCorrect)); SE = Standard error; p = p-value; OR = Odds Ratio; 
CI = confidence interval for odds ratio (OR)
a  Measured on a scale from − 0.5 to 0.5

M2: TrTime + PercTimFullRunsAvg + PercTimRelAreaAvg + DRPTdiff

Fixed effects b SE p OR 95% CI

Intercept − 1.078 0.14 < .001 0.34 [0.26, 0.45]
TrTime 0.338 0.02 < .001 1.40 [1.36, 1.44]
PercTimeFullRunsAvg < .001 0.00 .833 1.00 [1.00, 1.00]
PercTimeRelAreaAvg 0.003 0.00 .067 1.00 [–, 1.01]
DRPTdiffa 5.093 0.34 < .001 162.92 [83.64, 317.36]
Random effects Vcomp SE p
σµ0

2 0.056 0.015 < .001
Deviance 16,757.3
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a larger proportion of questions correct. This result is not surprising, since DRPTdiff repre-
sented the average percentage of answers correct on questions within a DRPT of all residents.

Discussion

In this study, we used theories on expertise development as a starting point to identify and 
explore potentially relevant measures to monitor and evaluate expertise development in radi-
ology, to eventually improve radiology training programs. Prior work on expertise develop-
ment in medical image interpretation was mainly based on cross-sectional eye-tracking data 
in 2D images, like X-rays (e.g., Kok et al. 2012; Krupinski 1996; Kundel et al. 2007; Man-
ning et al. 2006). The current study examined radiology residents’ development of expertise 
in volumetric image interpretation (i.e., CT-scans) using scroll data collected longitudinally 
over five years of residency training. First, we investigated if residents’ scroll patterns align 
with the holistic model of image perception and the information reduction hypothesis. Sec-
ond, we examined if scroll patterns can predict diagnostic accuracy.

In line with H1a, we found that the average percentage of time spent on full runs by 
residents on a DRPT (i.e., holistic phase of image perception) decreased within residents 
as they moved forward in the training program. Two potential causes of the decrease in 
the percentage of time spent on full runs are: (1) the absolute time spent on full runs stays 
the same over training years, but the total time spent on questions increases, resulting in 
a decrease in the percentage of time spent on full runs and (2) the absolute time spent on 
full runs decreases over training years (i.e., quicker holistic phase with increasing levels of 
expertise), whereas the time spent on questions stays the same, leading to a decrease in the 
percentage of time spent on full runs. Additional cross-sectional scatterplots on the item 
level, i.e., absolute time spent on full runs against relative training time and total time on 
question against relative training time, suggested that residents did not spend more time 
on questions when they are further in the training program. The scatterplots, however, did 
suggest that residents spent less (absolute) time on full runs when they are further in the 
training program for most questions (41 out of 48). Therefore, a decrease in the percent-
age of time spent on full runs is most likely a consequence of a decrease in time spent 
on global search (i.e., the holistic phase). This finding extends results from cross-sectional 
eye-tracking studies that showed that the holistic model of image perception is reflected in 
observers’ eye movements while inspecting 2D images or video-recorded CT-scans (e.g., 
Cooper et al. 2009; Krupinski 1996; Mallett et al. 2014).

In line with H1b, we found that the average percentage of time spent on question-rele-
vant areas by residents on a DRPT increased within residents as they moved forward in the 
training program. Therefore, we conclude that residents’ scroll patterns are in line with the 
information reduction hypothesis: More experienced residents take in more task-relevant 
information and less task-irrelevant information as a consequence of their growing ability 
to differentiate between task-relevant and task-irrelevant information. This finding extends 
findings from cross-sectional eye-tracking studies that showed that the information reduc-
tion hypothesis is reflected in observers’ eye movements (e.g., Bertram et al. 2013; Krupin-
ski 1996; Manning et al. 2006).

The absolute changes in scroll patterns over time are relatively modest: Each training 
year results in the holistic impression taking a few seconds of time less, whereas the time 
spent on question-relevant information increases with a few seconds per DRPT. However, 
considering cross-sectional eye-tracking studies (e.g., Krupiniski 1996; Mallet et al. 2014), 



456	 D. van Montfort et al.

1 3

the absolute time differences between training years, found in the current study, are com-
parably quite large. This is probably due to the nature of scroll data: scroll movements 
physically take time, eye-movements can be executed much faster. Furthermore, a large 
proportion of the variation in the scroll data (i.e., PercTimeFullRunsAvg and PercTim-
eRelAreaAvg) could not be explained by the variables in the current dataset. Although not 
directly visible in question-level cross-sectional plots, potential factors influencing scroll 
patterns could have been differences in strategy use for different question formats, the num-
ber of slices present in the scan, abnormality, and/or radiological subdomain. For example, 
in multiple choice questions residents might use an exclusion strategy, i.e. excluding the 
provided diagnosis one-by-one in order to end up with the correct diagnosis. By doing so 
they will spent quite some time on question-irrelevant areas.

In the second part of the study we examined if scroll patterns can predict diagnostic 
accuracy. Contrary to H2a, we found that the percentage of time spent on full runs by res-
idents on a DRPT (i.e., global search) did not significantly predict diagnostic accuracy. 
Hence, the percentage of time spent on full runs cannot be used as a predictor for diag-
nostic accuracy. An explanation for this could be that forming a faster global impression 
is only beneficial when observers are time-pressured: Being quicker in the holistic phase 
leaves more time to scrutinize image details. As time pressure is an aspect of daily radiol-
ogy practice, it is interesting to investigate its influence further in future studies.

In addition, contrary to H2b, we found that the percentage of time spent on question-rel-
evant areas by residents per DRPT did not significantly predict diagnostic accuracy. Hence, 
the percentage of time spent on question-relevant areas cannot be used as a predictor for 
diagnostic accuracy. A reason for this might be that—in order to be able to provide the cor-
rect diagnosis—residents not only need to know where to look, but also need to character-
ise findings and generate a differential diagnosis in order to provide the correct diagnosis 
(cf. Crowley et al. 2003; Mello-Thoms et al. 2012; Van der Gijp et al. 2014). These latter 
two processes are not necessarily represented in the scroll data. A second explanation could 
be that spending a larger percentage of time on question-relevant areas can have multiple 
underlying reasons that result in a different effect on the relation between the percentage of 
time spent on question-relevant areas and diagnostic accuracy. Specifically, the expected 
relation is that spending more time on question-relevant areas is related to a higher level of 
expertise (outcome Study Part 1) and therefore leads to more accurate diagnoses. Another 
way of reasoning could be that participants who directly recognize the correct diagnosis do 
not need to spend much time on the question-relevant area, and may even spend some more 
time on other areas to exclude other possibilities or to look for findings that support their 
diagnosis. A third explanation could be that residents also use non-image related informa-
tion, such as the clinical information given in the question or the answer possibilities in the 
case of multiple choice questions, to end up with the correct diagnosis.

Although residents’ global search significantly decreased and the time spent on question-
relevant significantly increased over training years (Study part 1), we did not find a link 
with residents’ diagnostic accuracy (Study part 2). Due to this missing link and the large 
observed variances in scroll measures, we conclude that the explored scroll measures can-
not yet be used to monitor and evaluate expertise development in radiology residency train-
ing. An explanation for the limited direct relation between residents’ scroll measures and 
residents’ accuracy could be that a correct perception of the image, which is reflected in 
scroll measures, is necessary but not sufficient in order to end up with the correct diagnosis; 
spotting an abnormality does not imply that one can provide the correct diagnosis. In future 
studies, it would be interesting to investigate which cognitive processes are connected to 



457Expertise development in volumetric image interpretation…

1 3

specific scroll measures. For example by combining scroll data with think-aloud data, one 
could align residents’ thoughts during question-relevant versus question-irrelevant areas.

The current study has some limitations. Whereas the dataset enabled us to examine 
expertise development in scroll data of volumetric images collected longitudinally, it also 
limited our possibilities of statistical analyses because aggregation at the DRPT level was 
required. On the one hand, aggregation on the DRPT level can be viewed as a limitation 
to our study. As we could not distinguish between effects of different question formats nor 
radiological subdomain on the dependent variables in the statistical analyses. In addition, 
we needed to exclude marker questions in the second part of the current study, since the 
relation between the percentage of time spent on question-relevant areas and diagnostic 
accuracy differed between marker questions and other question formats. Especially in the 
case of marker questions, residents’ time on question-relevant areas had probably been a 
good predictor: The cross-sectional scatterplots showed that having spent a longer time 
on question-relevant areas was most often related to the provision of a correct answer. An 
explanation for this might be that, in order to position the marker correctly, residents nec-
essarily needed to spend quite some time in the question-relevant area. On the other hand, 
aggregation on the DRPT level can be viewed as a realistic consequence of the availability 
of process data in practice: It is practically impossible to have all residents make the same 
tests in a summative testing situation if those residents do not start their training at the 
same time, as it is likely that residents share test items. As such, the current analyses were 
the best possible option under these (authentic) circumstances.

Another limitation is that we do not know what residents were doing while answering CT-
scan questions. Specifically, we start logging the time as soon as the CT-scan question was dis-
played on the screen. It might be that residents did not look at the CT-scan for some seconds 
although displayed, as they were reading or answering the question, making notes or were 
distracted by their surroundings. Such activities could have happened at any time during image 
interpretation, which is why we do not believe that the data was biased in a specific direction.

The current study used scroll-data of CT-scan questions collected during semi-annual 
progress tests. As the test situation differs from radiology practice to some extent, results 
might not be completely generalisable to clinical practice. For example, in multiple choice 
questions residents could have provided the correct diagnosis by chance, which is impos-
sible in clinical practice. More specific, the possibility to provide a correct diagnosis by 
chance may have affected the data to some extent: a resident who spent more percentage of 
time on question-irrelevant areas could still have provided the correct diagnosis, making it 
a worse predictor for diagnostic accuracy.

In conclusion, this study revealed that radiology residents’ scroll patterns align with 
expertise theories: percentage of time spent on full runs (i.e., global search) decreased with 
experience and percentage of time spent on question-relevant areas increased with experi-
ence. However, the same scroll patterns could not be used as objective predictors of resi-
dents’ diagnostic accuracy. Therefore, the relation between scroll patterns and performance 
needs to be further examined, before insights gained from scroll patterns can be of added 
value for the optimisation of radiology training programs.
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as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
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from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

Appendix 1: Selection of CT‑scan questions

An overview of the steps taken to select the CT-scan image questions analysed in the 
current study is displayed in Fig. 6. Furthermore, the next paragraphs provide a detailed 
step-by-step explanation aligned with the numbering in the overview.

Fig. 6   Overview of question-selection process. *DSC = Dice similarity coefficient

http://creativecommons.org/licenses/by/4.0/
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First, we checked in the database with all questions of DRPTs between September 2013 
and April 2018, which questions were image-questions that needed the interpretation of a 
single CT scan. Although MRI series can also provide information of volumetric image 
interpretation, this might differ from CT-scans. We focused on CT  scans, as there were 
only a few MRI series in the dataset. In addition, some questions needed the interpretation 
of two CT scans, since logfiles did not discriminate between CT scans within a question 
we were not able to determine which CT scan residents were viewing. Therefore, we only 
included questions with a single CT scan. All other questions were immediately excluded.

Second, for each CT-scan question we determined if it was necessary to provide a 
diagnosis in order to give to correct answer. Only questions for which it was necessary 
to make a diagnosis were included. For example, questions that only asked to mark a 
certain anatomical structure were excluded (e.g., “mark the tip of the Appendix”).

Third, three experts (i.e., three radiologists) individually indicated the question-relevant 
CT-scan area for each question, via a crop box that provided a minimum and maximum 
slice number in x-, y- and z-direction (see Fig. 7. In case residents were allowed to scroll 
in x-, y- and z-direction (i.e., sagittal, coronal and axial; 53 out of 78 questions), the crop 
box provided boundaries for all three axis. However, in case residents were only allowed 
to scroll in z-direction (i.e., axial direction; 25 out of 78 questions), the crop box indicated 
boundaries on the z-axis, whereas the x- and y-axis were fixed to their full width.

Fourth, we determined a consensus area, defined by the slices that were selected as 
question relevant by at least two experts (i.e., the median of each three boundary values 
either on all three axis or only on the z-axis).

Fifth, we calculated the coverage rate of the consensus area in x-, y- and z-direction, 
by dividing the number of question-relevant slices on one axis by the total amount of 
slices present on that axis. For example, if experts reached consensus over 86 slices that 

Fig. 7   Example of a crop box indicating a question-relevant CT-scan area in x-, y- and z-direction
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deemed to be question-relevant in x-direction, in a CT-scan that contained 512 slices in 
x-direction, the coverage rate on x was 16.8%. Logically, if x- and y-direction were fixed 
coverage rate was only calculated in z-direction. Questions were immediately excluded 
from the study if the coverage rate of the consensus area was above 50 percent in at least 
one direction.

Sixth, for the remaining questions, we calculated Dice Similarity Coefficient (DSC) 
between all expert combinations as a measure of interrater agreement. The DSC is a spa-
tial overlap index ranging from 0, indicating no spatial overlap between two volumes, to 
1, indicating complete overlap (cf., Cuingnet et al. 2012; Shahzad et al. 2013; Wolz et al. 
2012). The DSC is obtained by dividing two times the consensus volume of two experts by 
the sum of the two volumes indicated by expert 1 and expert 2 (see Eq. 2).

To provide an example of the calculation of the DSC for one expert combination in one 
CT-scan question, we use the boundaries of the question-relevant crop boxes displayed 
in Table 7. To determine the question-relevant volume of each expert (i.e., denominator 
of Eq. 2), we need a scale; therefore slices were converted to millimetres using the ques-
tion-specific CT-scan characteristics. In this example question, one slice in x was equal 
to 0.36 mm, in y to 0.36 mm and in z to 0.40 mm. Therefore, the question-relevant crop 
box of expert 1 had a volume of 45,147.94  mm3 (65.95  mm * 47.70  mm * 14.80  mm) 
and of expert 2 of 13,483.37 mm3 (31.07 mm * 28.54 mm * 15.20 mm). The denomina-
tor, is determined by the question-relevant volume on which experts reached consensus. 
See Table 7 for the boundaries of the question-relevant crop on which expert reached con-
sensus. This consensus crop yields a volume of 11,161.28 mm3 (31.07 mm * 25.65 mm 
* 14.00 mm), using the same conversion values as before. This results in a DSC of .38 
(Eq. 2). This indicates a low spatial overlap between experts.

Seventh, questions with a DSC higher than .7 for all expert combinations were imme-
diately included in the current study. A value of .7 was chosen as this indicates a moderate 
spatial overlap between experts, based on previous studies that measured spatial accuracy 
in CT-scans using DSC (Shahzad et  al. 2013; Wolz et  al. 2012). Specifically, since the 
question-relevant area was set equal to the consensus area which was—as stated before—
defined by the slices that were selected as question-relevant by at least two experts, moder-
ate overlap per expert combination was viewed as acceptable.

Eight, questions with a DSC lower than .7 for at least one expert combination were 
revised in a consensus meeting with all three experts. The number of questions that needed 
revision was quite high (n = 38), suggesting the need for a shared definition of the term 
‘question-relevant area’. Therefore, experts formulated a shared definition at the start of 

(2)DSC =

2
|
||
Vexp1 ∩ Vexp2

|
||

|||
Vexp1

|||
+
|||
Vexp2

|||

Table 7   Example of question-
relevant slices indicated by two 
experts

Xmin Xmax Ymin Ymax Zmin Zmax

Expert 1 115 292 104 236 240 277
Expert 2 154 240 96 175 237 275
Consensus 

expert 1 
and 2

154 240 104 175 240 275



461Expertise development in volumetric image interpretation…

1 3

the consensus meeting: “A selection of slices that are most relevant for the provision of the 
correct diagnosis; for an area to be deemed relevant, the abnormality needs to be visible 
on that area”. Subsequently, all three experts simultaneously looked at the CT-scans of the 
to be revised questions and determined the question-relevant crop box together using the 
definition as ground rule.

Ninth, for revised questions the question-relevant area was set equal to the crop box 
determined in the consensus meeting. Revised questions were only included in the current 
study if the coverage rate of the new consensus area was below 50 percent in all directions 
and if experts reach agreement on inclusion.

In sum, 48 CT-scan questions were selected with an average of 5 questions per DRPT 
(min = 2, max = 9).

Appendix 2: Comparison results of all tested multilevel models 
per outcome variable, used to determine the best fitting models

Study part 1: Outcome variables PercTimeFullRunsAvg and PercTimeRelAreaAvg

Average time spent on full runs per DRPT

As described in the method section, in order to test H1a, we ran multiple successive two-
level longitudinal regression models with the dependent variable PercTimeFullRunsAvg. 
Step by step we extended the intercept only model that included a fixed effect for TrTime 
and random intercepts on the resident and the DRPT level (Model 1), with a fixed effect for 
DRPTdiff (Model 2) and with a random slope for TrTime (Model 3).

For the two-level longitudinal model with the dependent variable PercTimeFullR-
unsAvg, a model that included fixed effects for TrTime and DRPTdiff as well as random 
intercepts on DRPT and resident level (Model 2) was the best fitting model. Specifically, 
Model 2 had a significantly better fit with the data than a model that only included a fixed 
effect for TrTime and random intercepts on the DRPT and the resident level (Model 1), 
∆χ2(1) = 7.68, p = .006. In addition, Model 3, which was Model 2 plus a random slope 
for TrTime, did not fit significantly better than Model 2, ∆χ2(2) = 4.16, p = .12. Further-
more, the random slope for TrTime in Model 3 was not significant, χ2(539)(See footnote 
1) = 585.7, p =.08. This indicates that there were no significant individual differences in 
development of time spent on full runs (i.e., averaged per DRPT) over TrTime. In other 
words, no large individual differences in development rate were found. This also favoured 
the less complex Model 2, of which detailed results are described in the results section.

Average time spent on question‑relevant areas per DRPT

As described in the method section, in order to test H1b, we ran multiple successive two-
level longitudinal regression models with the dependent variable PercTimeRelAreaAvg. 
This was done in a similar manner as the successive models for H1a, with the outcome 
variable PercTimFullRunsAvg.

For the two-level longitudinal model with the dependent variable PercTimeRelAreaAvg, 
a model that included fixed effects for TrTime and DRPTdiff as well as random intercepts on 
the DRPT and the resident level (Model 2), was the best fitting model. Specifically, Model 
2 had a significant better fit with the data than a model that only included a fixed effect 
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for TrTime and random intercepts on the DRPT and the resident level, ∆χ2(1) = 331.62, 
p < .001. In addition, Model 3, which was Model 2 plus a random slope for TrTime, did 
not fit significantly better than Model 2, ∆χ2(2) = 5.95, p = .05. Furthermore, the random 
slope for TrTime in Model 3 was not significant χ2(539)1 = 2.11, p =.13, indicating that 
there were no significant individual differences in development of time spent on question-
relevant areas (i.e., averaged per DRPT) over TrTime. In other words, no large individual 
differences in development rate were found. This also favoured the less complex Model 2, 
of which detailed results are described in the results section.

Study part 2: outcome variable diagnostic accuracy

Diagnostic accuracy aggregated on the DRPT level

As described in the method section, in order to test H2a and H2b, we ran multiple succes-
sive two-level longitudinal logistic regression models with the proportional outcome vari-
able number of questions correct per number of (for the current study selected) questions in 
a DRPT. Step by step we extended the intercept only model that included a fixed effect for 
TrTime and a random intercept on the DRPT level (Model 1), with fixed effects for DRPT-
diff, PercTimeFullRunsAvg and PercTimeRelAreaAvg (Model 2), and with a random slope 
for TrTime (Model 3).

A two-level longitudinal logistic regression model that included fixed effects for TrTime, 
DRPTdiff, PercTimeFullRunsAvg and PercTimeRelAreaAvg as well as a random inter-
cept on the DRPT level, was the best fitting model that included all variables of inter-
est. Specifically, Model 2 had a significant better fit with the data than Model 1, a model 
that only included a fixed effect for TrTime and a random intercept on the DRPT level, 
∆χ2(3) = 9854.62, p < .001. Finally, in Model 3, which was Model 2 plus a random slope 
for TrTime, the random slope for TrTime was not significant z = 0.24, p =.81. This indicates 
that there were no significant individual differences in development of the number of ques-
tions correct per number of questions in a DRPT. In other words, no large individual differ-
ences in development rate were found. This favoured the less complex Model 2, of which 
detailed results are described in the results section.

Appendix 3: Model equations of best fitting models

Best fitting models study part 1

Outcome variable percentage of time spent on full runs averaged over DRPTs 
(PercTimeFullRunsAvg)

The model displayed below, is the best fitting model described in the result section 
(Model 2), which included fixed effects for TrTime and DRPTdiff, and random intercepts 
on the resident and the DRPT level.

1  P-values for random slope of TrTime are based on Chi square tests using only 540 of 648 residents that 
had sufficient data for computation: meaning residents that participated in more than one DRPT.
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Level-1 Model

Level-2 Model

Mixed Model

Outcome variable percentage of time spent on questions relevant areas averaged 
over DRPTs (PercTimeRelAreaAvg)

The model displayed below, is the best fitting model described in the result section 
(Model 2), which included fixed effects for TrTime and DRPTdiff, and random intercepts 
on the resident and the DRPT level.

Level-1 Model

Level-2 Model

Mixed Model

Best fitting model study part 2

Outcome variable number of questions correct per number of (for the current study 
selected) questions in a DRPT (DiagAcc)

The model displayed below is the best fitting model described in the results section 
(Model 2), which includes fixed effects for TrTime, DRPTdiff, PercTimeFullRunsAvg and 
PercTimeRelAreaAvg as well as a random intercept on the DRPT level. Furthermore a 
logit link function is used on the first level in order to deal with the proportional outcome 
variable.

PercTimeFullRunsAvgti = �0i + �1iTrTimeti + �2iDRPTdiffti + eti

�0i = �00 + �0i

�1i = �10

�2i = �20

PercTimeFullRunsAvgti = �00 + �10TrTimeti + �20DRPTdiffti + eti + �0i

PercTimeRelAreaAvgti = �0i + �1iTrTimeti + �2iDRPTdiffti + eti

�0i = �00 + �0i

�1i = �10

�2i = �20

PercTimeRelAreaAvgti = �00 + �10TrTimeti + �20DRPTdiffti + eti + �0i
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Level-1 model

E(NumberQuestionsCorrectti = 1|πi) = ϕti* NumberOfQuestionsti
log[ϕti/(1 − ϕti)] = ηti
ηti = π0i + π1i*(TrTimeti) +  π2i*(DRPTdiffti) + π3i*(PercTimeFullunsAvgti) + π4i*(PercTi
meRelAreaAvgti)

Level-2 Model

π0i = β00 + µ0i
π1i = β10
π2i = β20
π3i = β30
π4i = β40

Mixed model

ηti = β00 + β10TrTimeti + β20DRPTdiffti + β30PercTimeFullunsAvgti
+ β40PercTimeRelAreaAvgti + µ0i.
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