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We investigate a class of cyclic evolutions for driven two-level quantum systems (effective spin 1
2 ) with

a particular focus on the geometric characteristics of the driving and their specific imprints on the quantum
dynamics. By introducing the concept of geometric driving curvature for any field trajectory in the parameter
space, we are able to unveil underlying patterns in the overall quantum behavior: the knowledge of the driving
curvature provides a nonstandard and fresh access to the interrelation between field and spin trajectories, and the
corresponding quantum phases acquired in nonadiabatic cyclic evolutions. In this context, we single out setups
in which the driving field curvature can be employed to demonstrate a pure geometric control of the quantum
phases. Furthermore, the driving field curvature can be naturally exploited to introduce the geometrical torque
and derive a general expression for the total quantum phase acquired in a cycle. Remarkably, such relation
allows to access the mechanisms controlling the changeover of the quantum phase across a topological transition
and to disentangle the role of the spin and field topological windings. As for implementations, we discuss a
series of physical systems and platforms to demonstrate how the geometric control of the quantum phases can
be realized for pendular field drivings. This includes setups based on superconducting islands coupled to a
Josephson junction and inversion-asymmetric nanochannels with suitably tailored geometric shapes.

DOI: 10.1103/PhysRevResearch.2.023167

I. INTRODUCTION

A geometric description is often encountered in physics for
providing a unifying conceptual framework to fundamental
theories, as successfully demonstrated by the geometric refor-
mulation of special relativity and the construction of general
relativity. A geometric perspective in quantum mechanics
bloomed after the remarkable discovery [1–3] that a cyclic
evolution can be marked by a geometric phase for an adi-
abatically perturbed system. The emerging geometric phase
naturally connects with the ubiquitous concept of gauge fields
in physics and to the mathematical notion of fiber bundle.
The progress along this direction led to the generalization
of the geometric phase in degenerate quantum systems [4]
and nonadiabatic cyclic evolutions [5] considering the con-
nection’s property of the projective Hilbert space, which is
defined as the set of rays of the Hilbert space. In this context,
the geometric phase factor refers to the parallel transport
transformation around a closed curve with respect to the nat-
ural connection in the projective Hilbert space as given by the
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inner product. Starting from these seminal works, the concept
of geometric phase has been further developed, setting its
relation with the area enclosed by the cyclic trajectory on the
corresponding domain of the projective space. This approach
has further led to the remarkable observation that there is a
nontrivial geometric phase even for classical systems [6–8].
Alternative advancements have brought to the construction of
the geometric phase in noncyclic evolution [9–11] where, for
an arbitrary quantum trajectory, it is also possible to show
that the integral of the uncertainty of energy with respect
to time is independent of the particular Hamiltonian used
to transport the quantum system along a given curve in the
projective Hilbert space [11]. On a general ground the geom-
etry of quantum states in the Hilbert space is encoded in the
quantum metric tensor [12,13] whose real (i.e., Fubini-Study
metric) and imaginary (i.e., Berry curvature) components have
been successfully measured in a large variety of engineered
quantum platforms.

In the domain of quantum information processing, a special
position is given to driven two-level systems (TLSs) as a
paradigmatic model to describe a large variety of physical
systems. Indeed, it was originally used in relation to spins
and atomic collisions, and then extended to artificial meso-
scopic systems based on semiconducting quantum dots and
superconducting circuits. A distinct aspect of the quantum
TLS is that the two energy levels can exhibit an avoided
level crossing when some external parameters are varied. The
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physical properties of the two energy eigenstates are typically
exchanged when going from one side of the avoided crossing
to the other side. If the external control parameter is varied
in time such that the system crosses the avoided region,
a nonadiabatic Landau-Zener transition can occur [14–17].
Along this line, solid-state TLSs are at the center of great
attention because they both manifest fundamental quantum
phenomena at a macroscopic scale, and have a great potential
to operate as quantum bits (qubits) in emergent technologies
for quantum information processing.

One of the primary goals in quantum information and com-
putation is to implement precise universal gates because they
represent the fundamental building blocks for constructing
complex quantum operations. A promising approach toward
this goal is to use quantum geometric phases which are
acquired whenever a quantum system evolves cyclically along
a path in the Hilbert space of quantum states. In contrast
to dynamical phases, geometric phases depend only on the
geometry of the paths executed and are therefore robust to
perturbations or certain types of errors, thus offering a sig-
nificant potential to improve the fidelity of the gate operations
[18–22]. Although quantum error-correction, error-avoiding,
and error-suppression methods [23,24] have been developed
to control quantum information against decoherence, the
geometric [25,26] and topological [27,28] approaches may
provide superior paths to stabilize the quantum evolution by
encoding its dynamics into global properties rather than on
the details of the way it is actually realized. For instance,
concerning the manipulation of the holonomic phase, the sig-
nificant advancements and developments of semiconductor-
based quantum electronics and nanotechnologies led to the
manipulation of electronic states through the corresponding
spin geometric phase with experimental evidences [29–31]
and the prospect of achieving topological spin engineering
[32–34]. In this framework, the electron spin can be controlled
when combining spin-orbit coupling in inversion-asymmetric
semiconducting nanochannels with nontrivial geometric cur-
vature. The potential of this union indeed yields augmenting
paths for the design of topological states [32–37] and spin
transport [30,38–43]. Such effects have multifold geometrical
marks as they can strongly depend on the nanoscale shaping
in narrow spin-orbit-coupled semiconducting channels which,
in turn, act as driving fields with spatially inhomogeneous
geometrical torque controlling both the spin orientation and
its spin phase through nontrivial spin windings [32–34,36].

In this paper, we study two-level quantum systems subject
to driving fields that evolve cyclically in a parametric space
by introducing the concept of geometric curvature for any
given field trajectory. The main goal is to unveil its role in
imprinting the overall quantum behavior. We devise quan-
tum TLS setups on which the driving field’s curvature can
be employed to control the geometric phase and to travel
the parameter space along paths that keep the dynamical
phase constant. This is demonstrated for pendular fields that
can be implemented in different solid-state platforms. By
exploiting the knowledge of driving field curvatures, we
show the path to construct nonadiabatic solutions that well
reproduce most of the quantum phases acquired along closed
paths in the parameter space. Moreover, we find that the field
curvature unveils the mechanism through which driving fields

undergoing a topological transition leave a topological imprint
in the quantum TLS dynamics and phases [32,33].

As for physical realizations, we devise a series of plat-
forms exploiting the geometrical character of the driving
field and demonstrate its potential to engineer the overall
quantum phases. These platforms, such as spin-orbit-coupled
nanochannels with nontrivial geometric shape and voltage-
driven superconducting nanostructures, can be mapped onto
spin- 1

2 systems with a parametric field driving where predic-
tions of the geometrical mark can be assessed.

The paper is organized as follows. In Sec. II we define the
model system, we provide a quantum dynamical construction
of near-adiabatic solutions, and apply them to the case of a
pendular field. Section III is devoted to the introduction of the
field curvature concept, the emergent geometrical torque, and
the general consequences on the total quantum phase acquired
during the cycle. In Sec. IV we revisit the near-adiabatic
solution from a topological perspective of the spin trajectory
on the Bloch sphere. Section V is devoted to the discussion of
the total phase across a topological transition in the parameter
space. Finally, in the concluding section we consider possible
physical platforms to observe the predicted effects.

II. SPIN- 1
2 SYSTEMS AND THE ADIABATIC

APPROXIMATION IN THE ROTATING FRAME:
THE PENDULAR FIELD CASE

We start out by considering the quantum evolution of a
generic quantum TLS under the action of time-dependent
periodic fields which, for simplicity, we take to be coplanar
[44]. The corresponding Hamiltonian can be then recast in the
form

H(t ) = Bx(t )σx + By(t )σy, (1)

where Bx,y(t ) are the two components of the T -periodic field
B while σx,y are the corresponding Pauli spin- 1

2 operators.
Assuming that at an initial time t = 0 the system is prepared
in an eigenstate of the Hamiltonian, and that the applied
field changes sufficiently slowly during the course of time,
one can suppose that the system will remain in an instanta-
neous (snapshot) eigenstate of H(t ) for all t ∈ [0, T ]. This
is the content of the well-known adiabatic approximation
(AA). Furthermore, the time periodicity of the driving field
ensures that at time t = T the system’s state verifies |ψ (T )〉 =
|ψ (0)〉 eiφ(T ), with a total phase that can be split in geometric
and dynamical components. Within the AA, the geometric
phase corresponds to the usual Berry phase γB = ∫ T

0 A(t )dt
with A = 〈ψ | i∂t |ψ〉 the Berry connection. In this context, it
can be also shown that the geometric phase is proportional
to the solid angle � gathered by |ψ (t )〉 in the Bloch sphere
after one period T (interestingly, this still holds in the case of
nonadiabatic dynamics). The dynamical phase is given by d =
− ∫ T

0 E (t )dt/h̄, where E (t ) is the snapshot eigenenergy of the
system. For the Hamiltonian class of Eq. (1) the dynamical
phase is simply d = −s

∫ T
0 |B(t )|/h̄ where s = ±1 labels the

two nondegenerate quantum levels. Moreover, by choosing
the gauge in which the snapshot eigenstates read as |ψ (t )〉 =
[1, s exp (iϑ (t ))]/

√
2, the Berry connection can be written as

A(t ) = −∂tϑ (t )/2 where ϑ (t ) = arctan [By(t )/Bx(t )].
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FIG. 1. (a) Schematic illustration of the pendular field trajectory (orange dots) in the (Bx, By ) plane. Contour map of the cosine of the
(b) quantum geometric, (c) dynamical, and (d) total phase for the adiabatic solution (AA) corresponding to a spin state that instantaneously
follows the direction of the applied field, as a function of the pendular field amplitude B0 and the maximum of the driving curvature Kmax/(ωπ ),
respectively. (e) Amplitude of the applied field vs time. For the pendular driving field, the amplitude B0 is constant in time. Contour map of the
cosine of the (f) quantum geometric, (g) dynamical, and (h) total phase for the adiabatic solution in the rotating frame (AARF) as a function
of the pendular field amplitude B0 and the maximum of the field curvature Kmax/ωπ , respectively. (i) Time-dependent evolution of the field
curvature K (t ) showing a sinusoidal profile. Contour map of the cosine of the (j) quantum geometric, (k) dynamical, and (l) total phase for the
exact solution of the two-level driven system, respectively. As one can notice, the AARF solution with the spin following the effective field in
the rotated frame captures the main features of the quantum geometric, dynamical, and total phases. The dotted arrow in (k) and (l) indicates
a representative path in the parameter space with constant dynamical phase, such that the corresponding variation of the total quantum phase
(l) is uniquely due to a geometric modification of the accumulated phase in a cycle. In the region below the long-short dotted line, the AARF
solution fails and the geometric, dynamical, and total phases deviate significantly from those obtained by means of the full solution because
the amplitude of the driving curvature is larger than the strength of the total field (see Sec. III). We assume h̄ = 1 in all the panels.

For illustration, it is instructive to consider how these
concepts apply to a specific case. Figure 1(a) depicts a pen-
dular driving field of constant magnitude B0 oscillating with
frequency ω = 2π/T and components

Bx(t ) = B0 cos [ϑ0 cos(ωt )], (2)

By(t ) = B0 sin [ϑ0 cos(ωt )], (3)

where ϑ (t ) = ϑ0 cos(ωt ) is the polar angle. By following the
above definitions we find a vanishing Berry phase γB = 0 and
a dynamical phase d = −sB0T/h̄, as shown in Figs. 1(b)–
1(d). This elementary response, however, is dramatically en-
riched out of the AA when considering a solution which
is nonadiabatic and includes curvature effects of the driving
field.

Generally speaking, the AA is an appropriate description of
the dynamics when the driving period T is much larger than

the characteristic relaxation time τ (t ) = h̄/|B(t )| correspond-
ing to the transition between the two quantum levels of the
system. As a result, corrections to the AA can be defined per-
turbatively in the small frequency parameter 1/T and, at the
first order, yield the so-called near-adiabatic approximation.
Instead of employing the latter, we will now define an adia-
batic approximation in a particular rotating frame, inspired by
the idea put forward by Berry of performing a series of unitary
transformations to the time-dependent Schrödinger equation
[45].

Let us consider the time-dependent Schrödinger equation
for our spinorial wave function

ih̄∂t |ψ (t )〉 = H(t )|ψ (t )〉 (4)

and recall that, using the quantities defined above, the time-
dependent Hamiltonian can be recast in the form

H(t ) = |B(t )|[cos ϑ (t )σx + sin ϑ (t )σy]. (5)
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Next, we perform an SU(2) transformation of the Hamilto-
nian such that the spin operators are instantaneously aligned
with the field amplitude while preserving the structure of
the Hamiltonian operator, i.e., its anticommutation with one
generator of the Clifford algebra. By recalling that the time-
dependent Schrödinger equation for the transformed wave
function |ψR(t )〉 = U †(t )|ψ (t )〉 reads as

ih̄∂t |ψR(t )〉 = [U †(t )H(t )U (t ) + ih̄(∂tU
†(t ))U (t )]|ψR(t )〉,

(6)

we find that the required SU(2) transformation of the Hamilto-
nian simply reads as U (t ) = exp [−iϑ (t )σz/2]. Consequently,
the time-dependent Schrödinger equation for the rotated wave
function is given by

ih̄∂t |ψR(t )〉 =
[
|B(t )|σx + h̄K (t )

2
σz

]
|ψR(t )〉, (7)

where we have introduced K (t ) = −∂tϑ (t ) for later conve-
nience. Two remarks are in order here. First, the fact that
a rotation of the wave function yields a different time de-
pendence in the Hamiltonian—also involving the velocity
of the driving fields—allows us to establish an “instanta-
neous” criterion for the validity of the quantum adiabatic
approximation. In fact, the latter will be accurate as long as
min|B(t )| � max|h̄K (t )|, so that the quantum evolution of
the system is not susceptible to the instantaneous rotation
of the Hamiltonian. Second, we can now define an adiabatic
approximation in the rotating frame (AARF) by demanding
the rotated wave function to be a snapshot eigenstate |ψRA(t )〉
of the rotated Hamiltonian written above. This, in turn, yields
the nonadiabatic wave functions |ψ̃ (t )〉 = Ũ (t ) |ψRA(t )〉 in the
laboratory frame, where Ũ (t ) = U(1)U (t ) includes an ad-
ditional U(1) = exp [−iϑ (t )/2] unitary transformation guar-
anteeing that |ψ̃ (t )〉 is periodic. Hence, we can compute
the nonadiabatic Aharonov-Anandan geometric phase γ =∫ T

0 〈ψ̃ (t )| i∂t |ψ̃ (t )〉 dt as well as the nonadiabatic dynamical
phase in a straightforward manner. In fact, the two phases take
the simple form

γ =
∫ T

0
〈Ũ †(t )i∂tŨ (t )〉 dt + γB, (8)

d = −1

h̄

∫ T

0
〈Ũ †(t )H(t )Ũ (t )〉 dt

= −1

h̄

∫ T

0
|B(t )| 〈σx〉 dt . (9)

In the equations above, the geometric phase consists of
two terms. The first term corresponds to the expectation
value over the snapshot eigenstates |ψRA(t )〉 of the composed
unitary transformation, while the second term corresponds
to the Berry phase γB = ∫ T

0 〈ψRA(t )| i∂t |ψRA(t )〉 dt , which
identically vanishes. The dynamical phase simply corresponds
to the expectation value of the Hamiltonian in Eq. (5) over
the nonadiabatic wave functions |ψ̃ (t )〉, which in terms of
the adiabatic |ψRA(t )〉 can be written as the spin expectation
value 〈σx〉. Finally, by using the conventional expression for

the snapshot eigenstates |ψR(t )〉, we end up with the following
expression for the two quantum phases:

γ = 1

2

∫ T

0
K (t )dt − s

2

∫ T

0

h̄K (t )2√
4|B(t )|2 + h̄2K (t )2

dt, (10)

d = − s

h̄

∫ T

0

2|B(t )|2√
4|B(t )|2 + h̄2K (t )2

dt . (11)

It is useful to examine the approximate dynamics introduced
above from a geometric viewpoint. For this purpose, it is
convenient to employ a moving reference frame with a time-
dependent basis spanned by two unit vectors N̂ (t ) and T̂ (t ),
that are defined at any given time t in the applied field’s
space. In a similar fashion, one can also define the local Pauli
matrices projected along N̂ (t ) and T̂ (t ) in the moving frame
as σN (t ) = σ · N̂ (t ) and σT (t ) = σ · T̂ (t ). The choice of the
reference frame is made in such a way to have the applied
field always collinear to one direction [e.g., N̂ (t )]. Hence,
as it is commonly done for the case of a generic curvilinear
profile in two dimensions, one can conveniently set N̂ (t ) and
T̂ (t ) as the normal and tangential directions of the effective
field trajectory and employ the polar angle ϑ (t ) to express
them in parametric form as N̂ (t ) = {cos ϑ (t ), sin ϑ (t ), 0},
and T̂ (t ) = {sin ϑ (t ),− cos ϑ (t ), 0}. By using the Frenet-
Serret (FS) equations [46], it is then possible to connect the
variation of the normal component with the tangential one
through the relation ∂tN̂ (t ) = K (t )T̂ (t ), where K (t ) is what
we dub as the driving curvature of the field trajectory in
the moving frame. This directly implies that the polar angle
ϑ (t ) and the driving curvature are related via ∂tϑ (t ) = −K (t ),
which in turn endows the effective field z component K (t )
introduced in Eq. (7) with a precise geometrical meaning. Put
in different words, the local driving curvature is equivalent
to an extra field component along the z direction in the
rotating frame. We will elaborate on this connection in the
following section. At this stage, to avoid misinterpretation,
it is important to notice that K (t ) is not the curvature of the
applied field in the time domain which is instead given by

(B′
xB′′

y −B′
yB′′

x )
[(B′

x )2+(B′
y )2](3/2) . Furthermore, we also notice that K (t ) is the

angular velocity of the applied field.
We observe that in the selected rotating frame the Hamil-

tonian can be expressed as

H(t ) = |B(t )|σN (t ),

with σN reading as

σN (t ) = [ fx(t )σx + fy(t )σy]. (12)

Here, fx(t ) = Bx (t )
|B(t )| and fy(t ) = By (t )

|B(t )| are the projections of the
spin components along the x and y axes in the laboratory
reference frame, respectively. By using Eq. (12) and the
relation between the polar angle and the curvature, one can
immediately deduce the expression of the effective driving
curvature in terms of the field components as

K (t ) = −[ fx(t )∂t fy(t ) − fy(t )∂t fx(t )]. (13)

As a first observation, by virtue of the FS geometric represen-
tation, we find that the integral of the curvature over a period
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FIG. 2. Schematics of (a) Frenet-Serret-Bloch sphere with the effective torque field heff, (b) parametric profile of two representative field
trajectories with different winding number, and (c) the corresponding curvatures K (t ). (d)–(f) Denote a time snapshot of the average spin
orientation on the Frenet-Serret-Bloch sphere in the (θ, ϕ) plane corresponding to points D, B, and C in (c), respectively.

is an integer nK modulo 2π , namely,

1

2π

∫ T

0
K (t )dt = nK . (14)

Indeed, it is equivalent to the winding of the applied field
and thus provides information on the topological character
of the driven quantum system with respect to the field tra-
jectory in the time space. In Fig. 2(b) we show two generic
field trajectories associated with either zero or nonvanishing
windings. According to Eq. (13), one can directly determine
the corresponding evolution of the driving curvature K (t ) [see
Fig. 2(c)]. As expected, for the zero-winding field trajectory
the curvature changes its sign, while it has a unique sign for
the case of a field that winds around the origin. We also notice
that the amplitude of the curvature is generally nonuniform in
time and it can get enhanced at special points of the trajectory.
This can be observed, for instance, in the positions E and
C of the trajectories in Fig. 2(b). Alternatively, there can be
positions along the time evolution where the curvature is small
or vanishes as it occurs at the points A, F, and D in Fig. 2(c),
respectively.

Back to the pendular driving introduced by Eqs. (2) and (3)
and depicted in Fig. 1(a), we find that the angular amplitude
reads as ϑ0 = Kmax/ω, where Kmax is the maximum value
taken by the curvature K (t ) = ϑ0ω sin(ωt ), such that

Bx(t ) = B0 cos

[
Kmax

ω
cos(ωt )

]
, (15)

By(t ) = B0 sin

[
Kmax

ω
cos(ωt )

]
. (16)

As expected for a pendular field with trivial topology, we
notice that the winding nK defined in Eq. (14) vanishes.
Still, this does not prevent the system to develop a complex
dynamics in nonadiabatic conditions. This can be seen by

evaluating the geometric and dynamic phases arising from the
AARF given in Eqs. (10) and (11), the solution of which are
elliptic integrals depicted in Figs. 1(f) and 1(g) as a function
of the field’s strength B0 and the curvature’s amplitude Kmax

(in units of ω). There we find that the geometric phase,
Fig. 1(f), displays a series of wavefronts mainly controlled
by Kmax with a drift as a function of B0. This stands in
sharp contrast to the case of adiabatic evolution with van-
ishing Berry phase for the spin solution that instantaneously
follows the field trajectory, Fig. 1(b). As for the dynamical
phase [Fig. 1(g)], it develops wavefronts as a function of B0

similar to those found in the AA [Fig. 1(c)], except that for
the AARF it exhibits a drift as a function of Kmax. Due to
the geometric phase contribution, the total phase [Fig. 1(h)]
now displays a pattern of radial wavefronts differing sig-
nificantly from the standard adiabatic case as reported in
Fig. 1(d).

In Figs. 1(j)–1(l) we show the exact solutions for the
geometric, dynamic, and total phases by solving the full
dynamics of the two-level system under the pendular driving
described by Eqs. (15) and (16). The exact dynamics has
been obtained by numerically solving the torque equation
[Eq. (18) in Sec. III] for the time-dependent evolution of
the expectation values of the spin components. Hence, the
geometric and dynamical phases are evaluated by inserting
the solution for the spin amplitudes in Eqs. (23), (24), and
(26). In addition, we have also used the Floquet approach to
confirm that the amplitude of the geometric and dynamical
phases are the same as those obtained within the framework of
the torque equation. More details on the implementation of the
Floquet approach can be found in Ref. [33]. By comparison
with Figs. 1(f)–1(h), we find that the AARF captures the
main features of the geometric and dynamic phases except
for the set of localized dynamical degeneracies (vanishing
dynamical phases) emerging under strong driving (coinciding
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with Rabi resonances for small ϑ0 = Kmax/ω). As for the total
phase [see Figs. 1(h) and 1(l)], the AARF also captures the
overall behavior very well thanks to the exact cancellation of
dynamical-degeneracy contributions present in geometric and
dynamical phases as it has been also reported in Refs. [32,33]
for circular field drivings.

The above example is very instructive as it already illus-
trates the role played by the driving curvature in the control of
the two-level dynamics. In the following sections, we provide
another perspective of our approach by discussing further
geometric and topological aspects.

To conclude this section, it is useful to provide the criteria
for the validity of the AARF solution. To this end, let us first
recall the physical condition that stands behind the conven-
tional adiabatic approximation (AA) in the laboratory frame.
As discussed above, the use of the conventional AA implies
that the minimum of the amplitude of the applied field has
to be much larger than the maximum of the intensity of the
curvature K (t ) (scaled by h̄), i.e., min|B(t )| � max|h̄K (t )|.
This is consistent, as we will show in Sec. III, with the view
that the curvature drives the spin out of the plane where the
nominal field resides and, thus, in order to get a solution
with the spin collinear to the applied field, K (t ) should be
much smaller than the scaled field amplitude. An alternative
outlook is to notice that the curvature K (t ) is also the angular
velocity of the applied field, so that if the field rotation is
sufficiently slow, the spin can follow the direction of the
field.

With these basic observations for the AA solution, we
can derive the physical conditions behind the AARF. In fact,
one can state that an adiabatic alignment with the effective
field heff(t ) in the rotating frame, defined by the |B(t )| and
K (t ) components, requires the emerging driving curvature
of this field, indicated as F (t ), to be much smaller than
the intensity of heff(t )/h̄, i.e., min|heff(t )| � max|h̄F (t )|. An
explicit expression for F (t ) can be obtained in two ways.

On the one hand, one can perform two consecutive trans-
formations from the nominal Hamiltonian in a way that the
spin gets aligned along heff(t ), as follows. Starting from the
time-dependent Hamiltonian introduced in Eq. (5), a first ro-
tation U (t ) = exp[−i ϑ1(t )

2 σz] yields the Hamiltonian H1(t ) =
|B(t )|σx + h̄ K (t )

2 σz with K (t ) = −ϑ ′
1(t ) [Eq. (7)]. We see that

the driving curvature in the rotated frame acts as an effective
field which is perpendicular to the nominal magnetic field
B(t ). Hence, we proceed further and, starting from H1(t ),
we rewrite the Hamiltonian in a polar form (now in the
xz spin plane) as H2(t ) = |B2(t )|[cos ϕ2(t )σx + sin ϕ2(t )σz],

having introduced the amplitude |B2(t )| =
√

|B(t )|2 + h̄2K (t )2

4

and the angular variable ϕ2(t ) = arctan [ h̄K (t )
2B(t ) ]. By means of

the additional rotation U2(t ) = exp[−i ϕ2(t )
2 σy] we can con-

struct the effective Hamiltonian in the new rotated frame
H3(t ) = |B2(t )|σx + h̄

2 F (t )σy, where the driving curvature is

F (t ) = ϕ′
2(t ) = 2h̄[−K (t )B′(t )+B(t )K ′(t )]

4B(t )2+h̄2K (t )2 . This driving curvature
corresponds exactly to the vortex velocity [Eq. (32)] that we
will introduce in Sec. IV.

Alternatively, one can simply observe that F (t ) is equal
to the angular velocity of heff(t ) in the xz spin plane which,
again, is given by Eq. (32) [see also Eq. (33)].

III. DRIVING CURVATURE
AND GEOMETRICAL TORQUE

While it is intuitive to single out the topological aspect
of the curvature or winding of the applied field, it is less
obvious to track the meaning and the role of the instantaneous
amplitude of the curvature K (t ) at any given position along
the parametric evolution. We aim to show that, indeed, the
value of the curvature carries fundamental information for
predicting the overall behavior of the quantum TLS, and
that it plays a role which is beyond its topological intrinsic
character. In particular, some of the results discussed in this
section apply to any parametric dependence of the applied
field, including the possibility of nonperiodic trajectories.

To start, we recall that the time evolution of a generic
spin state |ψ (t )〉 is described by the Schrödinger equation
ih̄∂t |ψ (t )〉 = H(t )|ψ (t )〉. Let us then consider the spin ori-
entation for the state |ψ (t )〉 defined by the corresponding
expectation value of the spin operators in the FS reference
frame, i.e., 〈ψ |σ|ψ〉 = 〈σ〉 = {〈σT 〉, 〈σN 〉, 〈σz〉}, where we
drop the time dependence of the expectation values here and in
the following paragraphs for convenience. Taking into account
both the FS and the Schrödinger equations, one immediately
arrives to

∂t 〈σ〉 = ih̄−1〈[H(t ), σ]〉 + 〈∂tσ〉 (17)

with [A, B] denoting the commutator of A and B. Hence, by
considering that [H(t ), σN ] = 0, [H(t ), σT ] = −2i|B(t )|σz,
[H(t ), σz] = 2i|B(t )|σT , and ∂tσz = 0, it follows

∂t 〈σN 〉 = K (t )〈σT 〉,
∂t 〈σT 〉 = 2h̄−1|B(t )|〈σz〉 − K (t )〈σN 〉, (18)

∂t 〈σz〉 = −2h̄−1|B(t )|〈σT 〉.
These relations can be rearranged in a compact gyroscope-
like form by introducing an effective time-dependent field
heff(t ) = {0, 2h̄−1|B(t )|, K (t )} in the space spanned by the
the spin components 〈σ〉 = {〈σT 〉, 〈σN 〉, 〈σz〉}. The ensuing
gyroscope equation reads as

∂t 〈σ〉 = heff(t ) × 〈σ〉. (19)

Since the time derivative of the spin vector is perpendicular
to σ, it directly follows that the amplitude of the local spin
component 〈σ〉2 is constant along the parametric trajectory,
i.e., ∂t (〈σ〉 · 〈σ〉) = 0.

The resulting field heff(t ) in the moving frame is made
of two components [Fig. 2(a)]. One points along N̂ and it
depends only on the amplitude of the applied field |B(t )|. The
second one is parallel to the z direction in the spin space and it
has a pure geometrical character in the sense that it is uniquely
linked to the change of orientation of the applied field through
the driving curvature K (t ). By construction, then, heff(t ) has
a time evolution that is confined in a plane within the rotating
spin reference frame [Fig. 2(a)], independently of the form
of the applied field in the parametric space. We observe
that any orientation change of the driving field leads to a
nontrivial component of heff(t ) along the z direction which
is perpendicular to the plane of the applied field. This is also
a general aspect of heff(t ) and it occurs independently of the
topological character of the applied field, that is, whether or
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not the field has a nonvanishing winding regarding its evolu-
tion in the parameter space. A simple scenario now emerges:
in the rotating frame, the spin evolves in time according to
Eq. (19), subject to a planar effective field to which the driving
curvature contributes by providing a geometrical component
that is perpendicular to the plane of the applied field. This
sheds new light on the dynamical approach introduced in
Sec. II, with heff(t ) being in clear correspondence with the
effective field defined by Eq. (7).

It is also convenient to unveil the geometrical and topolog-
ical aspects encoded in the geometrical and dynamical phases
introduced in Sec. II. To this end, we note that the wave
function |ψ (t )〉 can be generally expressed in the form

|ψ (t )〉 =
(

exp[i f (t )/2] exp[iθ⇑(t )]A⇑(t )

exp[−i f (t )/2] exp[iθ⇓(t )]A⇓(t )

)
,

where f (t ) = ∫ t
0 K (t̄ )dt̄ , and {A⇑, A⇓} are real. This structure

for |ψ (t )〉 is convenient because the expectation values of the
local spin 〈σ〉 in the FS reference frame can be linked to
the components of the wave function through the following
relations:

tan[θ⇑ − θ⇓] = 〈σT 〉
〈σN 〉 , (20)

A2
⇑ − A2

⇓ = 〈σz〉. (21)

In addition, the integral of the curvature over a period is a
multiple of an integer [Eq. (14)]. Interestingly, after a period
T , the phase difference (θ⇑ − θ⇓) acquires a shift 2πnNT ,
with nN T being the winding number associated with the
normal and tangential spin components:

nN T = 1

2π

∫ T

0
qN T (t )dt .

Here, qNT (t ) = [〈σN 〉∂t 〈σT 〉−〈σT 〉∂t 〈σN 〉]
[〈σT 〉2+〈σN 〉2] , in analogy with the

curvature of the applied field, may be naturally understood
as the curvature of the normal and tangential spin components
with respect to the binormal direction in the parametric space.

Furthermore, one can show that

|ψ̃ (t )〉 =
(

A⇑(t )

exp[i f (t )] exp{−i[θ⇑(t ) − θ⇓(t )]}A⇓(t )

)
verifies |ψ̃ (0)〉 = |ψ̃ (T )〉 which, according to Aharonov and
Anandan, allows us to compute the geometric phase as

γ =
∫ T

0

〈ψ̃ |i∂t |ψ̃〉
〈ψ |ψ〉 dt (22)

= π

(
nK + nN T − 1

2π

∫ T

0
〈σz〉[K (t ) + qNT (t )]dt

)
,

(23)

with the dynamical phase given by

d = −1

h̄

∫ T

0

〈ψ |H|ψ〉
〈ψ |ψ〉 dt = −1

h̄

∫ T

0
|B(t )|〈σN 〉dt . (24)

We observe that the geometrical and dynamical phases
depend on both the curvature of the applied field K (t ) and
the curvature of the normal and tangential spin components
qN T (t ), as well as on the components of the spin orientation

vector and their time derivatives [via qNT (t )], which in turn
depend on the amplitude of the spin components themselves
via Eq. (18). This allows one to end up with a fundamental
expression for the geometric phase which explicitly shows its
interrelation with the dynamical phase and with the field and
spin winding numbers as

γ = −d − 1

h̄

∫ T

0

|B(t )|〈σN 〉
〈σN 〉2 + 〈σT 〉2

dt + π [nN T + nK ]. (25)

Moreover, by reinserting Eq. (18) in Eq. (25), we obtain for
the total phase

φtot = γ + d = −1

h̄

∫ T

0

|B(t )|〈σN 〉
1 + 〈σz〉 dt, (26)

which shows that φtot is independent of the spin and field
curvatures. This is one of the central results of the paper: for a
given cyclic evolution in the parametric space, the total phase
acquired by the quantum state does not depend explicitly on
the velocity of the average spin components. Remarkably, the
integrand only differs from that of the dynamical phase (24)
by a factor that depends on the component of the spin which is
perpendicular to the plane of the applied field. In principle, the
regularity of the integrand in Eq. (26) might be compromised
by the presence of this factor only if 1 + 〈σz〉 → 0, which
corresponds to the spin passing through the south pole on
the Frenet-Serret-Bloch (FSB) sphere. However, a closer look
at this case evidences that the integrand is in fact regular
everywhere, so that, on a general ground and independently
of the form of the driving field, one does expect a smooth
evolution of the total phase in the parametric field space. This
is shown by first noticing that, for the specific times t∗ when
1 + 〈σz〉 → 0, 〈σN 〉 also vanishes, which demands a detailed
evaluation of the limit. A Taylor expansion around t∗ of both
the numerator and denominator of the integrand gives, up to
zeroth order in t → t∗,

|B(t∗)|〈σN 〉
1 + 〈σz〉 ∼ |B(t∗)|K (t∗)〈σT 〉t∗

2|B(t∗)|〈σT 〉t∗
= 1

2
K (t∗). (27)

Since the curvature has a smooth behavior in time, we do
not expect a singular changeover of the total phase in the
parameter space, even in this critical case.

It is worth to note that, although the amplitude of the
tangential spin component does not explicitly appear in the
expression for φtot, it implicitly affects the total phase since
the total amplitude of the spin is a constant of motion, hence,
〈σT 〉 plays a role through this constraint. Finally, it is apparent
that significant variations of the total phase may be expected
since spin trajectories may lead to cancellations or amplifica-
tions of the integrand function.

IV. AARF REVISITED AND BEYOND

Let us consider the resulting geometric and dynamical
phases for a spin trajectory such that the spin orientation is
always parallel to the field heff(t ). For such configurations, one
has that 〈σN 〉 ≡ hN and 〈σz〉 ≡ hz, where hN (t ) = 2|B(t )|

|heff (t )| and

hz(t ) = K (t )
|heff (t )| are the projections of heff(t ) along the N and z

directions in the spin component’s space. By replacing these
expressions in the relations for the geometric and dynamical
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phases, one finds that

γ = π

(
nK − 1

2π

∫
h̄K (t )2

|heff(t )|dt

)
, (28)

d = −
∫

2|B(t )|2
h̄|heff(t )|dt, (29)

φtot = πnK +
∫ |heff(t )|

2h̄
dt . (30)

Again, this is in complete agreement with the results obtained
within the AARF discussed in Sec. II.

In order to further comprehend the consequences of the
driving curvature on the spin trajectory, it is convenient to
express the torque equation in spherical coordinates in the
FSB reference frame [see Fig. 2(a)]. Then, a point on
the sphere identifies the average spin orientation at a given
time position t∗ through the angles {θ (t∗), ϕ(t∗)} [Fig. 2(a)].
The average spin components can be written as

〈σN (t )〉 = cos[θ ],

〈σz(t )〉 = sin[θ ] cos[ϕ],

〈σT (t )〉 = sin[θ ] sin[ϕ],

where the spin σ is assumed to have an amplitude equal to
one. The torque equations (18) reduce to two independent
equations for the derivative of the coordinates {θ (t ), ϕ(t )}:

·
θ = −K (t ) sin[ϕ],

·
ϕ = 2

|B(t )|
h̄

− K (t ) cos[ϕ]
1

tan[θ ]
. (31)

By assuming that the curvature is nonsingular along the time

trajectory, one observes that the torque vanishes (i.e., that
·
θ =

·
ϕ = 0) at those points P1,2(t ) on the FSB sphere such that ϕ =
ϕ1,2 = 0 or π and θ = θ1,2(t ) = arc cot[± 2|B(t )|

h̄K (t ) ]. It is worth
pointing out that, independently of the geometric properties
of the field trajectory, these points lie on the line defined by
intersection of the FSB sphere and the N -z plane, along which
they move with a velocity

vθ1,2
(t ) =

·
θ1,2(t ) = ±2h̄[−|B(t )|′K (t ) + |B(t )|K ′(t )]

4|B(t )|2 + h̄2K (t )2
, (32)

which is strongly connected to the time evolution of the ap-
plied field’s curvature and strength. Remarkably, this velocity
may be expressed also as the curvature of the effective field
heff(t ) in the moving frame

vθ1,2
(t ) ≡ ±[hN (t )∂t hz(t ) − hz(t )∂t hN (t )]. (33)

Since |B(t )| is always positive, one can conclude that heff(t )
has a zero winding around T̂ . Hence, the velocity of the
(instantaneous) fixed points P1,2(t ) averaged over a period
vanishes.

To proceed further, we linearize Eqs. (31) around the
instantaneous fixed points P1,2(t ), which gives the Jacobian

J =
(

0 ±K (t )

∓K (t ) h̄2K (t )2

[|B(t )|2+h̄2K (t )2] 0

)
,

with eigenvalues

EJ = ±i
h̄K (t )2√

|B(t )|2 + h̄2K (t )2
,

independently of the positions of the points P1,2(t ). Notice
that, if K (t ) �= 0, these eigenvalues are purely imaginary and
different from zero for any value of the field amplitude and
curvature. This means that, nearby the points P1,2(t ), the
trajectories of the spin velocity field in the FSB sphere form
closed loops, namely, they have a vortexlike profile at any time
position along the parametric trajectory.

This is numerically confirmed in Figs. 2(d)–2(f), where we
show different snapshots of the spin flow in the (θ, ϕ) plane
by depicting the spin vector velocity, represented by an arrow,
for different values of the curvature. Figure 2(d) corresponds
to a case of vanishing curvature [point D of the field trajectory
in Fig. 2(c)]. In this situation, there is no time gradient in the
azimuthal angle, so that the spin velocity is uniform. For a
nonvanishing amplitude of the curvature [Figs. 2(e) and 2(f)],
the torque can vanish at ϕ = 0, π for values of the azimuthal
angles that can be positive or negative depending on the sign
of K (t ). As expected, the spin velocity flow exhibits a vortex
structure around these points.

A closer look to the vortex structure reveals that, for a
large amplitude of the curvature, the spin velocity flow winds
around the core of the vortex even for values of θ far from
it, so that about all the points on the sphere (i.e., any spin
orientation) are influenced by the presence of the vortex
[Fig. 2(f)]. On the contrary, for smaller values of K (t ), the
influence of the vortex on the Bloch sphere is limited to spin
orientation angles close to the positions of the points with
vanishing torque [Fig. 2(e)]. We also notice that the spin flow
always winds in opposite directions around the vortex cores
situated at ϕ = 0 and π . Moreover, for a given vortex, the
winding may be clockwise or anticlockwise depending on the
value of the polar angle and the sign of the curvature.

The overall dynamical scenario can be immediately visual-
ized on the basis of these simple snapshot features. A change
in the parametric space (e.g., time) modifies the spin velocity
pattern by rocking the vortices back and forth from the north
(south) pole to the equator in the N -z plane, with a velocity
[Eq. (32)] governed by the field and curvature amplitudes
and their derivatives. During their motion, the vortices expand
or shrink depending on the strength of the curvature. Then,
when the system is prepared in a spin configuration at a given
position in the parametric space, the evolution of spin trajec-
tory is dictated by whether the spin (i) is trapped and pinned
by the vortex, (ii) succeeds to avoid its attraction, or (iii) is
deflected by the vortex path, i.e., its trajectory is scattered by
the vortex motion. In general, for competing curvature and
field strengths, all cases from (i) to (iii) cooperate to determine
the global spin dynamics.

In conclusion, the dynamical evolution of the spin in the
moving frame is clearly controlled by the presence of two
topological objects on the Bloch sphere whose motion results
from the competition between the curvature of the applied
field and the strength of the field itself. Each vortex is pinned
to move in the N -z plane and generally drives the motion of
the spin by modifying the pattern of the spin velocity flow
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through the variation of its size on the Bloch sphere (i.e.,
via the curvature of the applied field in the rest frame) and
its velocity (i.e., via the curvature of the field in the moving
frame).

V. TOPOLOGICAL IMPRINTS
ON TWO-LEVEL DYNAMICS

Here, we examine the case of a driving field texture
undergoing a topological transition and its effects on the
quantum dynamics of a TLS by applying the general results of
Sec. III and, especially, the AARF solution for the total phase,
Eq. (30). In particular, we intend to isolate the role and con-
sequences of time-dependent driving curvatures associated to
different topologies. To this aim, we revisit a paradigmatic
example involving two coplanar fields: (i) a rotating one
with a frequency ω and amplitude B1 and (ii) a uniform one
with amplitude B0 [see Fig. 3(a)]. This configuration was
considered recently in Refs. [32,33], where imprints of the
topological characteristics of the driving field were identified
in the quantum phases. Such an effect is attributed (with some
degree of approximation) to the windings of the resulting spin
textures in the Bloch’s sphere.

The model Hamiltonian reads as

H(t ) = (B0 + B1 cos ωt )σx + B1 sin ωtσy.

In the rotating frame, this Hamiltonian can be expressed as

H(t ) = |B(t )|σN (t ),

with |B(t )| =
√

(B2
0 + B2

1 + 2B0B1 cos ωt ) the instantaneous
magnitude of the total applied field and σN the Pauli matrix
associated to the spin projection along N̂

σN (t ) = [ fx(t )σx + fy(t )σy],

where the directors of σN (t ) are fx(t ) = (B0+B1 cos ωt )
|B(t )| and

fy(t ) = B1 sin ωt
|B(t )| and the corresponding driving curvature K (t )

can be obtained from Eq. (13).
As shown in Fig. 3(b), the driving field’s winding nK

defined in Eq. (14) has a transition along the line B0 = B1

reflecting a change in the field’s topology. The exact solution
demonstrates that the topological transition in the driving field
leaves a definite imprint on the total phase, Eq. (26), in the
form of a dislocation along the critical line, as reported in
Refs. [32,33] [see Fig. 3(f)]. A strictly adiabatic treatment
would explain this in terms of Berry phases [47]. However, the
spin dynamics is far from being adiabatic in the proximities
of the critical line. Recent nonadiabatic treatments [32,33,48]
have approached the problem in terms of effective Berry
phases linked to the winding parity of spin textures. However,
in Sec. III we demonstrated that the total phase does not
depend explicitly on the winding of the spin texture [Eq. (26)],
indicating that the field topology can be more relevant than
the spin topology in setting the behavior of the quantum
phase across the transition. Interestingly, these limitations
are overcome by the expression for the total phase obtained
within the AARF, Eq. (30), since it explicitly captures the
contributions from both the nonadiabatic geometric phases
and the field topology, as shown in Fig. 3(d).

FIG. 3. (a) Schematic illustration of the shifted circular drive in
the (Bx, By ) field component plane. (b) Dependence of the winding
number on the field parameters of the shifted circular drive. The
diagonal line in the phase diagram (i.e., B0 = B1) corresponds to a
topological transition where a jump of the winding number of the
applied field occurs. d1 (d2) are two representative points close to
the topological transition boundary lying in a domain of the phase
diagram with |nK | = 1 (nK = 0), respectively. (c) Time-dependent
evolution of the term |B(t )|〈σN 〉 within the AARF solution which
appears in the expression of the total quantum phase positions d1

and d2 of the phase diagram. We notice that this contribution is
not sensitive to the topological change. (d) Contour map of the
cosine of the total phase in the parameter space for the near-adiabatic
solution. We notice that a sharp dislocation in the wavefront occurs
at the topological transition line. (e) Time-dependent profile of the
z component of the spin within the AARF solution evaluated at d1

and d2. (f) Contour map of the cosine of the total phase obtained
from the exact dynamics of the two-level driven system. We notice
that the sharp dislocation in (d) is smeared when considering the
full dynamics of the spin. In (f) the dotted line (black) indicates
the topological line boundary, the red dotted lines include a region
where the ratio of the maximal vortex velocity (vθ ) with respect to
the maximum of the effective field (|heff|) in the rotating frame is
larger than one.

Indeed, from the inspection of the total phase [Eq. (26)],
we observe that the integrand is proportional to that appearing
in the dynamical phase [Eq. (24)] with an additional factor
that depends on 〈σz〉. Here, the AARF solution is extremely
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instructive to understand how the total phase changes when
crossing the topological boundary. The key observation is
that, within this approximation, the spin orientation is always
parallel to the effective field. In particular, the evolution of
〈σz〉 is governed by K (t ). In Sec. II, we showed that the
driving curvature K (t ) changes its sign for a nonwinding
field trajectory, while it keeps a uniform sign if the field
nontrivially winds around the origin. As a consequence, 〈σz〉
behaves analogously [see Fig. 3(e)]. This behavior differs
from that of 〈σN 〉, governed by |B(t )|, which has always
the same sign on both domains of the phase diagram [see
Fig. 3(c)]. The strong dependence of the sign of 〈σz〉 on the
field’s winding determines the ultimate response of the total
phase, Eq. (26), to the field’s topology. Thus, we find that
the AARF reproduces almost every feature of the dislocation
pattern in the parameter space [see Fig. 3(d)], except for the
smoothing observed near the topological boundary when the
exact dynamics is considered [Fig. 3(f)].

VI. APPLICATION TO DIFFERENT
PHYSICAL PLATFORMS

In this section we discuss a series of quantum platforms
where the proposed geometric and/or topological drivings can
be experimentally implemented. We focus on pendularlike
drivings exploiting geometrical effects due to a changing
driving curvature despite the trivial topology. The pendular
drive is particularly striking. First, from a theoretical point of
view, it is a paradigmatic example to highlight the differences
between the AA and AARF approximations. Moreover, it
can be directly exploited to demonstrate the steering of the
quantum geometric phase based on the control of the driving
curvature. Still, drivings with nontrivial topologies are also
considered along the first part of the discussion leading to
Eq. (38) and the closing paragraphs.

We start by mapping the Rashba model for a generically
shaped (quasi-)one-dimensional (1D) quantum wire on an
effective spin- 1

2 system in the presence of a parametric planar
driving. We shall demonstrate how the curvature of the wire
and the strength of the Rashba interactions build up the
amplitude and the curvature of the effective field. To this
aim, we follow Refs. [36,49] for the description of spin-orbit-
coupled electrons on 1D curved space. The corresponding
Hamiltonian reads as

H = − h̄2

2m∗

[
∂2

s + κ (s)2

4

]
− ih̄αR

[
σN ∂s − σT

κ (s)

2

]
, (34)

where s is the arc length along the 1D curve, κ (s) is the
local curvature, and αR is the Rashba coupling strength. In
the limit h̄|κ (s)|/2 � |〈−ih̄∂s〉| = |〈ps〉| = pF, with pF the
effective Fermi momentum, the Hamiltonian (34) reduces to

H = − h̄2

2m∗ ∂2
s − ih̄

αR

2
(σN ∂s + ∂sσN ). (35)

This approximation corresponds to the semiclassical limit
λF � 4πr(s), with λF the Fermi wavelength and r(s) =
1/|κ (s)| the local curvature radius [50]. The link between
spatial and time dependence is straightforward by assuming
that the spin carriers propagate along the curve with constant
Fermi velocity vF, i.e., ∂s

∂t = vF. Furthermore, by means of

FIG. 4. 1D Rashba spin-orbit channels of varying local cur-
vatures κ[s(t )] implementing pendulumlike driving fields B[s(t )]
of different angular amplitudes ϕ0 and driving curvatures K (s(t ))
according to Eq. (38): (a) A � L corresponding to ϕ0 < π/4, where
elliptical integrals can be simplified; (b) A > L corresponding to
π/4 < ϕ0 < π/2; (c) with π/2 < ϕ0 < π . The arrows indicate the
local orientation of the field B[s(t )].

a simple algebraic transformation of the Hamiltonian H, we
can observe that a spin eigenmode |ψ (s)〉 of H evolves
in space according to ih̄∂s|ψ (s)〉 = αRm∗

h̄ σN |ψ (s)〉 [51], and,
in turn, by introducing the Fermi momentum ih̄∂t |ψ (t )〉 =
αR pF

h̄ σN |ψ (t )〉. Then, the spin of the carrier, while propagating
along the 1D curve, experiences an effective driving field B =
αR pF

h̄ N̂ . To make more explicit the correspondence between
the space and time pendular driving curvature, we notice that
by differentiating N̂ one finds

∂N̂
∂t

= ∂N̂
∂s

∂s

∂t

= κ (s)vFT̂ (36)

= K (t )T̂ , (37)

where we applied the FS-type equation in Eq. (36) [36,49]
and in Eqs. (12) and (13) in (37). This means that the instanta-
neous driving curvature K (t ) is proportional to the local wire
curvature κ (s) at s(t ) and to vF, i.e.,

K (t ) = κ[s(t )]vF. (38)

This shows that a desired driving curvature K (t ) can be
obtained by designing an appropriate wire curvature κ (s) sat-
isfying Eq. (38), unfolding whole families of open and closed
curves for curvature-assisted spin interferometry. Moreover,
we notice that additional driving-field engineering can be
done by introducing Dresselhaus spin-orbit coupling and/or
uniform in-plane magnetic fields. Relevant implementations
already exist using electrons surfing on surface acoustic waves
along winding semiconductor channels [52]. A few illustrative
examples of 1D quantum wires implementing Rashba pen-
dulumlike drivings of increasing amplitude are depicted in
Fig. 4 [53]. At this point, an additional remark is required.
The analogy between the spatial components of the Rashba
field and the pendular driving shows that the possibility of
accessing angular amplitudes ϕ0 of order π is strongly tied to
the shape of the nanostructure. Indeed, as we have schemat-

023167-10



GEOMETRIC DRIVING OF TWO-LEVEL QUANTUM … PHYSICAL REVIEW RESEARCH 2, 023167 (2020)

FIG. 5. Schematic of a superconducting platform for simulating
a TLS with pendular drive. The superconducting (SC) island is in an
effective Cooper pair box with two relevant states indicated as |0〉 and
|1〉. The SC island is coupled to a superconductor which is a part of
a Josephson junction subjected to an external applied voltage V (t ) =
V0 cos(ωt ). �i and φi with i = 1, 2 are the amplitude and phase of
the order parameter of the superconductors forming the Josephson
junction, respectively.

ically showed in Fig. 4, one needs to modify the profile
of the serpentine accordingly to get into dynamical regimes
with ϕ0 larger than π/4. According to our results (Fig. 1),
an appropriate choice for the driving field strength (i.e., αR

for the Rashba spin-orbit nanochannel) allows to access the
regime of geometric driving of the quantum phases whenever
ϕ0 is in the range [0,π ].

Another prospective platform to realize a pendular driving
can be achieved by means of superconducting materials. We
start by considering a small superconducting island in a
regime of charge qubit with two relevant states active in the
Cooper pair box which correspond to the presence or absence
of excess Cooper pairs. Hence, if we assume that the transition
between the states |0〉 and |1〉 in the island can occur due to a
pair tunneling between the island and another superconductor
S1 acting as a reservoir (Fig. 5), the effective low-energy
Hamiltonian can be expressed as

HS = EJ (c†↑c†↓σ− + c↓c↑σ+), (39)

where EJ is the Josephson coupling, the matrices σ± describe
the dynamics in the subspace {|0〉, |1〉}, and the operators
c, c† are related to the fermionic degree of freedom in the
superconductor close to the Fermi level (for convenience of
notation, we drop the index of the momentum of the Cooper
pairs). Then, taking into account that the pairs in S1 are in the
condensed ground state, one can replace the fermionic term
with the corresponding expectation value associated with the
amplitude (�1) and phase (ϕ1) of the superconducting order
parameter, so that HS reads as

HS = EJ (�1 exp[iϕ1]σ− + �1 exp[−iϕ1]σ+).

With simple algebraic steps, one can recast HS in the form

HS = EJ�1(cos[ϕ1]σx + sin[ϕ1]σy), (40)

thus corresponding to a TLS with an effective planar field with
strength B = EJ�1 and whose components are modulated by
the phase difference between the island and S1. To complete
the building of the time-dependent pendular driving, we con-

sider the superconductor S1 as a part of a Josephson junction
(Fig. 5) subjected to an external voltage. Taking into account
that the basic equation ruling the dynamics of the Josephson
effect concerning the phase difference ϕ = (ϕ1 − ϕ2) across
the junction and the applied voltage V is given by V (t ) =
h̄
2e

∂ϕ

∂t , with h̄
2e being the magnetic flux quantum �0, one can

design the phase dynamics in HS by suitably selecting the
time dependence of V (t ). Indeed, by means of the harmonic
applied voltage V (t ) = V0 cos(ωt ), we have that the phase
ϕ1(t ) (less of an offset due to the phase of S2) is oscillating
with a frequency ω that is set by the external electric field
and a maximal angular extension of the pendulum ϕ0 = V0

ω�0
.

By correspondence of HS with Eqs. (2) and (3), we observe
that the dynamics of the two levels in the superconducting
island (Fig. 5) is very well suited to simulate a TLS pendular
drive. For completeness, we also notice that the effective
low-energy coupling in Eq. (39) can also emerge in other
physical contexts where the existence of the two levels is
due to the formation of local (e.g., impurity) electronic states
in a metallic host that prefer to be either empty or doubly
occupied, thus forming pairing centers that in turn can drive
superfluid-to-insulator transitions [54,55] or lead to inhomo-
geneous topological phases [56]. The fact that such types of
pairing centers can have phononic or excitonic origin [57],
and can also occur at the surface of topological insulators or
Dirac materials [58], indicates that other coherent quantum
materials platform with setups similar to those proposed in
Fig. 5, but with different drivings, can be also achieved.

Finally, a literal interpretation of Hamiltonian (1) suggests
the study of magnetic resonance setups. In nuclear magnetic
resonance (NMR), field-curvature effects could be demon-
strated experimentally by shaping radio-frequency pulses gen-
erating suitable driving Hamiltonians in the rotating frame of
the nuclear spins [59].

We point out that driving-curvature effects can be sig-
nificant for the design of shaped pulses for robust quantum
control [60]. However, the field engineering is very limited in
NMR commercial equipments. Another alternative worth to
mention is to turn to strongly driven superconducting qubits
(SCQs) [61], where high-order multiphoton interferometry
has been demonstrated and the systems can apparently be eas-
ily adapted to a wide spectrum of driving fields and curvatures
as proposed here.
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