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We consider weak topological insulators with a twofold rotation symmetry around their “dark” direction and
show that these systems can be endowed with the topological crystalline structure of a higher-order topological
insulator protected by rotation symmetry. These hybrid-order weak topological insulators display surface Dirac
cones on all surfaces. Translational symmetry breaking perturbations gap the Dirac cones on the side surfaces
leaving anomalous helical hinge modes behind. We also prove that the existence of this topological phase comes
about due to a novel crystalline topological invariant of quantum spin-Hall insulators that can neither be revealed
by symmetry indicators nor using Wilson loop invariants. Considering the minimal symmetry requirements, we
anticipate that our findings could apply to a large number of weak topological insulators.
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Introduction. The essence of a free-fermion topological
insulator is that it cannot be adiabatically deformed to a trivial
atomic insulator, whose nature can be understood considering
electrons as localized point particles. Put differently, topolog-
ical insulators do not admit a representation in terms of expo-
nentially localized Wannier functions (WFs). This obstruction
to Wannier representability is, in turn, reflected in the presence
of anomalous gapless boundary modes. Examples include the
chiral (helical) edge modes in quantum (spin) Hall insulators
[1–6], as well as the surface Dirac cones of three-dimensional
topological insulators (TI) [7]. In crystalline systems with an
additional set of spatial symmetries, additional topological
phases can arise [8]. These topological crystalline insulators
(TCI) cannot be represented in terms of WFs respecting the
spatial symmetries of the system, and feature, by the bulk-
boundary correspondence, anomalous surface states violating
a stronger version of the fermion doubling theorem [9] on
surfaces that are left invariant under the protecting symmetry.
Mirror Chern insulators [10,11], for instance, are character-
ized by the presence of gapless surface Dirac cones pinned to
mirror planes. Similarly, higher-order topological insulators
(HOTI) [12–15] feature anomalous gapless one-dimensional
modes at the hinges connecting two surfaces related by the
protecting crystalline symmetry [16].

The topologies related to the internal and spatial sym-
metries do not necessarily exclude each other and can also
coexist. This occurs, for instance in different “dual” topolog-
ical materials [17–20], which have the topological structure
of both a weak TI and a mirror Chern insulator. Likewise,
it has been recently proposed that certain topological su-
perconductors can concomitantly feature both surface cones
and Majorana hinge modes [21–23]. In all these systems,
the topological crystalline structure can be diagnosed using
the spatial symmetry content of the electronic bands [24–28]
while the topology due to the internal symmetry is uniquely
determined by the “tenfold-way” invariants [29–31]. There
exist, however, certain topological crystalline phases that are

neither characterizable by symmetry indicators nor by the
tenfold way [32]. In two-dimensional systems these phases
have recently started to be classified [33].

The question that immediately arises is whether crystalline
topologies without symmetry indicators can be embedded in a
topological nontrivial insulating phase protected by an inter-
nal symmetry. In this work, we provide an affirmative answer
by showing that two-dimensional topological insulators in the
wallpaper group p2—where time-reversal symmetry (TRS)
guarantees the complete absence of symmetry indicators—
can be characterized by a set of three crystalline topological
Z2 indices. They correspond to two quantized partial Berry
phases [34,35] and one additional novel topological index
that cannot be diagnosed even from the Wilson loop. We
subsequently use this new invariant to show that weak TIs
possessing a twofold rotation symmetry around the [ν1, ν2, ν3]
direction, ν1,2,3 indicating the so-called weak topological in-
dices [36], can be in a nontrivial topological crystalline phase.
It is characterized by the presence of anomalous unpinned
Dirac cones at the surfaces whose Miller indices (modulo 2)
are identical to the weak topological indices, i.e., the so-
called “dark” surfaces of weak TIs where surface Dirac cones
protected by TRS are absent. This topological crystalline
phase corresponds to a form of hybrid-order topology since
the system can be switched to a HOTI with helical hinge
modes using translational symmetry breaking perturbations.

Crystalline topological invariants in quantum spin-Hall
insulators. We start out by developing a scheme that is able to
capture the full crystalline topology of quantum spin-Hall in-
sulators (QSHI) in systems with a twofold rotation symmetry
C2. To do so, we first recall that for atomic insulating phases,
the crystalline topology is fully determined by the gauge-
invariant charge centers [9,33,37] of time-reversal symmetric
Wannier functions that respect the symmetries of the crystal.
The construction of such symmetric Kramers pairs of Wan-
nier functions requires the construction of two time-reversed
channels [5] of Bloch waves |�I,II

n (q)〉 that are separately
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FIG. 1. (a) Schematic drawing of the Brillouin zone of C2 sym-
metric crystal, spanned by reciprocal lattice vectors G1 and G2. The
partial polarizations are calculated along the green and blue line,
and a typical Wilson loop contour is shown in red. (b) Wilson loop
spectrum of a QSHI. The winding reflects the topological nontrivial
nature of the insulating phase. The quantized value of the Wilson
loop for k1 = 0 corresponds to the quantized partial polarizations γ I

2 .

C2 symmetric, where n is a band index running from one to
NF /2 and NF the total number of occupied bands. The Bloch
waves |�I,II

n (q)〉 need not be individual eigenstates of the
Hamiltonian but are still basis states spanning the eigenspace
corresponding to the NF occupied bands. Importantly, the con-
struction of symmetric Wannier functions requires a smooth,
periodic, and symmetric gauge for the |�I,II

n (q)〉 Bloch waves.
Since we want to study crystalline topology in non-Wannier
representable QSHI, we relax these constraints on the gauge
by demanding its smoothness, periodicity, and symmetry
modulo a U (NF /2) ⊗ U (NF /2) gauge degree of freedom, with
these two residual gauges acting in the two time-reversed
and C2 symmetric channels. In other words, we require a
smooth, periodic, and symmetric set of projectors ρI (II )(q) =∑

n |�I (II )
n (q)〉 〈�I (II )

n (q)|. In the Supplemental Material [38]
we show how to construct such a gauge assuming for sim-
plicity there are no degeneracies in the band structure other
than those required by time reversal. Since within each sector
we have not demanded a continuous gauge, it follows that the
channels described by the Bloch waves |�I,II

n (q)〉 can be char-
acterized by nonvanishing but opposite Chern numbers CI,II .
Furthermore, the twofold rotation symmetry endows the two
channels with Z indices that correspond to the multiplicities
of the rotation eigenvalues mI

±i ≡ mII
∓i at the high-symmetry

points in the Brillouin zone (BZ), i.e., m = �, X,Y, M
[see Fig. 1(a)].

We will now show that these integer crystalline indices
and the Chern numbers of the channels can be used to con-
struct four Z2 invariants that fully characterize the topology
of C2 and time-reversal symmetric insulators in two dimen-
sions. Two Z2 invariants can be immediately identified in
the quantized partial polarizations [34] on the C2 symmet-
ric lines of the BZ k1,2 ≡ 0. They correspond to the cen-
ters of charge of one-dimensional hybrid Wannier functions
and are diagnosed [33] by the Wilson loop spectra ν(k1,2)
[see Fig. 1(b)]. These quantized partial polarizations can be
expressed in terms of the crystalline indices mI

±i as γ I
1(2) ≡

[�I
i + X I

i (Y I
i )] mod 2 (see the Supplemental Material [38] and

Ref. [39]). The third Z2 invariant corresponds to the Fu-Kane-
Mele invariant that characterizes QSHI and can be expressed

(see the Supplemental Material) in terms of the crystalline
indices as νFKM = (�I

i + X I
i + MI

i + Y I
i ) mod 2. To define a

fourth Z2 invariant, notice that the additional combination of
eigenvalues νI

1d = (�I
−i − X I

−i − Y I
−i + MI

−i )/2 mod 2 is lin-
early independent from the previously defined Z2 indices. For
an atomic insulating phase, νI

1d corresponds to the parity of the
time-reversed pairs of symmetric Wannier functions centered
at the corner of the unit cell with coordinates 1d = {1/2, 1/2}.
The fact that in a QSHI the two time-reversed channels I, II
are characterized by an odd Chern number immediately yields
a semi-integer value νI

1d = ±1/2. However, and this is key, we
can still define a Z2 number reading

γ I
3 = 1

2

[
CI + (

�I
−i − X I

−i − Y I
−i + MI

−i

)]
mod 2.

Being independent of the partial polarizations, this new
integer cannot be diagnosed by the Wilson loop spectrum but
still represents a well-defined and gauge-invariant crystalline
topological number. In fact, γ I

3 is manifestly gauge invariant
under intrachannel U (NF /2) transformations since it is
made out of a Chern number and the twofold rotation
symmetry eigenvalues. Furthermore, γ I

3 is also invariant
under interchannel gauge transformations, which correspond
to the swapping of the channels (I ↔ II) for isolated pairs of
bands. These transformations concomitantly change the sign
of the Chern numbers of the channels and the multiplicities of
the C2 symmetry eigenvalues and therefore do not change γ I

3 .
We have thus identified three gauge-invariant Z2 crystalline
topological indices, which together with the Fu-Kane-Mele
invariant yield a Z4

2 classification in agreement with a recent
K theory study [40].

We finally emphasize that the gauge-invariant γ I
3 is dif-

ferent in nature from the “spin Chern numbers” existing in
systems with a mirror symmetry Mz. In this situation, the
two time-reversed and C2 symmetric channels I, II can be
taken to be the spin eigenstates |↑〉 , |↓〉, such that CI ≡ C↑.
However, this does not determine the value of γ I

3 , as the spin
Chern number does not determine νI

1d . Thus one can find both
γ I

3 = 0, 1 for the same spin Chern number.
Hybrid-order weak TIs. Next, we exploit the existence

of the novel crystalline topology of γ I
3 in three-dimensional

bulk crystals with a C2z rotational symmetry. To do so, let
us consider the three-dimensional Brillouin zone of our time-
reversal invariant system as a collection of two-dimensional
momentum cuts parametrized by the momentum kz parallel
to the twofold rotation axis. At the time-reversal invariant
two-dimensional planes kz = 0, π we consider the system to
be a topological nontrivial QSHI. As a result, the bulk three-
dimensional crystal will be a three-dimensional topological
insulator of the weak class. In principle, we could choose
the two Z2 topological crystalline indices corresponding to
the quantized partial polarization of the kz = 0, π QSHI to
be different. This, however, would imply that in the triad of
“weak” topological invariants [36] (ν1, ν2, ν3), ν1 and/or ν2

are different from zero. Hence, the three-dimensional sys-
tem would feature an even number of surface Dirac cones
protected by time reversal at the (001) and (001̄) surfaces
that are left invariant under the C2z rotation symmetry. As a
result, any physical consequence of the crystalline topology
cannot manifest itself: It would be completely obscured by
the internal, time-reversal, symmetry topology.
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FIG. 2. Schematic of a hybrid-order weak topological insulator.
At the top and bottom surfaces left invariant under the protecting
C2z symmetry a single pair of surface Dirac cones exist. On the
side surfaces an even number of Dirac cones pinned to time-reversal
invariant surface momenta are mandated by the weak topological
invariants. When breaking C2 symmetry, the topological crystalline
surface Dirac cones at the top and bottom surfaces can be gapped out
leaving these surfaces completely dark. By breaking the translational
symmetry, i.e., doubling the unit cell, the time-reversal symmetry
protected Dirac cones gap out, and the topological crystalline Dirac
cones are then connected by helical hinge states.

However, we can choose the two Z2 topological crystalline
invariants at the time-reversal invariant planes to be equal,
thus constraining the weak invariants to be (0, 0, 1). The
time-reversal symmetric topology now guarantees the exis-
tence of an even number of massless Dirac cones appearing
at time-reversal invariant (100) and (010) surface momenta
(cf. Fig. 2), while the C2z invariant (001) surfaces are com-
pletely gapped. A nontrivial crystalline topology, which can
thus only arise from a difference in γ I

3 at the kz = 0, π planes,
will then be in full force and lead to the appearance of a single
pair of surface Dirac cones (cf. Fig. 2) at unpinned surface mo-
menta related by the twofold rotation symmetry. This pair of
surface Dirac cones realizes the rotational anomaly discussed
in Ref. [9] and can be only removed by breaking the protect-
ing C2z and/or � symmetry (cf. Fig. 2). We point out that
the existence of this rotation anomaly cannot be diagnosed
by considering the flow of gauge-invariant Wannier centers
between the kz = 0, π planes as in Ref. [9]. This is because at
kz = 0, π our system is a topological insulator and therefore
cannot be represented in terms of localized Wannier functions.
The appearance of the unpinned Dirac surface cones is instead
detected by considering the kz-directed Wilson loop (see the
Supplemental Material) in agreement with Ref. [41], although
the stability of the surface Dirac cones cannot be inferred from
the Wilson loop that consequently cannot be used to derive
a “topological index.” We dub this new three-dimensional
insulating phase a hybrid-order weak topological insulator:
It is by itself a first-order topological insulator in d = 3
dimensions with d − 1 gapless boundary modes, but it can
be switched using unit cell doublings in the ẑ direction, and
thus without breaking any protecting symmetry, to a second-
order topological crystalline insulator with anomalous gapless
hinge modes (cf. Fig. 2) and C2 rotation anomaly [9], and
reminiscent of the surface cones one predicted to appear in
α − Bi4Br4 and a family of Zintl compounds [42,43].

Stacked Kane-Mele model. Having established the ex-
istence of the hybrid-order weak topological insulator, we

now present an explicit model based on stacked Kane-Mele
systems realizing this phase. Let us consider a tight-binding
model for spin-1/2 electrons on AA stacked honeycomb
lattices. In momentum space the Bloch Hamiltonian can be
written as:

H(k) = d1(k)τx ⊗ s0 + d2(k)τy ⊗ s0

+ d5(k)τz ⊗ sz + d4(k)τz ⊗ sy, (1)

where the τi’s and si’s are the Pauli matrices acting in
sublattice and spin space, respectively. The first two terms
in the Hamiltonian above correspond to intralayer spin-
independent nearest-neighbor hopping processes, and the cor-
responding coefficients are d1(k) = −t[1 + cos x1 + cos x2]
and d2(k) = −t[sin x1 + sin x2]. Here we have introduced
the hopping amplitude t while x1,2 = k · a1,2, a1,2 being the
Bravais lattice vectors. The third term in the Hamiltonian
Eq. (1) corresponds to spin-orbit interaction which involves
intralayer spin-dependent second-neighbor hopping. We take
the corresponding coefficient d5(k) = 2t2 sin (x1), with t2 the
hopping strength, thus explicitly breaking the threefold ro-
tation symmetry. Finally, the last term in the Hamiltonian
involves interlayer spin-dependent hopping amplitudes and
the corresponding coefficient reads d4(k) = −2t3 sin (kz ). We
introduce this term to explicitly break the effective “in-plane”
time-reversal symmetry [44] to allow for the possibility of
a change of (crystalline) topology in the two time-reversal
symmetric planes kz = 0, π . Since the Hamiltonian Eq. (1)
preserves bulk inversion symmetry, we can immediately ob-
tain the strong and weak topological indices and thus obtain
(ν0; ν1, ν2, ν3) = (0; 0, 0, 1). In this form, however, Eq. (1)
does not model a hybrid-order weak topological insulator: It
can be adiabatically connected to a stack of uncoupled QSHI
and consequently its (001) surface does not feature gapless
modes. To endow the system with a nontrivial crystalline
topology we instead modify the intralayer spin-orbit coupling
as d5(k) → cos(kz )d5(k). This modification keeps the strong
and weak topological indices intact but changes the crystalline
topology of the system. Note that also the inversion eigen-
values remain unchanged, thus implying that the hybrid-order
phase cannot be diagnosed by inversion symmetry indicators.

To show this, we have computed the bulk band structure
[see Fig. 3(a)] and the surface energy spectra [see Figs. 3(b),
3(c), and 3(d)] of this modified model by further accounting
for an intralayer Rashba spin-orbit coupling term [45] of
strength λ that explicitly breaks inversion symmetry. At the
side surfaces we observe the conventional surface Dirac cones
of a weak topological insulators [cf. Fig. 3(b)]. More impor-
tantly, diagonalization of the Hamiltonian with open boundary
conditions along the stacking direction [cf. Fig. 3(c)] reveals
the presence of two C2 symmetry protected surface Dirac
cones thus verifying that our model realizes a hybrid-order
weak topological insulator. Note that the pairs of Dirac cones
at the (001) and (001̄) surface are found at different surface
momenta in agreement with the lack of inversion symmetry.

We have also verified that our model can be switched to
a higher-order topological insulator by suitable translational
symmetry breaking perturbations. Specifically we have intro-
duced an interlayer staggered chemical potential of strength
ε that provides the required doubling of the unit cell and
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FIG. 3. (a) Bulk band structure of the stacked Kane-Mele model
Eq. (1) by further accounting for a Rashba spin-orbit coupling
term of strength λ/t = 0.1. The strength of the modified intralayer
spin-orbit coupling term has been fixed to t2/t = 0.7, whereas the
interlayer spin-orbit coupling strength has been fixed to t3/t = 0.4.
(b) Energy spectrum in a slab geometry with open boundary condi-
tions along the ŷ direction. The (010) and (01̄0) surfaces exhibit an
even number of Dirac cones pinned at time-reversal invariant surface
momenta as required by the weak topological invariants. (c) Surface
energy spectrum along the stacking ẑ direction. There are two pairs of
surface Dirac cones localized at the (001) and the (001̄) surface. The
Dirac points are found at unpinned surface momenta related by the
C2 symmetry. The zoom-in (d) shows that the Dirac cones at opposite
surface are located at different momenta due to the lack of inversion
symmetry. All energies have been measured in unit of the hopping
strength t .

further introduced an interlayer coupling in the enlarged unit
cell of the form −δτzsx. Figure 4(a) shows the corresponding
bulk band structure that is still characterized by a substantial
gap. At the (010) [(01̄0)] surface the time-reversal symmetry
protected Dirac cones are gapped out [see Fig. 4(b)] while
the twofold rotation symmetry-protected Dirac cones at the
(001) [(001̄)] surface are preserved [see Fig. 4(c)]. Notice that
Dirac cone pairs localized at opposite surface are connected
by helical hinge states [see Fig. 4(d)] as expected for a heli-
cal higher-order topological insulator protected by a twofold
rotation symmetry.

Conclusions. To sum up, we have shown that weak
topological insulators with an additional twofold rotation
symmetry around the dark direction can feature a pair of
Dirac cones on their dark surfaces, which are protected by
the rotation symmetry. This hybrid-order weak topological

FIG. 4. (a) Bulk band structure of the stacked Kane-Mele model
with a translational breaking perturbation. The parameter set is the
same as in Fig. 3. Moreover the translational symmetry breaking
parameters have been fixed to ε/t = 0.1 and δ/t = 0.2. (b) Surface
energy spectrum showing the gapping of the time-reversal symme-
try protected Dirac cones. (c) Surface energy spectrum along the
stacking direction that still feature the C2-protected Dirac cones
at unpinned surface momenta. (d) Energy spectrum in a ribbon
geometry with periodic boundary conditions only along the stacking
direction. Within the surface energy gap we find gapless anomalous
helical hinge modes, colored in red.

insulator can be turned into a higher-order topological in-
sulator with protected helical hinge modes by translational
symmetry breaking perturbations. We have shown that the
existence of such a topological phase comes about due to a
third Z2 topological invariant characterizing quantum spin-
Hall insulators in C2-symmetric crystals, that can be read off
neither from symmetry indicators nor from the properties of
the Wilson loop spectrum. Considering the minimal symmetry
requirements and the fact that the C2 protected surface Dirac
cones appear at unpinned points in the surface Brillouin zone,
we anticipate that our findings could apply to a large number
of weak topological insulators.
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