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A B S T R A C T   

Mapping of subtidal banks in mud-dominated coastal systems is crucial as they influence not only shoreline and 
ecosystem dynamics but also economic activities and livelihoods of local communities. Due to associated 
spatiotemporal variations in suspended particulate matter concentrations, subtidal mudbanks are often confined 
by diffuse and rapidly changing boundaries. To avoid inaccurate representations of these mudbanks in remote 
sensing images, it is necessary to unmix distinctive reflectance signals into representative landcover fractions. 
Yet, extracting mud fractions, in order to characterize such diffuse boundaries, is challenging because of the 
spectral similarity between subtidal- and intertidal features. Here we show that an unsupervised decision tree, 
used to derive spatially explicit and spectrally coherent image endmembers, facilitates robust linear spectral 
unmixing on an image-to-image basis, enabling the separation of these coastal features. We found that resulting 
abundance maps represent cross-shore gradients of vegetation, water and mud fractions present at the coast of 
Suriname. Furthermore, we confirmed that it is possible to separate land, water and an initial estimate of 
intertidal zones on individual images. Thus, spectral signatures of end-member candidates, determined from 
relevant index histograms within these initial estimates, are consistent. These results demonstrate that spectral 
information from well-defined spatial neighbourhoods facilitates the detection of diffuse boundaries of mud-
banks with a spectral unmixing approach.   

1. Introduction 

Accurately mapping boundaries of geomorphological landforms in 
mud-dominated coasts is crucial for integrated coastal management, and 
for understanding landscape evolution in these dynamic areas (Koo-
hafkan and Gibson, 2018). These landforms are often associated with the 
distribution of large sediment concentrations, originating from high- 
discharge rivers such as the Amazon, Mississippi and Yangtze rivers 
(Murray et al., 2019). The coalesce of mud is typically favored when 
coastlines are confined, wave energy is low and tidal range is large 
(Anthony et al., 2013), resulting in characteristic landforms and coast-
line fringing wetland vegetation such as mangroves and saltmarshes. In 
some settings the presence of fluid mud can also trigger the formation of 
subtidal mudbanks along open coasts (Anthony et al., 2010). 

These banks are associated with extreme spatiotemporal variations 
in suspended particulate matter (SPM) concentrations in the water col-
umn (Gratiot and Anthony, 2016). This can be related to their non-linear 

response to for example, wave climate, tidal stage, currents, proximity to 
the coastline and liquefaction processes (Vantrepotte et al., 2011). As a 
result, the boundaries between mudbanks and adjacent heterogeneous 
coastal features are inherently diffuse and change rapidly. Sediment 
exchange and increased wave damping potential associated with mud-
banks, provide a window of opportunity for mangrove species to colo-
nize large intertidal surfaces (Balke et al., 2011). These mangroves 
provide regulating services, such as protection against sea level rise and 
carbon sequestration (Anthony et al., 2013). Hence it is vital to monitor 
mud-bank dynamics, to support adaptive coastal management- and 
conservation strategies that account for material exchange between 
these banks and the coastline. 

Due to the inaccessibility of mudbanks and the spatial and temporal 
scales involved in their dynamics, monitoring via remote sensing 
emerged as a cost effective alternative to field surveys (Augustinus, 
1980; Vantrepotte et al., 2011) and aerial photographs (Augustinus 
et al., 1989). Various methods, including SPM inversion algorithms 
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(Froidefond et al., 2004; Zorrilla et al., 2018), as well as supervised- and 
unsupervised classifications (Anthony et al., 2008), have been devel-
oped to estimate mud-bank characteristics. Some of these methods have 
been applied over increasingly large areas and improved the temporal 
resolution, especially since the introduction of data-cubes such as Goo-
gle Earth Engine (GEE) (Gorelick et al., 2017). 

At the same time, challenges emerged in the identification of these 
mudbanks from time-series of satellite observations due to missing data 
and uneven sampling across tidal stages. This is related to the sun- 
synchronous orbits of satellite constellations, such as those from Land-
sat, that never capture the extremes of low- and high-tide with favour-
able cloud cover (Murray et al., 2019). Previous attempts successfully 
focussed on extracting spatially coherent information of intertidal fea-
tures by selecting (Murray et al., 2012) and aggregating observations for 
specific tidal stages (Sagar et al., 2017). Yet, for subtidal features, 
resuspension of mud and migration processes at seasonal timescales are 
responsible for the spatiotemporal variability of their footprints (Zorrilla 
et al., 2018). This suggests that pixel based image compositing, where 
one tries to overcome missing data by reducing multiple observations to 
a single ‘best’ observation, potentially misrepresents diffuse boundaries 
and temporal evolution of these features (Koohafkan and Gibson, 2018). 

This is related to the fact that reflectance signals describe subtle 
differences in composition, resulting from radiation interacting with 
multiple active substances in a pixel (Odermatt et al., 2012). Conse-
quently, the spectral similarity in muddy coastal systems, together with 
differences in grain sizes, turbidity and soil moisture content, compli-
cates differentiation between subtidal- and intertidal features (Ryu 
et al., 2002). Accordingly, image analysis techniques that involve semi- 
automatic unmixing of landcover fractions from distinctive reflectance 

signals, offer an approach for the analysis of gradients in mud- 
dominated coastal system that are associated with diffuse mud bank 
boundaries (Alcântara et al., 2009). Where per-pixel classifiers assign 
each pixel to a class based on its similarities, unmixing methods model 
abundance as a linear- or nonlinear combination of each provided 
spectral signature. This means that the presence of more materials 
within one pixel is estimated, based on the provided end-member sig-
natures (Shanmugam et al., 2006). Especially linear spectral unmixing 
(LSU) is a convenient unmixing tool to handle mixed pixels, as it does 
neither require extensive training data nor a computationally 
demanding analysis (Somers et al., 2011). 

The aim of this study was to develop a data-driven approach to 
analyse diffuse boundaries of mudbanks from individual Landsat images 
using LSU and cloud computing in GEE. The method is evaluated on its 
ability to consistently select end-member candidates for the purpose of 
unmixing landcover fractions of water, mud and vegetation, using a 
section of the Suriname coast as case study. 

2. Materials and methods 

2.1. Study area 

The study area is located near Paramaribo, the capital of Suriname 
(Fig. 1). This area was selected because it is part of the Guyana coastline, 
a prime example of a mud dominated coast (Augustinus, 1980). About 
15–20% of the sediment migrates (0.5–5 km a year) alongshore as mud 
banks attached to the coastline, which are continuously reworked by 
waves and currents (Anthony et al., 2010). Due to the dynamics of these 
mud banks, the topography and bathymetry of the Suriname coastline 

Fig. 1. Median composite image of available Landsat images between 2008 and 2010 for the region of interest with in the bottom left panel, in white the intertidal 
area as estimated by Murray et al. (2019). The red line indicates the transect location used in this study, black pixels indicate masked clouds. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

J. de Vries et al.                                                                                                                                                                                                                                 



International Journal of Applied Earth Observations and Geoinformation 95 (2021) 102252

3

experiences quasi-cyclic variations in erosion and progradation, related 
to inter-bank and bank phases that last up to 30 years (Allison and Lee, 
2004). Trade winds and precipitation vary on a seasonal scale, with 
more south-easterly trade winds (3–9 m/s) during the major dry season 
(August-November) and more easterly to north-easterly winds during 
the major wet season (April – August). This change in wind direction 
results in higher swell waves in the wet period. The tide is semidiurnal 
with a range up to 2.5 m during spring tide. As a result of these envi-
ronmental conditions, the migrating mudbanks continuously change in 
shape and orientation (Augustinus, 2004; Augustinus et al., 1989), 
adding to the diffuse character of their boundaries (Vantrepotte et al., 
2011). 

2.2. Selecting end-member candidates 

The coastal system of Suriname is characterized by spatially het-
erogeneous mixtures of vegetation, mud and water. In order to define a 
collection of spectral signatures that represents these distinct sub-
stances, endmembers are identified. Because endmembers from spectral 
libraries and field surveys do not handle variability between image 
acquisition very well, a more suitable approach was chosen by deriving 
these spectra directly from end-member pixels in each image (Somers 
et al., 2011). For this we used Top of atmosphere (TOA) reflectance data 

available in GEE (Gorelick et al., 2017). This includes data from 
geometrically corrected Landsat-4 and -5 Thematic Mapper and Multi-
spectral Scanner system, Landsat-7 Enhanced Thematic Mapper and 
Landsat-8 Operational Land Images sensors. Any pre-processing steps 
are described in this section, followed the step-by-step decisions (steps 
1–4 in Fig. 2) made for each pixel, to determine whether it was a 
candidate endmember for either of the representative landcover types. 
Such an Unsupervised Decision Tree (UDT) was used to consistently 
separate land, water and an initial estimate of the intertidal area. By 
combining this spatial context with spectral criteria, we selected image 
endmembers that represent characteristics found in the image at the 
time of acquisition (Shi and Wang, 2014). The abundance maps that 
result from the subsequent LSU can therefore indicate the mixed pixels, 
in our case related to diffuse boundaries. 

2.2.1. Pre-processing 
For each image the flags from the pixel assessment band were used to 

mask out clouds and shadows, as detected by the automatic cloud mask 
algorithm (Zhu and Woodcock, 2014). The here used blue, green, red, 
near infrared (NIR) and shortwave infrared (SWIR) bands have 30 m 
resolution. The thermal infrared (TIR) band with a resolution of 120 m 
was resampled to 30 m to match the other bands. From these bands the 
Normalized Difference Vegetation Index (NDVI) and Normalized 

Fig. 2. Workflow applied to individual image: (1) canny edge detection with the relevant parameters, (2) the Otsu thresholding on the NDWI histogram resulting 
from canny edge detection, (3) TIR thresholding on the TIR histogram to separate intertidal zone from turbid water, (4) defining the spectral ranges used to select 
end-member candidates. The resulting end-member graphs are used to apply linear spectral unmixing, resulting in maps representing fractions of water, vegetation 
and mud. 
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Difference Water Index (NDWI) were calculated. The NDWI uses the 
green wavelengths to maximize the reflectance of water features and 
simultaneously takes advantage of their low reflectance in the NIR range 
(McFeeters, 1996): 

NDWI =
GREEN − NIR
GREEN + NIR

(1) 

As a result of higher NIR reflectance, both vegetation and mud 
usually have low or negative values. 

2.2.2. Land or water 
After the pre-processing, land and water pixels were separated based 

on grey level histograms of the NDWI. Therefore a Canny Edge detection 
algorithm (step 1) was used on these NDWI values to distinguish locally 
between homogeneous land and water pixels (Liu and Jezek, 2004). This 
algorithm detects edges by looking for maximum gradients, or sharpest 
changes of values, in the NDWI image. A Gaussian pre-filter (GPF) 
filtered noise by smoothing the original image and a minimum gradient 
(MG) excluded edges with weaker gradients. Subsequently, edges were 
filtered with a minimal length of connected pixels to avoid selecting 
discontinuities between other land covers (e.g. urban – agriculture or 
cloud – shadows). A buffer was applied around these edges, resulting in 
a set of spatial neighbourhoods. The pixels from these neighbourhoods 
form a bimodal histogram (Donchyts et al., 2016), emphasizing the 
difference in spectral properties in the Green and NIR reflection bands 
for water (NDWI values → 1) and land (NDWI values → -1) pixels. The 
adaptive Otsu thresholding algorithm (step 2) was then employed on the 
smoothed bimodal histogram, to separate the two dominant lobes with 
distinct mean values, corresponding to land and water values (Lu et al., 
2011). This threshold was used to simultaneously mask terrestrial 
vegetation and bare ground. 

Finally, the mask was updated with land cover classes urban, 

agriculture and forests from the yearly Modis landcover classification 
(Friedl and Sulla-Menashe, 2015). Derived from Terra and Aqua 
reflectance data, this layer (international Geosphere-Biosphere program 
classification) was used to ensure urban, agriculture and forest classes 
were included in the land mask. The relevant pixels were eroded by 120 
m to avoid interference in the coastal waters and intertidal surfaces 
resulting from differences in pixel size. 

2.2.3. Initial estimate intertidal zone 
The spectral similarity between intertidal flats and turbid waters 

prevents the use of generic thresholds or aggregation of images when 
trying to separate them (Ryu et al., 2002). Thermal Infrared (TIR) bands 
are sufficiently sensitive to separate these two classes, but they lack the 
spatial resolution to extract the waterline (Sørensen et al., 2006). 
Therefore, an initial estimate of the intertidal zone was made using a 
thermal threshold (step 3) derived from the modal pixel value in the 
detected Canny Edge neighbourhood zone (from step 1). This temper-
ature threshold was applied on all water pixels that remained after 
applying the land mask (step 2). In this way all exposed water pixels 
with a different radiant temperature were isolated, serving as the initial 
estimate of the intertidal zone. 

2.3. Linear spectral unmixing 

Unique image histograms, made up of from the canny edge neigh-
bourhood zones and water mask, were used select end-member candi-
dates (step 4). Thus, spatial information to extract the endmembers was 
added (Shi and Wang, 2014). For vegetation, NDVI values of all land 
pixels inside the detected canny edge neighbourhood zones were 
selected (see Section 2.2.1). This resulted in a histogram with a clearly 
distinguishable peak that corresponded to dense vegetation. Afterwards, 
pixels were selected based on a 5% buffer on both sides of this NDVI 

Fig. 3. The histograms for the high-tide (left column) and low-tide (right column) image that are used to derive end-member candidates. Panel A shows the his-
togram (blue) used for separating land and water with the corresponding Otsu threshold for the selected images. In grey the histogram is shown corresponding to all 
pixels in the coastal zone. Panel B and C indicate the ranges of index values used for selecting the water and vegetation end-member (NDWI for water, NDVI for 
vegetation). The temperature threshold (in Kelvin), shown in panel D, indicates the value used to separate intertidal mud from water pixels and is based on the 
histogram derived from land pixels in the detected canny edge neighborhood zones. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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peak. For the water end-member candidates a similar approach was 
adopted, deriving the peak NDWI value from the water pixels (see 
Section 2.2.2) with a buffer of 1% around it. The driest mud pixels were 
selected from the initial estimate of intertidal zone (see Section 2.2.3), 
excluding vegetation by adopting a NDVI threshold < 0.3. From these 
sets of pixels, the mean values per band were derived to define the 
spectral signatures per end-member group. 

Fractions of the reflectance signal were untangled by applying the 
spectral signatures for each endmember to a fully constrained standard 
linear mixture model (Alcântara et al., 2009): 

Ri =
∑n

j=1
Pijfj + ei (2)  

where n is the number of bands, pij the surface reflectance of land cover 
type j in band i, f being the fraction of the pixel covered by type j and ei 
the error. This model assumes that the total reflectance is the sum of the 
components that make up the pixel, without interaction between them 
(Somers et al., 2011). This results in a set of fractions that linearly 
represent the proportion of each active component to the signal per 
pixel. Our LSU model was constrained, so that the fractional cover fj is 
always between 0 and 1, and such that the sum cannot be >1 for each 
pixel (Ri). 

2.4. Decision tree performance 

Because of limited availability of field observations that can relate 
end-members and LSU fractions to sediment concentrations and the 
subtidal footprint of mudbanks in Suriname, validation is restricted here 
to a robustness check of the described decision tree. Especially in muddy 

coastal environments the combination of canny edge detection and Otsu 
thresholding methods can be sensitive to the input parameters (GPF and 
MG), the buffer width and minimum edge length (Section 2.2.2.) 
(Bishop-Taylor et al., 2019). This sensitivity expresses itself in spatial 
variability of the spatial neighbourhood zones from which to sample 
end-member candidates, resulting from variability in the Otsu threshold, 
vegetation peak, water peak and temperature threshold. The temporal 
consistency of end-member signatures was therefore quantified by 
comparing changes in Otsu thresholds, vegetation peak, water peak and 
temperature threshold for parameter combinations for a subset of 88 
images, acquired between 2008 and 2010 over Paramaribo, Suriname 
(Fig. 1). Values of 0.3, 0.5, 0.7, 0.9 and 1 were used for the GPF; for the 
MG values of 0.7, 0.9, 1.1 and 1.3; minimum length values of 10, 25, 50 
and 75 pixels; for the buffer values of 5, 10 and 15 pixels were tested. 

3. Results 

3.1. Image histograms 

To show the benefits of using an UDT and the application of the 
resulting fractions for the purpose of analysing cross-shore gradients of 
mud, water and vegetation fractions, two relatively cloud-free Landsat-5 
images were selected from the subset (see Section 2.4). The image ac-
quired on 12 September 2009 was captured near high-tide while the 
second image, acquired on 15 November 2009 was captured near low- 
tide. A GPF of 0.7, MG of 0.9, buffer width of 10 pixels and minimum 
length of 25 pixels were used to derive the canny edge neighbourhood 
zones. Based on their different NDWI histograms, made up of pixels in 
these zones, image specific thresholds of − 0.186 and − 0.246 were 
derived to separate land and water pixels (Fig. 3, panel A). In the high- 

Fig. 4. Cross-shore patterns in pixel fractions for the defined end-member classes for the low-tide image (15-11-2009). The land mask, derived by applying a 
threshold value of − 0.246, is shown in panel A. Panel B shows the LSU fraction outputs in RGB (R = mud, G = vegetation and B = water). Panel C shows the cross- 
shore development of fractions and the land mask boundary at 817 m. The subtidal extent of the mud-bank is visually estimated to align it with the rearmost rapid 
decline of mud abundance. Patches in panel A and B indicate masked clouds. 
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tide and low-tide images the NDWI peaks, between 0.422 and 0.438 and 
0.524–0.534, correspond with water end-member candidates (Fig. 3, 
panel B). For vegetation end-member candidates the peak values, 
derived from histograms with pixels from the canny edge neighbour-
hood zones, were between 0.684 and 0.696 and 0.678–0.700 (Fig. 3, 
panel C). Mud pixels were separated from water pixels that remained 
after applying the land mask, based on a radiant temperature threshold 
of 296 and 294.2 Kelvin for low- and high-tide (Fig. 3, panel D). These 
observations of unique threshold values illustrate the rationale behind 
the decision to apply an UDT procedure that automatically separates 
land, water and an initial estimate of the intertidal zone. Threshold 
values for the low- and high-tide image, derived with alternative input 
parameters are shown in Table A1 (Appendix A). 

3.2. Fractions 

In Figs. 4 and 5 fractions of vegetation, water and mud, from the 
selected high- and low-tide image respectively, are compared along a 30 
km cross-shore transect (see Fig. 1). These profiles reveal that the out-
lined approach was able to generate abundance maps of the end- 
member classes that match expected cross-shore patterns. Namely, the 
mud fractions show a discontinuous decrease for the visually estimated 
subtidal part, from 0.95 to 0.50 during low tide (Fig. 4). The water 
fractions show a contrary pattern, implying variable SPM concentra-
tions. At around 6000–6041 m the ratio of mud and water fraction 
changes more quickly; more specifically this rearmost rapid decline of 

mud abundance reveals a diffuse, and thus seaward mud-bank 
boundary. 

During high tide (Fig. 5) absolute mud-fractions were significantly 
lower over the visually estimated subtidal mudbank, ranging from 0.30 
to 0.10. This difference can potentially be attributed to the amount of 
SPM, variable tidal elevation, wave climate (Zorrilla et al., 2018) or 
difference in spectral signatures. For this reason, it is more difficult to 
use an absolute fraction value as indication of diffuse mud-bank 
boundaries. Still, like the low-tide transect, the rearmost decline in 
mud abundance around 5982–6000 m suggests the same seaward mud- 
bank boundary. 

The edge of the land mask remained fixed at its position around 817 
m, between 12 September 2009 and 15 October 2009. This location 
coincided with a decreasing vegetation fraction, from 1 to ±0.25 for 
both images, indicating that the detected boundary between land and 
water follows the mangrove fringe. The lower vegetation fractions 
seaward of this fringe may correspond to a change in vegetation type, 
the presence of microphytobenthos or even sparse mangroves standing 
in turbid waters. 

The intertidal extent visible during low tide, that is, the cross-shore 
distance between the land mask edge and sea-mudflat boundary, co-
incides with scattered mud fractions between 817 m and roughly 2000 
m (Fig. 4). For the high-tide image (Fig. 5), the intertidal zone was also 
visible from the initial estimate based on the TIR threshold. These results 
highlight that the image’s TIR threshold did not match the local thermal 
difference between water and land locally, due to weather conditions 

Fig. 5. For the same location as in Fig. 5, now during high tide (12-9-2009). The in initial estimate of the intertidal extent and land mask, derived by applying a 
threshold value of − 0.186 are shown in panel A. Panel B shows the LSU fraction outputs in RGB (R = mud, G = vegetation and B = water). Panel C shows the cross- 
shore development of fractions and the land mask boundary at 817 m. The subtidal extent of the mud-bank is visually estimated to align it with the rearmost rapid 
decline of mud abundance. Patches in panel A and B indicate masked clouds. 
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and shallow water depths in the low-tide image. 

3.3. Robustness of the approach 

To test the robustness of the UDT approach, all available Landsat 
images (88) between 2008 and 2010 were selected. A total of 68 images 
resulted in explicit end-member candidates that could be used to extract 
spectral signatures for LSU. The excluded images did not contain enough 
detected canny edge neighbourhood zones to sample endmembers from, 
while matching the UDT informed decisions. Fig. 6 shows the reflectance 
variation of all endmembers of vegetation, water and mud. Although 
images originated from different sensors, they show similar values and 
recognizable signatures within the same order of magnitude. 

The NDWI threshold to separate land and water proved to be an 
important parameter in the UDT workflow. With each parameter com-
bination in the canny edge computation the median value, range and 
distribution of threshold values changed slightly (Fig. 7), especially 
when comparing them to the stable NDVI peaks and TIR thresholds for 
the same parameter combinations (Figs. A1 and A2, Appendix A). For all 
parameter combinations the NDWI threshold ranged from − 0.326 to 
− 0.050, with outliers up to 0.034 (Fig. 8). Especially with MG values of 
1.1 or 1.3, a higher GPF reduced the Otsu threshold, while the opposite 
can be seen for an MG of 0.7 (Fig. 7). This implies that the combination 
of MG and GPF influenced the edge detection, and thus the NDWI his-
togram used to separate land and water pixels. The NDWI threshold 
reduced also with an increasing buffer size (Fig. 8), because of the larger 
amount of land and mixed pixels included in larger buffers. The opposite 
can be seen when increasing the minimum length of detected canny 
edges (Fig. A3, Appendix A). This effect disappears for MG > 1.1, 

suggesting that the effect of filtering on a minimal edge length is com-
parable with applying a higher MG threshold. Hence, the higher the MG, 
the more likely these larger magnitude changes in NDWI are detected; 
with the potential of not detecting any boundaries at all with a MG > 1.1 
and GPF > 0.5. These results show that it is possible to consistently select 
boundaries from NDWI images that correspond with transitions from 
land to water. This robustness is supported by Table A1 (see Appendix A) 
where 4 parameter combinations were applied on the selected low- and 
high-tide images. The variation in NDWI threshold resulted in differ-
ences in land–water boundaries, and thus selection of end-member 
candidates. Yet, both the signal to noise ratio of the end members and 
mean LSU error (see Eq. (2)) remained consistent. 

4. Discussion 

4.1. Gradients and diffuse boundaries 

By using spatial selection criteria for the definition of robust image 
endmembers, we developed an UDT for analysing diffuse boundaries of 
subtidal mudbanks. The pixel fractions resulting from the LSU represent 
mud, vegetation and water gradients, as shown in the selected transect 
for a low-tide and high-tide image (Figs. 4 and 5). Thus, we account for 
mixed pixels and avoid aggregating multitemporal image observations 
with different tidal heights. 

The mud fractions show a discontinuous decrease in the offshore 
direction for both selected images (Figs. 4 and 5). Yet, more abrupt 
changes at 6041 and 5982 m in both mud and water fractions indicate 
changes in the presence of mud in the upper water column. These are 
considered fuzzy transitions between higher and lower mud 

Fig. 6. Variation in spectral signatures for the baseline scenario with a buffer of 10 pixels, a minimal length of 25 pixels, a Gaussian pre filter sigma 0.7 and a minimal 
gradient of 0.9. End-member signatures are taken from selected images between 2008 and 2010. 
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concentrations, corresponding with diffuse boundaries of mudbanks. 
This indicates that, despite differences in tidal elevation and the time 
between acquiring the images, this seaward mud bank boundary re-
mains relatively stable at approximately 6000 m offshore. The remain-
ing difference can be attributed to mud bank migration and the temporal 
variability of SPM concentration, resulting from waves, tides and cur-
rents (Zorrilla et al., 2018). Absolute values of mud fractions in the 
estimated subtidal area also varied between the two images, with lower 
mud fractions for the high-tide image than for the low-tide image. This 
reflects the difference in sediment concentrations, preventing the use of 
an absolute mud fraction threshold to indicate diffuse boundaries. 

4.2. Intermediate results 

Besides the pixel fractions, the intermediate results, so far mainly 
used in the UDT procedure, show promising signs of added value. For 
example, Fig. 5 indicates that the intertidal zone can be estimated with 
the TIR band, when image quality is sufficient. In our case this allowed 
us to isolate pure mud pixels as endmember for the entire image. The 
undetected intertidal area in Fig. 4 is an example where the image TIR 
threshold locally didn’t result in an estimate of the intertidal area. 
However, when the threshold is determined locally from well-defined 
spatial neighbourhoods, the intertidal zone can be demarcated more 
precisely. This is in line with findings from earlier studies that relate 

exposure time and intertidal topography to de difference in thermal 
irradiance between land and water (Ryu et al., 2002; Sørensen et al., 
2006). 

The boundaries of the terrestrial land masks, for example between 12 
and 09-2009 (Fig. 5) and 15-11-2009 (Fig. 4), were consistently esti-
mated at 817 m. As a result it becomes possible to analyse transitions 
from intertidal- to terrestrial landcover classes without using a static 
global or regional land mask product (Laengner et al., 2019). Especially 
in Suriname, where analysis of coastal morphology is hampered by 
limited data availability and changes are rapid and omnifarious, this 
type of spatial information can be beneficial to coastal managers. It al-
lows for example to detect changes in vegetation composition for 
terrestrial and intertidal zones and incorporate that in coastal conser-
vation- and protection measures. 

4.3. Robustness & sensitivity 

The sensitivity analysis on the NDWI threshold provided a better 
understanding of the capabilities of combining canny edge detection 
algorithm and Otsu thresholding for separating land and water pixels. 
The range of unique NDWI thresholds supports earlier observations 
(Bishop-Taylor et al., 2019) that especially in mud-dominated systems, a 
dynamic threshold is required to separate sea from land. 

We found that the canny edge algorithm complemented with buffer 

Fig. 7. Variation in the NDWI threshold, used to separate land and water, for different input parameters sets variation of the minimal gradient (0.7, 0.9, 1.1 and 1.3) 
and Gaussian pre filter sigma (0.3, 0.5, 0.7, 0.9 and 1). Minimum length of the edges and buffer size around them are fixed at the defaults of 25 and 10 pixels 
respectively. 
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and length filters results in a consistent, spatially explicit and robust 
neighbourhood zone when the MG and GPF are set appropriately. By 
applying a sufficiently large length filter, only true land–water bound-
aries are included (Fig. A3). For a larger buffer, when more pixels are 
included, the threshold values shift towards the land lobe of the histo-
gram. This implies that more pixels are included in the terrestrial land 
mask, resulting in the boundary shifting seaward. Nonetheless, the 
resulting neighbourhood zone consistently creates histograms that can 
be used to estimate representative image endmembers from ranges in 
both NDWI and NDVI values. This is supported by the relatively small 
temporal variation in spectral endmembers, sampled from these neigh-
bourhoods, which we observed for all images between 2008 and 2010 in 
the area (Fig. 6). This facilitates the comparison of the linear spectral 
unmixing outputs for different images. 

4.4. Limitations & improvements 

A disadvantage of the outlined approach is that resulting fractions 
are only approximations of SPM or vegetation cover, as non-linear re-
sponses in reflectance spectra are not accounted for (Somers et al., 
2011). Moreover, the spectral signatures of the image endmembers were 
not selected based on their pixel purity but rather on spatial and spectral 
selection criteria. However, monitoring requires an objective and stan-
dardized end-member extraction technique that allows for spatiotem-
poral analysis of LSU outputs (Figs. 4 and 5). The here discussed UDT 
approach consistently selects these endmembers and thus results in 
comparable LSU outputs between different dates and environmental 

conditions during acquisition. 
Also, automatically estimating the position of the seaward boundary 

of mud banks from the LSU outputs remains a future improvement. As 
we showed in the fraction profiles (Figs. 4 and 5), the cross-shore 
transects reveal multiple rapid declines of mud fractions, indicating 
diffuse boundaries. Especially automatically selecting the rearmost 
rapid decline requires additional advancements in processing the LSU 
outputs and sufficient field observations for validation. This diffuse 
boundary position estimate is required to facilitate multitemporal po-
sition analysis of mud-bank footprints. The thresholds and index ranges 
used to define end-member candidates can then be used to assess the 
suitability of the image in a timeseries analysis, compared to for example 
only using estimates of cloud cover. 

5. Conclusions 

We developed a data-driven method that facilitates the detection of 
diffuse boundaries of subtidal banks along mud-dominated coastlines, as 
exemplified for a section of the Suriname coast. The developed unsu-
pervised decision tree includes (1) advances in separating land and 
water with Otsu thresholding, (2) a novel approach to automatically 
estimate the intertidal zone and (3) an assessment of cross-shore gra-
dients in mud, water and vegetation fractions from individual Landsat 
observations. We reaffirm that efficiently separating land and water is 
possible in mud-dominated coastal systems by defining a spatial 
neighbourhood with an edge detection algorithm applied to the NDWI 
index. However, selecting the appropriate input parameters is a non- 

Fig. 8. Variation in the NDWI threshold (n = 68) used to separate land and water for different input parameter set: variation of the buffer size (5, 10 and 15 pixels), 
different minimum edge length values (10, 25, 50 and 75 pixels) and MG values (0.7, 0.9, 1.1 and 1.3) and the GPF is set at its default of 0.7. 
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trivial exercise. The resulting terrestrial boundary allows the separation 
of the remaining exposed intertidal zone from water, based on a tem-
perature threshold. Consistently sampling potential end-member can-
didates from these initial estimates of water, intertidal and land surface 
can be done from their index histograms. The resulting spatially explicit 
and spectrally coherent image endmembers facilitate multitemporal LSU 
outputs with fraction maps of water, vegetation and mud. From these, 
spatiotemporal differences in their sub-pixel proportions can indicate 
much needed information about changing gradients and the presence of 
coastal features. 

Supplementary materials 

Link to Google Earth Engine: https://code.earthengine.google.com/ 
?accept_repo=users/jobdevries90/MangroMud. 
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Appendix A 

See Figs. A1–A3 and Table A1. 

Fig. A1. NDVI peak variation between 2008 and 2010 (n = 68) for different parameter combinations. This peak value is used to select potential end-member 
candidates from the derived canny edge neighborhood zones. By including a 5% buffer on both sides of this peak value, potential end member candidates for 
vegetation were selected in the same neighbourhood zone. Parameter sets include different buffer values (5, 10 and 15 pixels), minimum edge length thresholds (10, 
25, 50 and 75 pixels), MG values (0.7, 0.9, 1.1 and 1.3) and the GPF at its default of 0.7. 
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Fig. A2. Temperature threshold variation (n = 68) for images acquired between 2008 and 2010 for different parameter sets. This threshold value was used to make 
an initial estimate of the intertidal area for the entire coastal area in the concerning Landsat image. Parameter sets include different buffer values (5, 10 and 15 
pixels), minimum edge length thresholds (10, 25, 50 and 75 pixels), MG values (0.7, 0.9, 1.1 and 1.3) and the GPF at its default of 0.7. 

Fig. A3. Variation in the NDWI threshold (n = 68) used to separate land and water for different parameter sets: variation of the buffer size (5, 10 and 15 pixels), 
different minimum edge length values (10, 25, 50 and 75 pixels), MG values (0.7, 0.9, 1.1 and 1.3.) and the GPF at its default of 0.7. Difference with Fig. 8 is that the 
x-axis contains the buffer values to clearly show the effect of varying minimal length values on the thresholds. 
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Appendix B. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jag.2020.102252. 
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Table A1 
For the two example images five scenarios with different input parameters result in a different threshold, and thus a unique land mask, indicated by the absolute and 
relative amount of land pixels. Pure vegetation, pure water and pure mud indicate the number of pixels used to derive the mean end-member signatures. SNR is the sum 
of the standard deviation in reflectance for each band divided by the mean value, added up together for the 3 end member classes. The RMSE is the mean pixel error 
from the LSU (ei in Eq. (2)) analysis.  

Date Scenario T Pixels land % Pure vegetation Pure water Pure mud SNR RMSE  

MG GPF Buffer Length [number of pixels] 

12-9-2009 0.9 0.7 10 25 ¡0.186 20,363,626 100 8252 88,266 16,456 8.041051 0.0092  
0.9 0.7 5 75 − 0.198 20,358,385 99.97 4425 88,266 5182 7.87212 0.0094  
1.3 0.3 10 25 − 0.184 20,364,540 100.004 7817 88,266 11,015 8.393861 0.0093  
1.3 1.0 10 25 − 0.174 20,368,298 100.024 10,159 88,266 1308 9.315757 0.0099  
0.9 0.7 15 10 − 0.186 20,363,626 100 8252 88,266 16,456 8.041051 0.0092 

15-11-2009 0.9 0.7 10 25 ¡0.246 20,050,838 100 12,381 233,724 5417 8.130978 0.0158  
0.9 0.7 5 75 − 0.254 20,045,963 99.975687 2419 233,724 2563 8.497057 0.0155  
1.3 0.3 10 25 − 0.242 20,053,377 100.01266 7414 233,724 5631 8.30218 0.0159  
1.3 1.0 10 25 − 0.202 20,070,963 100.10037 3043 233,724 1057 7.869695 0.0152  
0.9 0.7 15 10 − 0.242 20,053,377 100.01266 21,262 233,724 8314 7.795523 0.0158  
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