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Abstract

Motivation: Monoclonal antibodies are essential tools in the contemporary therapeutic armory. Understanding how
these recognize their antigen is a fundamental step in their rational design and engineering. The rising amount of
publicly available data is catalyzing the development of computational approaches able to offer valuable, faster and
cheaper alternatives to classical experimental methodologies used for the study of antibody–antigen complexes.

Results: Here, we present proABC-2, an update of the original random-forest antibody paratope predictor, based on
a convolutional neural network algorithm. We also demonstrate how the predictions can be fruitfully used to drive
the docking in HADDOCK.

Availability and implementation: The proABC-2 server is freely available at: https://wenmr.science.uu.nl/proabc2/.

Contact: a.m.j.j.bonvin@uu.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Monoclonal antibodies (mAbs) are now well established in the con-
temporary therapeutic repertoire. Indeed in 2018 12 antibodies were
granted first approval by either the European Medicines Agency or by
the Food and Drug Administration while about 570 are undergoing
clinical development at various stages (Kaplon and Reichert, 2019).
The reasons behind the increasingly consolidated use of mAbs as ther-
apeutics should be sought in their high affinity and specificity toward
their cognate antigen and their modular architecture which facilitates
their engineering (Chames et al., 2009). Understanding the fundamen-
tals of antibody–antigen interactions is a critical step for the rational
design and engineering of immunoglobulins. Since classical experi-
mental approaches used to characterize antibodies (e.g. NMR, X-ray
and mass spectrometry) are often expensive and time consuming,
computational tools offer valuable and complementary approaches
which can provide information at different levels (sequence and/or
structural) (Norman et al., 2019).

To this end, we previously reported a method named proABC
(Olimpieri et al., 2013) that can predict antibody residues forming
intermolecular contacts with the cognate antigen, as well as the

nature of their contacts, distinguishing between hydrogen bonds and
hydrophobic interactions. proABC is based on a random forest algo-
rithm, using the antibody heavy and light chain sequences, the
hypervariable loop canonical structures and lengths (Chothia and
Lesk, 1987) and the germline family as features (Schatz and
Swanson, 2011). Its performance has been validated by us
(Olimpieri et al., 2013) and others (Peng et al., 2014) demonstrating
good accuracy and reliability.

Here we present proABC-2, an update of the original algorithm
using the same set of features but based on a deep learning frame-
work shown to be successful in achieving similar goals (Deac et al.,
2019; Liberis et al., 2018). Furthermore, we show how the proABC-
2 predictions can be used to drive the modeling of antibody–antigen
complexes using the information-driven docking approach
HADDOCK (Van Zundert et al., 2016), which was recently demon-
strated to be the best option of the compared methods for antibody–
antigen modeling (Ambrosetti et al., 2020). The method is inte-
grated in a freely available web server that predicts paratope resi-
dues forming general contacts as well as those involved in hydrogen
bonds and hydrophobic interactions.
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2 Results

The prediction performance of proABC-2 was measured, after a 10-
fold-nested cross-validation, in terms of AUC, MCC and F-score
values for all the general interactions of the paratope (Pt), hydro-
phobic interactions (Hy) and for hydrogen bonds (Hb) (see
Supplementary Materials). The highest performance is obtained for
Pt (0.96, 0.57 and 0.59, respectively, for AUC, MCC and F-score)
and decreases for Hy (0.95, 0.44 and 0.41) and Hb (0.94, 0.33 and
0.27). This is due to the smaller number of Hb and Hy interactions
in the training set compared to the general (Pt) ones. When trained
on the same data and in a similar approach, proABC-2 outperforms
Parapred (Liberis et al., 2018), one of the currently best available
methods for paratope prediction. Details about the model evalu-
ation and the comparison with Parapred are provided in the
Supplementary Materials.

2.1 Prediction-driven docking accuracy
We investigated whether the predictions obtained from proABC-2
can be used to drive antibody–antigen docking using the
HADDOCK 2.2 webserver (Van Zundert et al., 2016). For unbiased
predictions, the model was trained excluding all sequences sharing
�95% sequence identity with any structure used for docking. Only
residues predicted as Pt were used for docking (using a 0.40 cutoff).
The results were compared to a previous study performed using the
hypervariable loops (Ambrosetti et al., 2020, Supplementary Figs S2
and S3). The performance was evaluated in terms of success rate
defined as the number of complexes for which at least one accept-
able, medium or high-quality complex was found in the top 1, 5, 10,
20, 50 and 100 ranked models. Supplementary Figure S2 shows the
results of the docking obtained by providing to the algorithm all
solvent accessible residues of the antigen and either the antibody
hypervariable loops (HV-Surf) or the proABC-2 predictions (Pt)
(Pred-Surf). The HV-Surf docking led to slightly better results for
the top 1, 5 and 10 with 25.0%, 31.2% and 31.2% success rates, re-
spectively, compared to 18.7%, 25.0% and 25.0% for Pred-Surf.
The proABC-2 predictions give better results for the top 50 and 100
(50% and 62.5% success rates, respectively). Thus, even if
HADDOCK is able to generate correct models, the scoring is not
able to rank them in the top. As for the quality of the docking mod-
els, using the HV loop leads to better-quality models overall.

Supplementary Figure S3 shows the results of the docking
obtained by providing to the algorithm a loose definition of the epi-
tope following the definition given in Ambrosetti et al. (2020). In
this scenario, the proABC-2 predictions led to a remarkable im-
provement of the Top1 success rate from 43.8% (using HV) to
62.5%. In general, the use of the proABC-2 predictions resulted in
an improvement of the quality of the generated models, mainly
reflected in the number of medium-quality ones. Details about the
docking scenarios and settings are provided in the Supplementary
Materials.

2.2 Web server
proABC-2 is freely available as a web server at https://wenmr.sci
ence.uu.nl/proabc2. It only requires the sequences of the heavy and
light chains. The input is processed to calculate all of the sequence-
derived features (germline, canonical structures and length of the
HV loops), and these are passed to the CNN to make the

predictions. The computation only takes a few seconds. The results
page reports in a bar plot the residue probabilities of making a gen-
eral, H-bond and hydrophobic interactions (see Supplementary Fig.
S4). Two files (for the heavy and light chains) are provided as out-
put, containing for each residue the different probabilities.

3 Conclusions

proABC-2 is based on a deep learning framework and shows a high
performance with an AUC of 0.96 and an MCC of 0.57. Its predic-
tions should be useful for antibody design such as in silico affinity
maturation or humanization. We also demonstrated how these pre-
dictions can guide molecular docking, showing in particular that if a
loose definition of the epitope region is provided, the proABC-2 pre-
dictions leads to improvements of both success rate and quality of
the docked models. This suggests that different strategies might be
followed depending on the available information about the epitope.

To our knowledge, proABC-2 is the only available method, spe-
cifically designed for antibodies, able to predict the paratope resi-
dues along with the type of interaction. The method is freely
available as a web server and provides a straightforward user-
friendly interface.
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