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The computational modeling field has vastly evolved over the past decades. The early developments of
simplified protein systems represented a stepping stone towards establishing more efficient approaches
to sample intricated conformational landscapes. Downscaling the level of resolution of biomolecules to
coarser representations allows for studying protein structure, dynamics and interactions that are not
accessible by classical atomistic approaches. The combination of different resolutions, namely hybrid
modeling, has also been proved as an alternative when mixed levels of details are required. In this review,
we provide an overview of coarse-grained/hybrid models focusing on their applicability in the modeling
of biomolecular interactions. We give a detailed list of ready-to-use modeling software for studying
biomolecular interactions allowing various levels of coarse-graining and provide examples of complexes
determined by integrative coarse-grained/hybrid approaches in combination with experimental
information.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

The chemistry that supports life is extremely sophisticated.
Despite advances over the past decades, the scientific community
still lacks fundamental knowledge to fully understand the biology
behind the cell at atomic level. We know that basic subunit atoms
(i.e. carbon, oxygen, hydrogen and nitrogen) can combine and form
complex molecules such as lipids, carbohydrates, nucleic acids and
proteins. At the same time, these biomolecules associate and create
more intricated assemblies that adopt specific three-dimensional
(3D) structures, essential for their biological functions. Their inter-
actions mediate a wide range of biological functions such as for
example signal transduction, molecular recognition or transport.
Indeed, roughly 80% of the proteins might function upon associa-
tion with other biomolecules [1]. It is therefore of great importance
to understand how these macromolecules interact. Next to exper-
imental methods, complementary computational approaches have
been develop with the so-called integrative modeling emerging as
the most promising strategy [2]. In short, integrative modeling
aims at obtaining structural insights into a given system under
study that cannot be revealed by a single approach alone. To do
so, it combines data from multiple information sources (e.g.
nuclear magnetic resonance (NMR) spectroscopy, cryo-electron
microscopy (cryo-EM), mass spectrometry (MS), small angle x-
ray scattering (SAXS), bioinformatics analysis. . .) [3] into computa-
tional approaches to model the assemblies. Integrative modelling
has been extensively used to model increasingly larger systems
in the recent past [4]. In this sense, we are probably closer than
ever to construct a predictive model of an entire cell [5].

Classical atomistic computational modeling of interactions
remains inefficient for many molecular assemblies. Larger systems
often require longer simulations and their complex conformational
landscapes cannot be efficiently and thoroughly sampled by ato-
mistic approaches. The simplification of large systems to coarser
representations offers a valuable approach to alleviate those limi-
tations. There is already a huge body of literature on this topic
and, in the present work, we do not aspire to give the most com-
prehensive review covering all possible contributions, but will
focus on the modeling of biomolecular interactions. i.e. complexes,
involving proteins, peptides and nucleic acids (DNA and RNA). The
remaining of the text is organized as follows: We first start with a
brief historical overview of the development of coarse-graining.
We then describe several representative designs of simplified sys-
tems and parametrization strategies and discuss how these can be
implemented into the modeling of biomolecular complexes, both
for the generation of possible conformations (sampling) and the
discrimination between native and non-native models (scoring).
Finally, we provide an overview of currently available software
that support coarse-grained modeling of biomolecular complexes
and highlight several representative applications.
2. Historical perspective

The structural characterization of lysozyme in 1967 [6] spurred
Arieh Warshel to study enzymatic reaction mechanisms. His devel-
opments in this field under the supervision of Martin Karplus,
inaugurated the now well-established quantum mechanics/molec-
ular mechanics (QM/MM) methods [7]. In parallel, Michael Levitt, a
PhD student at the Medical Research Council at that time, was
making significant advances for studying molecular conformations
by computational approaches: Together with Shneior Lifson in
1972 at the Weizmann Institute in Israel, Levitt and Warshel
started working on a simplified representation of a protein, where
spheres would represent amino acids. In fact, this project, later on
in 1975, turned out in the very first computer simulation of a pro-
tein system (pancreatic trypsin inhibitor) using a coarse-grained
model [8]. These simulations suggested that the protein folding
process has a relatively small number of conformations, and chal-
lenged the so-called ‘‘Levinthal paradox” [9]. In this work, each
residue was represented by only two beads: The Ca atom and
the centroid of the side chain. Non-bonded interactions were
assumed to occur only between side chains. By doing so, only tor-
sion angles between 4 consecutive Ca atoms were considered, con-
siderably reducing the conformational space (one degree of
freedom per residue). For all these premature findings Karplus,
Levitt and Warshel were awarded with the Nobel Prize in Chem-
istry in 2013.

In 1975, Chothia and Janin established the structural basis of
the hydrophobic effect as fundamental to the stabilization of pro-
tein association [10]. All these pioneering findings were used as a
basis for the first computational analysis of a protein–protein com-
plex: In 1978, Wodak and Janin studied the association of BPTI and
trypsin using a coarse-grained representation of the system [11].
They used a combination of a simple averaged potential energy
function including non-bonded (van der Waals) and residue-
solvent interactions. Whilst encouraging, this early model totally
neglected electrostatic interactions and was thus unable to
describe hydrogen bonds and salt bridges, which, later on in
1984, were suggested to provide the specificity of the association
[12]. In spite of the incompleteness of this work, they shed light
on the idea that a simplified protein model could be an effective
alternative to screen a relatively large number of possible inter-
faces, which constituted the first coarse-grained docking simula-
tion. Ever since, coarse-grained/hybrid modeling approaches have
gained importance in the computational structural biology field
[13] and have become central in the study of folding, dynamics
and association mechanisms of biomolecules.
3. Coarse-grained/Hybrid modeling of biomolecular
interactions

In this section, we will focus on macromolecular docking
approaches allowing some level of coarse-grained/hybrid repre-
sentations for the modeling of interactions. These usually include
two different steps: The generation of possible complex conforma-
tions, referred to as sampling, and the discrimination between bio-
logically and non-biologically relevant models referred to as
scoring. The latter might also be an integral part of the sampling
process, especially when experimental or predicted information
is included to bias the sampling (e.g. restraints-driven sampling).
We first describe various strategies to simplify the representation
of polypeptides and nucleic acids and discuss existing parametriza-
tion strategies and force fields. We then focus on how coarse-
grained/hybrid approaches can be applied during the sampling
and scoring steps for modeling biomolecular interactions and end
with a short discussion of backmapping approaches to restore full
atomistic representations.
3.1. Simplified representations and topologies

In general, a coarse-grained model aims at decreasing the com-
plexity of a system by grouping several atoms into larger ‘‘pseudo-
atoms” or ‘‘beads”, thereby reducing the number of degrees of free-
dom. This results both in more efficient computations and a possi-
ble smoothening of the energy landscape that might facilitate the
identification of relevant states of the system. In the context of pro-
teins, the simplest models introduced are the hydrophobic/polar
(HP) models (see Fig. 1). These simplify the representations of a
polypeptide chain [14] by considering only two type of beads (H
and P), which, to some extent, are an approximation of two types



Fig. 1. Examples of various coarse-grained models. (A) The panels from left to right illustrate the increase in the complexity of the system (i.e. decreased coarse-graining): A
2-D lattice representation of a HP model, a coarse-grained (4:1 mapping) of a dsDNA molecule, a hybrid representation of a protein–protein interface (AA/CG) and an
atomistic model of a peptide. (B) The two traditional parametrization strategies. Bottom-up: Bond-lengths are parametrized by mapping to distributions of reference atomistic
simulations. Top-down: Models are designed to match specific properties (e.g. thermodynamic quantities) of the system.
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of residues: hydrophobic (H) and polar (P) [15]. Albeit very mini-
malistic, HP representations have proven useful to study larger
conformational changes and longer time scales. These models,
and their variants, have been extensively studied in the past dec-
ade [16–19] and reviewed elsewhere [20]. Another example of a
low-resolution model to represent proteins is SICHO (Side CHain
Only) [21]. In the model developed by Kolinski and Skolnick [21],
each amino acid is represented as a unique interaction site, located
at the center of the side-chain. It is thus computationally very effi-
cient but completely neglects backbone conformations (u/w dihe-
drals) [22].

In order to overcome the inaccuracies of very simplistic repre-
sentations, higher resolution models have been developed.
PRIMO/PRIMONA, for proteins and nucleic acids, was proposed as
a reduced quasi-atomistic resolution model [23]. Feig and co-
workers [23] represent polypeptide backbones with three beads
(Ca, N and a combined carbonyl site) and side-chains as a combi-
nation of up to five different particles. In the case of nucleotides,
adenine, cytosine and uracil are represented by four coarse-
grained particles, and guanine and thymine by five. The sugar-
phosphate backbone of the PRIMONA model consist of eight differ-
ent CG beads. In contrast, the HiRE-RNA model designed by Pas-
quali and Derremaux [24] only considers three of the seven
backbone torsional angles (a, b and c); each RNA nucleotide is rep-
resented by six (pyrimidine bases) or seven (purine bases) beads,
allowing for a reduction of ~70% of the number of particles com-
pared to a fully atomistic structure. Similar to PRIMO, in the SIRAH
model [25] the positions of the nitrogen, a carbon and oxygen from
the peptide bonds are kept at pseudo-atomistic resolution, while
side chains are treated at a lower degree of detail (from one to five
different beads). This model also allows for the study of protein-
DNA interactions by molecular dynamics through the use of an
explicit/CG solvation scheme [26,27].
Other coarse-grained models have been designed to be easily
transferable and applicable to multiple systems. Among those,
MARTINI is probably the most popular one. The current
‘‘MARTINIdome” includes: lipids [28], proteins [29], polymers
[30,31], carbohydrate [32], water [33], glycolipids [34], nucleotides
[35,36] and nanoparticles [37]. The systems are represented by
four different basic particles – nonpolar (N), polar (P), apolar (C)
and charged (Q) – that are further classified based on their degree
of polarity and hydrogen bonding properties, giving a total of eigh-
teen unique ‘‘building blocks”. The MARTINI force field for proteins,
in its latest official release (2.2p), includes off-center charges for
polar and charged residues [38]. These represent a good proxy
for hydrogen bond and salt bridges formation and thus for molec-
ular recognition. For nucleic acids, much like PRIMONA, the MAR-
TINI model specifically accounts for Watson-Crick base pairing
(eight additional beads) to stabilize the DNA double helix
structure.

3.2. Parametrization of coarse-grained force fields

3.2.1. Classical parametrization strategies
In the context of molecular modeling, the set of parameters and

functions used to calculate the potential energy of a system is com-
monly referred to as force field. Atomistic force fields provide
parameters usually for every type of atom in a system (hydrogen
included) but also united atom representations are often used in
which non-polar hydrogens are neglected. In contrast, coarse-
grained potentials are a cruder representation of the inter- and
intra-molecular interactions. Regarding the latter, their
parametrization follows two main routes: Hierarchical (bottom-
up) and pragmatic (top-down) coarse-graining [39].

The key idea of hierarchical coarse-graining is that, the interac-
tions at a less detailed level are the result of the collective interac-



Fig. 2. Examples of integrative structures determined by partial/full coarse-grained/hybrid computational approaches as archived in the PDB-dev database [120,121] (pdb-
dev.wwpdb.org). Pictures were generated with ChimeraX [136]. The experimental information used for the modeling (if included) has been omitted for visualization
purposes. Models can be directly opened in ChimeraX from the command line as: open [model_number] from pdbdev ignoreCache true.
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tions at the more detailed level [40]. As an illustration, in the 1975
abovementioned study by Levitt and Warshel [8], the interactions
between coarse-grained sites were derived in a bottom-up way by
explicitly summing up all microscopic interactions of an atomistic
model. One obvious limitation of these models is that the quality of
the coarse-grained model highly depends on the accuracy of the
underlying atomistic one. Similarly, the seminal force-matching
(FM) method proposed by Ercolessi and Adams [41] and further
developed by Voth and co-workers [42,43] under the name of
MS-CG (multiscale coarse-graining) uses atomistic-level interac-
tions to derive coarse-grained potentials. In short, those potentials
are systematically fitted to atomistic forces by minimizing the
mean-square errors between them. Much like iterative Boltzmann
(IB) derived models [44], these force fields are usually more accu-
rate as compared to more generic ones. However, they are typically
less transferable and require more parametrization effort. These
methods, and their extensions [45], have been recently applied to
coarse-grained models for proteins such as the UNRES model [46].

Pragmatic force fields, however, are designed in such a way that
they reproduce a given chosen (experimental) property [47]. The
earlier lattice models (such as HP) represent a well-studied exam-
ple of top-down coarse-graining. These models are typically
cheaper to parametrize, easily transferable (to similar systems)
and use rather simple analytical potentials [48]. In a similar way
and as shown in Fig. 1, methodologies based on reproducing ther-
modynamical properties have been extensively applied in different
branches of chemistry such as physical and organic chemistry.
Equations of State (EoS), which are mathematical relationships
between the thermodynamic variables of a given system, have
been shown appropriate to accurately link the macroscopic proper-
ties of the system and the force field parameters [49]. As an exam-
ple, the powerful SAFT-c EoS, a variation of the Statistical
Associating Fluid Theory (SAFT), has been used to estimate the
coarse-grained potentials of the Mie force field [50]. This force field
has been recently used to calculate solvation free energies of aro-
matic compounds, which are broadly used in the pharmaceutical
industry for drug design purposes [51].

3.2.2. Machine learning-based parametrization
Machine learning, and especially deep learning, is revolutioniz-

ing in the last years many areas of science and technology. Cer-
tainly, the most significant breakthrough of the decade in the
field of protein folding has been the development of AlphaFold
[52]. DeepMind, an artificial intelligence company affiliated to
Google, has designed a deep learning-based method that repre-
sents a substantial advance as compared to classical modeling
techniques [53,54]. These machine learning methods have been
also applied in the development of force fields and are usually
purely based on existing data. A general approach to design a
machine (deep) learning-based force field typically includes: The
generation of reference atomic configurations and forces (QM cal-
culations), the identification of specific signatures, the selection of
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training and test datasets, the mapping of selected signatures to
forces using specific algorithms and the assessment of the resulting
predictive model [55]. Deep neural networks [56], adversarial
machine learning models [57] and genetic algorithm [58] have
been recently shown appropriate for the development coarse-
grained force fields. Altogether, machine learning-based
parametrization methodologies represent an emerging trend to
automatize analytical model building from more complex data,
which can deliver faster and perhaps more accurate results with
minimal human intervention.

3.3. Combining different levels of resolution

An exhaustive, yet accurate, sampling of the conformational
landscape is crucial in attempts to model biomolecular interactions
and evaluate the underlying energetics. The use of simplified rep-
resentations offers an effective way of sampling the landscape.
However, the reduced accuracy due to the inherent simplifications
still limits the systems and processes that can be studied by CG
approaches. Hybrid approaches, which typically couple coarse-
grained and atomistic-level representations, aim to overcome
these limitations by combining different levels of resolution [59].
These combined approaches might be very helpful for quantitative
studies (e.g. free energy calculations of large systems [60,61]),
while still reducing the computational cost. They are also particu-
larly useful to include components of a system for which no or only
low-resolution structural data are available. A key challenge in
hybrid modeling is to integrate the different levels of resolution
and to describe the AA/CG interactions. Standard mixing rules
[62] have been historically very successful for this task. In short,
Lennard-Jones and electrostatic interactions for mixed systems
can be averaged and combined with an optimal scaling parameter
depending on the size of the system [63]. Besides energetics, it still
remains unclear how the interaction between two atoms might be
affected by a coarse-grained surrounding as compared to its ‘‘na-
tive” environment and vice versa [64].

There are several hybrid schemes proposed in the literature,
with MARTINI as a popular choice for the coarse-grained represen-
tation. One example is the PACE force field [65,66], which pairs
MARTINI (water and lipids) with a united-atom protein model. In
this case, the AA/CG parameters are optimized against specific
thermodynamic data, which somehow limits its direct applicability
to other systems. GROMOS/MARTINI coupling [64] has also been
described as a potential alternative. In this work, cross-resolution
interactions are calculated via virtual interactions sites on relevant
atomistic groups and the standard CG beads, an approach that
might lead to unbalanced electrostatics behaviors. For this reason,
Wasenaar and coworkers [67] introduced an explicit electrostatic
AA/CG coupling on the coarse-grained side. More recently, the
CHARMM/PRIMO coupling has been proposed for single hybrid
simulation purposes [68]. In the model proposed by Kar and Feig
[68], the atomistic segment of the hybrid model was found to
structurally deviate more than its corresponding one in a full ato-
mistic model. This suggests that proper mixing of resolutions
remains a difficult problem.

In the context of integrative modeling, the integration of exper-
imental data at the various possible levels might have a crucial role
for hybrid representations of the system. At the sampling level,
data can be used to narrow the conformational search so that bind-
ing incompetent and/or irrelevant regions are discarded a priori.
This strategy has been shown to be best suited compared to
post-simulation filtering approaches. It not only outperforms the
scenario where data is solely used to discard models with a high
degree of uncertainty, but also reduces significantly the computa-
tional cost [69]. Data can be also incorporated at the scoring level
via a numerical penalty term or as restraining energy potential
[70]. As an example, in HADDOCK [71] the distance restraints are
incorporated into the scoring scheme via a soft-harmonic potential
where the potential becomes linear for violations longer than 2 Å
[72], effectively avoiding large forces for high restraints violations.
Therefore, the incorporation of data in the modeling might work as
a firewall and somewhat reduce the impact of inaccuracies of
hybrid schemes in terms of intra- and inter-molecular interactions.

3.4. Sampling and scoring schemes

Decreasing the computational cost, as well as the complexity of
the system, is a major goal of coarse-grained modeling. By lower-
ing the resolution, the energy landscape becomes smoother and
it is therefore, in principle, easier to identify the global minimum.
In the context of integrative modeling with HADDOCK, we recently
showed that introducing the MARTINI coarse-grained force field
results in a substantial increase (8–30%) in the number of near-
native models generated [73]. We also find CG sampling schemes
in ATTRACT [74–76] (also hybrid scoring), CABS-dock [77,78] (also
scoring), FRODOCK2.0 [79], InterEvDock2 [80,81] (also scoring),
LZerD [82,83], MAXDo [84], MCDNA [85] (also scoring), MDockPP
[86] and RosettaDock [87] (also scoring in RosettaDock 4.0 [88]).
Some of the methods used by these software to sample the confor-
mational landscape includes: Rigid-body energy minimization,
Fast Fourier Transformation (FFT) or Molecular Dynamics (Monte
Carlo). For the purpose of scoring, coarse-grained molecular
dynamics simulations have been also evaluated on a heteroge-
neous benchmark of protein–protein docking models [89]. Other
modeling software such as: DOCK/PIERR [90], GALAXY [91,92],
LightDock [93], MEGADOCK 4.0 [94,95], PPI3D [96,97], pyDock
[98,99] and V-D2OCK [100] incorporate, to some extent, coarse-
grained/hybrid scoring approaches for (quasi)atomistic models.

IMP [101] and PyRy3D (genesilico.pl/pyry3d) are examples of
ready-to-use hybrid modeling software for predicting (sampling
and scoring) biomolecular assemblies allowing to incorporate
experimental data into their calculations. The Integrative Modeling
Platform leans on the concept that the resolution of the represen-
tation depends on the quantity and quality of the available infor-
mation. This information is also encoded in a scoring function,
whose ultimate goal is to evaluate the uncertainty of the generated
models. Andrej Sali and co-workers [2] understand the modeling as
an endless cyclic process driven by the continuous acquisition of
data. In IMP, the different subunits are represented as a combina-
tion of spherical beads of varying sizes (different levels of coarse-
ness). The same subunits can be also be represented as 3D
Gaussians (for EM map fitting) and thus combine different resolu-
tion scales simultaneously [102]. During the conformational sam-
pling, the relative distances from all the CG beads and Gaussians
are either constrained (in rigid bodies) or restrained (in flexible
bodies) by the sequence connectivity. For very high degrees of
coarse-graining, only geometric considerations, e.g. exclude vol-
ume, might be used in the computations. PyRy3D allows for build-
ing low-resolution models of large macromolecular assemblies. In
the software developed by Kasprzak and Bujnicki (genesilico.pl/
pyry3d), proteins and nucleic acids can be represented as rigid-
bodies or as flexible shapes. A spatial restraints-driven Monte Carlo
approach is used to bring the components together followed by an
evaluation via a simple scoring function. For a more detailed list of
software that allow for building structural models of multi-subunit
macromolecular complexes refer to Table 1.

3.5. Backmapping from coarse-grained to atomistic resolution

The inherent loss of accuracy of coarser representations is a lim-
iting factor when analyzing integrative models of biomolecular
complexes. Atomic details, such as specific contacts, are usually



Table 1
Available software for building structural models of protein, peptide and/or DNA complexes that incorporates a coarse-grained/hybrid approach into their protocols. Most of the
listed software are available as webserver and/or standalone package.

Modeling
platform

System(s) Characteristics Link Reference(s)

ATTRACT Protein, peptide and DNA CG sampling and hybrid scoring attract.ph.tum.de [74–76]
CABS-dock Peptide CG sampling and scoring biocomp.chem.uw.edu.pl [77,78]
DOCK/PIERR Protein Hybrid scoring clsbweb.oden.utexas.edu * [90]
FRODOCK2.0 Protein 3D grid potential maps frodock.chaconlab.org [79]
GALAXY Peptide Hybrid scoring galaxy.seoklab.org [91,92]
HADDOCK Protein, peptide and nucleic

acids
CG sampling bianca.science.uu.nl/haddock2.4 [73,103,104]

IMP Protein and DNA Hybrid sampling and scoring integrativemodeling.org [101]
InterEvDock2 Protein Sampling by FRODOCK2.0 and CG

scoring
bioserv.rpbs.univ-paris-diderot.fr/services/
InterEvDock2

[80,81]

LightDock Protein, peptide and DNA Hybrid scoring lightdock.org [93]
LZerD** Protein and peptide 3DZD representation and hybrid

scoring
kiharalab.org/proteindocking [82,83]

MAXDo Protein CG sampling lcqb.upmc.fr/CCDMintseris [84]
MCDNA Protein and DNA CG sampling and scoring mmb.irbbarcelona.org/MCDNA [85]
MDockPP Protein CG sampling zoulab.dalton.missouri.edu [86]
MEGADOCK 4.0 Protein Hybrid scoring bi.cs.titech.ac.jp [94,95]
PPI3D Protein Voronoi tessellation-based scoring bioinformatics.ibt.lt/ppi3d [96,97]
pyDock Protein CG scoring life.bsc.es/pid/pydockweb [98,99]
PyRy3D Protein and DNA Hybrid sampling and scoring genesilico.pl/pyry3d –
RosettaDock Protein CG sampling and scoring rosettacommons.org [87,88]
V-D2OCK Protein CG scoring bioinsilico.org/cgi-bin/VD2OCK/ [100]

* Submission to DOCK/PIERR webserver is no longer supported.
** LZerD has an specific protocol for modeling unstructured protein–protein interactions [83].
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essential to understand molecular recognition and it is therefore
crucial to accurately reconstruct atomistic models from their CG
counterparts [105]. This process is commonly referred in the liter-
ature as reverse transformation, inverse mapping or backmapping.
There is currently a number of different backmapping protocols
proposed, which mostly follow two different stages: (1) The gener-
ation of an atomistic structure based on the coarse-grained coordi-
nates, and (2) a relaxation step of the generated AA structure.

For the first step, geometrical interpolation [23,106,107], ran-
dom placement [108] and fragment-based methods [87,109–111]
are the most used ones. All these methods perform sufficiently well
according to backbone deviations (<1.0 Å in general) but side chain
reconstruction seems more problematic [112]. Side chain opti-
mization has been extensively studied as it directly applies for pro-
tein designing purposes. The most successful methods discretize
possible side chain conformations into rotamers and usually
require of an exhaustive search algorithm (e.g. Monte Carlo, simu-
lated annealing. . .) and an effective scoring function for selecting
the proper side chain conformation. The backmapped atomistic
structures can then be further improved by energy minimization
[73,113] and/or more sophisticated molecular dynamics-based
approaches [114]. In HADDOCK, the CG generated models are con-
verted into atomistic resolution by using distance restraints
between the atoms and their corresponding coarse-grained beads.
Using those restraints, the all-atom models of the individual com-
ponents of a complex are morphed onto the coarse grained com-
plex by a series of energy minimizations and Cartesian molecular
dynamics [73].

4. Application examples of integrative modeling of protein
interactions

Ultimately, the true value of any biomolecular model is in the
structural information and insights that it provides. When speak-
ing about integrative modeling here, we refer to the branch of
structural biology whose aim is to gain structural insights into
biomolecular complexes by integrating a wide variety of experi-
mental information into computational calculations. There are var-
ious challenges associated with the incorporation and use of that
information for the modeling of assemblies. However, a detailed
overview of those is beyond the scope of this manuscript and have
been reviewed in depth elsewhere [115–117]. The relevance of
integrative models is underscored by the fact that the Protein Data
Bank [118,119] has now started to collect them in a new integra-
tive model database (PDB-dev; pdb-dev.wwpdb.org) [120,121],
which ultimately should be merged into the current PDB database.
Since 2014, it is possible to archive structural models obtained by
combining traditional structural experimental techniques such as
NMR spectroscopy, electron microscopy (3DEM), small angle scat-
tering (SAS), atomic force microscopy (AFM), chemical cross-
linking, Förster resonance energy transfer (FRET), electron param-
agnetic resonance (EPR), mass spectrometry (MS), Hydrogen/Deu-
terium exchange (HDX) and various bioinformatic approaches,
with computational methods. In this section we highlight several
examples of integrative structures of protein complexes that have
been determined by combining coarse-grained/hybrid computa-
tional approaches with experimental information.

Among all archived structures, we find a number of them deter-
mined by coarse-grained/hybrid computational methods in combi-
nation with a wide variety of structural data (see Fig. 2). Integrative
structures derived from chemical cross-linking data are by far the
most abundant ones, including models of the heptameric module
of NPC [122], the exosome complex [123], the Complement C3
(H2O) [124], the E6AP/UBE3A-p53 enzyme-substrate complex
[125], Pol II(G) [126], the Proteasome-Ecm29 complex [127] and
the canonical/non-canonical human COP9 Signalosome [128]. Pro-
tein cross-links have been also combined with other types of
experimental information such as three/two-dimensional Electron
Microscopy (2DEM/3DEM) and/or SAS to determine structures like
the yeast Mediator complex [129] or the native BBSome [130].
Other sources of information such as mutagenesis and NMR data
[131] and single molecule FRET data [132] have been also used.

There are also multiple examples of integrative structures, not
deposited in the PDB-dev database, which have been modelled
by integrative coarse-graining methods. One of those is the ATP
synthase membrane motor. Leone and Faraldo-Gómez [133] pro-
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posed a computational integrative model based on chemical cross-
links, a cryo-EM map (~7Å of resolution) and evolutionary cou-
plings. The initial homology models of either subunits were refined
against the experimentally determined cryo-EM map using
Rosetta, which starts its conformational exploration in coarse-
grained resolution. The computationally generated models were
further validated with co-evolutionary and cross-linking data and
revealed important mechanistic insights into the function of the
ATP synthase. Another representative example is the ISWI ATPase
complex. Using upper bound distance restraints based on BS3,
BS2G and UV cross-links, Harrer and coworkers [134] modelled
the complex with ATTRACT, which performs a rigid-body energy
minimization driven by a coarse-grained force field [109] and the
distance restraints provided. The top scoring ISWI models were
validated against SAXS data.

The Nuclear Pore Complex (NPC) is probably the largest protein
assembly determined by an integrative structural approach to
date. It constitutes an eight-fold symmetrical cylindrical complex
of 552 copies of 32 different nucleoporin proteins (Nups) [135].
With respect to the computational modeling, the NPC was repre-
sented in a multiscale fashion including multiple levels of coarse-
ness. As an illustration, all rigid bodies derived from X-ray, NMR
and integrative structures were coarse-grained into two different
resolutions. They either mapped single residues or consecutive
portions of up to ten different amino acids into larger beads. The
modeling was performed using the integrative modeling platform
software (IMP) (integrativemodeling.org) [101]. The experimental
information available included chemical cross-links, a cryo-ET den-
sity map, immuno-electronmicroscopy localizations, excluded vol-
ume, sequence connectivity, the shape of the pore membrane,
symmetry and SAXS data, which were used to benefit the sam-
pling, to improve the scoring, to filter out inconsistent models
and/or validation purposes. By putting all these data together, they
were able to fully describe, at sub-nanometer precision, the struc-
ture of the entire NPC.
5. Concluding remarks

Over the past decades, coarse-grained/hybrid modeling has
been demonstrated as a powerful approach to model biomolecules
and their interactions. It extends the capabilities of traditional ato-
mistic protocols. There are multiple models to simplify the three-
dimensional representation of biomolecules, each of those specifi-
cally designed to answer a specific research question. The choice
between different representations directly affects the sampling
and scoring capabilities of current modeling approaches. In other
words, the smaller the number of pseudo-atoms or beads, the
higher the increase in speed but the lower the accuracy of the
resulting models. For cases where higher level of resolution is
required, multiscale/hybrid modeling might help to alleviate the
inherent loss of accuracy of pure coarse-grained models as demon-
strated, for instance, in the modeling of the nuclear pore complex.
Nevertheless, there is still an urgent need for improving interaction
schemes. Coarse-grained force fields derived from classical molec-
ular mechanics are not easily transferable and therefore, very
much system-dependent. On the contrary to bottom-up strategies,
top-down approaches aim to generalize structural patterns that
have been seen in thousands of known structures and/or to repro-
duce thermodynamic quantities. Likely, a combination of bottom-
up and top-down approaches is a better option. In other words,
improving top-down models by inferring additional interaction
terms derived by bottom-up coarse-graining might have the most
impact in future designs, increasing both their accuracy and appli-
cability range to wider, larger and more complex assemblies. We
are now approaching a time where, taking advantage of all scien-
tific and technological advances, one might expect to build reason-
able three-dimensional models of cells, which might provide
insights into still unknown cellular mechanisms.
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