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Abstract
1. Seagrasses provide an important ecosystem service by creating a stable erosion-

resistant seabed that contributes to effective coastal protection. Variable mor-
phologies and life-history strategies, however, are likely to impact the sediment 
stabilization capacity of different seagrass species. We question how opportun-
istic invasive species and increasing grazing by megaherbivores may alter sedi-
ment stabilization services provided by established seagrass meadows, using the 
Caribbean as a case study.

2. Utilizing two portable field-flumes that simulate unidirectional and oscillatory 
flow regimes, we compared the sediment stabilization capacity of natural sea-
grass meadows in situ under current- and wave-dominated regimes. Monospecific 
patches of a native (Thalassia testudinum) and an invasive (Halophila stipulacea) sea-
grass species were compared, along with the effect of three levels of megaherbi-
vore grazing on T. testudinum: ungrazed, lightly grazed and intensively grazed.

3. For both hydrodynamic regimes, the long-leaved, dense meadows of the cli-
max species, T. testudinum provided the highest stabilization. However, the loss 
of above-ground biomass by intensive grazing reduced the capacity of the na-
tive seagrass to stabilize the surface sediment. Caribbean seagrass meadows are 
presently threatened by the rapid spread of the invasive opportunistic seagrass, 
H. stipulacea. The dense meadows of H. stipulacea were found to accumulate fine 
sediment, and thereby, appear to be effective in reducing bottom shear stress 
during calm periods. This fine sediment within the invasive meadows, however, is 
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1  | INTRODUC TION

Seagrass meadows are well-known for the vital ecosystem ser-
vices that they provide in coastal environments. As primary pro-
ducers, they make up the base of the food web, being utilized as a 
primary food source by reef fish, urchins and turtles (Duarte, 1989; 
Nagelkerken, 2009), while also providing structural complexity 
that can be used as habitat (Gillis et al., 2014; Orth et al., 2006). 
In addition, seagrass meadows provide coastal protection services 
(Christianen et al., 2013; James et al., 2019; Ondiviela et al., 2014; 
Paul, 2018), by attenuating waves (Fonseca & Fisher, 1986; Hansen 
& Reidenbach, 2012; Lei & Nepf, 2019), by reducing tidal currents 
(Gambi, Nowell, & Jumars, 1990; Widdows, Pope, Brinsley, Asmus, 
& Asmus, 2008) and by protecting the seabed from erosion (Gacia 
& Duarte, 2001; Koch & Gust, 1999; Potouroglou et al., 2017). This 
protective effect can be so large that seagrass may even prevent the 
need of sand-nourishments to preserve beaches (James et al., 2019).

The flexible leaves of seagrass sway back and forth as waves 
propagate over them, with the drag forces exerted on the seagrass 
leaves causing a reduction in wave energy (Bouma et al., 2005; 
Bradley & Houser, 2009; Fonseca & Cahalan, 1992; Lei & Nepf, 2019). 
This process can result in a 20% reduction in wave height in shallow 
water (Hansen & Reidenbach, 2012). Within the seagrass canopy 
itself, flows can be 70%–90% lower than that of adjacent unvege-
tated areas (Gambi et al., 1990; Hansen & Reidenbach, 2012; Koch, 
Ackerman, Verduin, & van Keulen, 2006; Koch & Gust, 1999). The 
direct influence that seagrasses have on reducing the water flow 
within and around their meadows, provides a coastal protection ser-
vice by preventing sediment resuspension (Gacia & Duarte, 2001), 
and thus mitigating erosion (James et al., 2019; Paul, 2018; 
Potouroglou et al., 2017). The ability of seagrasses to provide 
coastal protection services is expected to be largely dependent on 
both the species-specific and the grazer-affected morphology of 
the seagrass. With over 60–70 seagrass species worldwide, there is 
a large diversity of morphologies (strap-, paddle-, feather-like) and 

life-history strategies (Kilminster et al., 2015). This morphological 
diversity is likely to result in varying levels of coastal protection pro-
vided by seagrasses (Fonseca, 1989; Mellors, Marsh, Carruthers, & 
Waycott, 2002).

Declining seagrass area in combination with a reduction of apex 
predators, has led megaherbivores (e.g. green turtles Chelonia mydas) 
to intensively graze zones of seagrass in some tropical regions 
(Christianen et al., 2014). Intensive grazing changes the seagrass 
morphology, and thus may affect the coastal protection services of 
seagrass meadows. Indeed, Christianen et al. (2013) showed that the 
coastal protection services of short, intensively grazed canopies of 
Halodule univervis were reduced compared to ungrazed seagrass; 
however, the roots and rhizomes continued to provide some sedi-
ment stabilization by reducing the erodibility of the seabed. A gen-
eral understanding of the role of seagrass morphology, including the 
effect of species-specific differences and grazing induced biomass 
changes, on the sediment-stabilizing services provided by seagrass 
meadows remains lacking. Such knowledge is, however, critical given 
that species-oriented nature conservation strategies may cause in-
creasing megaherbivore grazing pressure (Christianen et al., 2014), 
and biological invasions cause shifts in the species structure of ma-
rine communities to more opportunistic (r-selected) species (Olinger 
et al., 2017; Williams, 2007).

Invasive species are threatening the diversity and natural func-
tioning of seagrass ecosystems in many regions of the world, with ap-
proximately 56 non-native species being introduced within seagrass 
meadows before 2007 (Williams, 2007). One of the most dominant 
invasive seagrass species is Halophila stipulacea, which originates 
from the Red Sea, but invaded the Mediterranean (Lipkin, 1975) and 
then subsequently the Caribbean region (Ruiz & Ballantine, 2004). 
Halophila stipulacea is an opportunistic seagrass (Erftemeijer & 
Shuail, 2012; Kilminster et al., 2015) that can quickly colonize dis-
turbed areas (Smulders, Vonk, Engel, & Christianen, 2017). It has 
spread rapidly throughout the Caribbean (Willette et al., 2014) 
where it forms dense monospecific stands and competes with native 

easily resuspended by hydrodynamic forces, and the low below-ground biomass 
of H. stipulacea make it susceptible to uprooting during storm events, potentially 
leaving large regions vulnerable to erosion. Overall, this present study highlights 
that intensive megaherbivore grazing and opportunistic invasive species threaten 
the coastal protection services provided by mildly grazed native species.

4. Synthesis. Seagrass meadows of dense, long-leaved species stabilize the sediment 
surface and maintain the seabed integrity, thereby contributing to coastal protection. 
These services are threatened by intensive megaherbivore grazing, which reduces the 
stability of the surface sediment, and opportunistic invasive species, which are suscep-
tible to uprooting in storms and thereby can leave the seabed vulnerable to erosion.
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species like Thalassia testudinum and Syringodium filiforme. This in-
vasive species not only threatens the biodiversity of coastal eco-
systems (Olinger et al., 2017), but is rarely grazed upon by turtles, 
thus its spread is likely to have large consequences for ecosystem 
functioning (Christianen et al., 2018). Furthermore, due to its short 
canopy and shallow root system, the replacement of native seagrass 
species by H. stipulacea may impact the coastal protection services 
provided by seagrass in tropical bays, however, this remains to be 
tested.

Understanding the ability of different types of marine vegeta-
tion in providing coastal protection services is vital at this time when 
erosion is being exacerbated by increasing coastal infrastructure, 
sea-level rise and increasing storm intensity (Church et al., 2013; 
Jevrejeva, Jackson, Riva, Grinsted, & Moore, 2016; McGranahan, 
Balk, & Anderson, 2007; Saunders & Lea, 2008). Hence, we test how 
(a) intensifying megaherbivore grazing pressure and (b) species shifts 
(due to invasions) alter the extent to which seagrass meadows pro-
vide erosion protection. To address this question, we directly mea-
sured the sediment stabilization capacity of contrasting seagrass 
patches in situ by deploying two portable field flumes that mimicked 
unidirectional- and oscillatory-flow (Figure 1). We compared three 

levels of megaherbivore grazing (ungrazed, lightly grazed and inten-
sively grazed) on the native climax seagrass, T. testudinum, in addi-
tion to the invasive opportunistic seagrass H. stipulacea, and a bare 
unvegetated patch. As the flume measurements were conducted in 
situ, the sediment dynamics of the naturally formed system could be 
measured, and an absolute measure of the sediment stability in the 
field is obtained. The seagrass patch characteristics of vegetation 
density, canopy bendability and biomass allocation were measured 
to further describe the sediment stabilization ability of the differ-
ent species. It was hypothesized that patches of the long-leaved un-
grazed native turtle grass T. testudinum, will provide more effective 
erosion protection than patches of short-leaved species, like the in-
vasive H. stipulacea and intensively grazed seagrasses.

2  | MATERIAL S AND METHODS

2.1 | Site description

This study was conducted within Lac Bay, Bonaire, Caribbean 
Netherlands (12.108177, −68.226289). Lac Bay is a shallow lagoon 

F I G U R E  1   The TiDyFLOW flume 
(a) consists of a motor unit with two 
propellers that generate a unidirectional 
flow through the clear Perspex tunnel that 
is embedded into the sediment. The speed 
of the propellers is regulated to control 
the flow speed, with an ADV positioned 
in the centre of the tunnel, which records 
the flow velocity. Sediment movement is 
monitored beneath the ADV to determine 
the threshold flow velocity at which the 
sediment begins to move. The TiDyWAVE 
flume (b) mimics the oscillatory flow 
created by an unbreaking wave. Wooden 
wave paddles on either end of the flume 
move back and forth by the pneumatic 
cylinder observed on the top of the 
flume. The speed of the movement is 
controlled by regulating the airflow into 
the pneumatic cylinder. The time at which 
the boards moved back and forth in one 
cycle was calculated to be the oscillatory 
velocity. Clear Perspex surrounds the base 
of the flume allowing for the sediment 
movement within the flume to be 
observed [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a)

(b)
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(<6 m deep) located at the windward eastern coast of Bonaire 
(Figure 2). Extensive seagrass meadows composed of the native 
seagrass species T. testudinum have historically dominated the 
bay. However, more recently the invasive seagrass H. stipulacea 
has expanded rapidly throughout the deeper parts of the bay since 
its first sighting in 2010 (Debrot et al., 2019; Willette et al., 2014) 
and is starting to encroach on the shallower parts (Smulders 
et al., 2017). Lac Bay is a Ramsar Site (wetland designated to be of 
international importance) and has an extensive mangrove forest 
bordering the landward side of the lagoon. A large turtle popu-
lation has developed, which intensively grazes upon the native 
seagrass, creating areas of ungrazed, lightly and intensively grazed 
seagrass patches (Christianen et al., 2018). Calcifying macroalgae 
from the Halimedaceae family are interspersed amongst the sea-
grass and are an important contributor to the calcareous sediment 
within the bay, along with the fringing coral reef. A fringing coral 
reef on the eastern side protects the bay creating a sheltered la-
goon, with a tidal range of <0.3 m. Rainfall is low (<560 mm/year) 
and storms are infrequent within the Bonaire region, with only six 
tropical storms and hurricanes occurring between 1944 and 2010 
(van Dijken, 2011).

2.2 | Sediment stabilization ability of contrasting 
seagrass patch types

The sediment stabilization ability, measured as the critical erosion thresh-
old, of the calcareous sediment within different subtidal seagrass patch 
types was measured in situ with two portable field-flumes developed at 
the Royal Netherlands Institute for Sea Research (NIOZ): TiDyFLOW is 
a unidirectional flow flume and TiDyWAVE is an oscillatory flow flume 
that mimics waves. The field flumes were placed within Lac Bay, Bonaire, 
over the five most dominant patch types (see photos Figure 2): bare (no 
vegetation), intensively grazed T. testudinum (canopy < 50 mm), lightly 
grazed T. testudinum, ungrazed T. testudinum (canopy > 180 mm height) 
and patches of the invasive H. stipulacea, which is rarely grazed by mega-
herbivores (Christianen et al., 2018). Three to four replicate patches of 
each seagrass type were measured; each time moving the flumes to a 
new undisturbed position and conducting duplicate flume runs on each 
position. All but H. stipulacea were available in the first study area, which 
ranged between 1 and 1.3 m depth (Figure 2). Because H. stipulacea has a 
heterogeneous distribution within the bay, it had to be measured further 
away within a second study area, which was slightly deeper at 1.5–2 m 
depth (Figure 2). To test if there was an ‘area’ difference, a neighbouring 

F I G U R E  2   Map of the two study areas within Lac Bay, Bonaire (white circles), with the approximate distribution of the ungrazed 
(yellow) and grazed native seagrass, and the area dominated by invasive Halophila stipulacea (pink) within Lac Bay (distribution obtained 
from Christianen et al., 2018). The majority of the measurements were conducted in study area one, with the invasive H. stipulacea being 
measured in study area two along with an additional three replicates of grazed Thalassia testudinum. Photographs above show the four 
different seagrass patch types that were measured [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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intensively grazed T. testudinum patch was also measured in the second 
study area. Due to logistical limitations, only the oscillatory flume could 
be used in the second area.

The TiDyFLOW flume (Figure 1a) uses two motor-driven propel-
lers to generate unidirectional flow up to speeds of 1.0 m/s through a 
1-metre-long clear Perspex tunnel (James et al., 2019). The flow velocity 
within the field flume was continuously measured with an ADV (Nortek 
AS© Vectrino Field Probe) that was suspended 0.25 m above the sea-
grass canopy within the flume tunnel. Divers closely observed the sedi-
ment surface within the flume tunnel, and the critical erosion threshold 
was the velocity at which sediment grains situated beneath the ADV 
began to move along the bed surface. As bed-load transport depends 
on flow velocity to the power of 3, the difference in flow velocity be-
tween stochastic movement of some grains and continuous movement 
of many grains remains small. Therefore, human observations are suffi-
ciently precise to determine critical erosion thresholds. Two divers con-
ducted the sediment observations and training was conducted before 
the measurements to ensure the observations were standardized.

The TiDyWAVE oscillatory channel flume (Figure 1b) was con-
trolled by a pneumatic cylinder that pushed two wooden boards (wave 
paddles) at either end of the flume back and forth in a synchronized 
motion. Although the physics are not exactly the same, the movement 
of the two wave paddles generates an oscillating flow at the sediment 
surface that mimics the oscillatory flow at the seabed when a wave 
passes over. The speed of the movement of the wave paddles was con-
trolled by regulating the airflow into the cylinder. The velocity of the 
wave paddles was used as a measure for the root mean square (rms) 
oscillatory flow velocity, with the period at which the boards moved 
between the outermost positions being timed to give the rms oscil-
latory velocity in m/s. The sediment surface was closely observed by 
divers, and the critical erosion threshold under oscillatory flow condi-
tions was considered to be the speed at which the sediment grains in 
the centre of the flume began to move.

Smaller sediment particles will move easier and at lower bottom 
shear stress values than larger particles (Shields, 1936), therefore, 
the sediment grain size distribution within each patch type was as-
sessed to account for sediment variations between patch types. To 
help with the comparison between the two study areas (Figure 2), 
the sediment grain size distribution was also measured within a bare 
patch in study area 2. Sediment samples of the surface sediment 
were collected in 50 ml sampling containers from each measured 
position directly after the flume measurements. The sediment sam-
ples were freeze-dried and sieved through a 1-mm sieve, sediment 
larger than 1 mm was weighed, while the remaining sediment grain 
size distribution was measured by laser diffraction on a Malvern 
Mastersizer 2000 (McCave, Bryant, Cook, & Coughanowr, 1986).

2.3 | Seagrass meadow characteristics: Vegetation 
density, leaf bendability and biomass allocation

At each flume measurement position, the canopy height was meas-
ured, and photos were taken within a 0.25 m × 0.25 m quadrat to 

estimate seagrass cover. These measurements were utilized to es-
timate seagrass volume (m3), with the per cent benthic cover of the 
seagrass multiplied by the canopy height. Seagrass volume was con-
sidered a comparable measure of the vegetation density across the 
different vegetation patches given the contrasting morphologies.

A seagrass trait that promotes the stabilization of sediment is leaf 
bendability, with the leaves of seagrass bending over the sediment 
surface and deflecting the flow away from the sediment surface 
(Gambi et al., 1990). Thus, bending protects the sediment surface 
from erosion (Peralta, Van Duren, Morris, & Bouma, 2008) while at 
the same time reducing the drag experienced by the seagrass leaves 
(Bouma et al., 2005). Individual shoots of the seagrass T. testudinum 
(grazed and ungrazed) and H. stipulacea were collected with their 
roots attached from Lac Bay (<1.3 m deep) and transported to the 
Netherlands wrapped in moist paper towels (total travel time was 
20 hr). The seagrass shoots were placed in a heated seawater holding 
tank set to 25°C and bubbled continuously with air. Lights were set 
to a 12:12 hr light:dark cycle and the seagrasses were left for 24 hr 
as pre-treatment before measurements. The bendability of ungrazed 
T. testudinum, grazed T. testudinum and H. stipulacea was measured 
within a week of collection. The roots of the seagrass shoots were 
removed directly before the measurements were conducted. The 
seagrass shoots (without roots) were placed within a racetrack flume 
at NIOZ (Yerseke, The Netherlands), which produces a controlled uni-
directional flow. Seagrass shoots were attached with a 3-mm wide 
cable tie to a small platform so they stood upright. One shoot at a time 
was placed within the centre of the flume with the broadest part of 
the leaf positioned adjacent to the flow, to allow for the natural bend-
ing direction of the seagrass. The flow within the flume was increased 
at 0.1 m/s increments, from 0 to 0.5 m/s, and a digital photograph was 
taken of the seagrass shoots at each flow speed. Using ImageJ 1.50i 
(Schneider, Rasband, & Eliceiri, 2012), a straight line was drawn from 
the base of the shoot to the most distal point of the leaves, and the 
angle of this line was recorded as the bending angle of the seagrass 
shoot. Bending angles are presented relative to the angle of the shoot 
at 0 m/s. These measurements were repeated three to five times for 
each seagrass species/type, each time with a new healthy shoot.

Biomass allocation to above- and below-ground structures can 
be used to identify the robustness of the seagrass patches to storm 
events (Cruz-Palacios & Van Tussenbroek, 2005; van Tussenbroek, 
Barba Santos, van Dijk, Sanabria Alcaraz, & Téllez Calderón, 2008), 
and thereby their ability to provide long-term sediment stabilization 
services. Five replicate cores of 0.15-m diameter and length were 
taken from within the ungrazed and intensively grazed T. testudinum 
patches and 0.1-m diameter and length within the H. stipulacea 
seagrass patches. As lightly grazed T. testudinum patches were a 
mix of grazed and ungrazed T. testudinum, biomass measurements 
within this patch type were deemed unnecessary, and therefore 
damage to the seagrass meadow from taking cores could be min-
imized. Sediment was washed from the biomass, and the biomass 
was separated into above-ground biomass (leaves and sheath), and 
below-ground biomass (roots and rhizomes). The biomass was dried 
in a 60°C drying oven and weighed.
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2.4 | Statistical analyses

To firstly test if there were significant differences in the critical ero-
sion threshold and median grain size between the seagrass patch 
types, one-way ANOVAs and Tukey HSD pair-wise comparisons 
were conducted with R version 3.6.1 (R Core Team, 2017) for each 
water motion type (unidirectional and oscillatory). A linear regression 
was subsequently used to identify the effect of the seagrass volume 
and grain size on the critical erosion threshold in the unidirectional 
and oscillatory flow regimes. Due to the oscillatory flow measure-
ments being conducted within the two study areas (Figure 2), so that 
H. stipulacea patches could be measured, area was also included as a 
factor in the linear regression for the oscillatory flow measurements. 
Residual scatter plots were examined to ensure homoscedasticity 
and a Shapiro–Wilk test was conducted to test normality, with the 
data passing these assumptions. 95% confidence intervals (CI) were 
calculated for all data and are presented throughout the results text.

Biomass and leaf bendability were not included in the regres-
sion analyses due to their strong correlation with seagrass volume 
and because the biomass samples were not taken directly within the 
flume measurement positions. These measurements were therefore 
used to describe the observed relationships.

3  | RESULTS

3.1 | Vegetation effects on critical erosion threshold

The critical erosion threshold varied significantly between the 
different seagrass patch types in both the unidirectional flow 

regime (one-way ANOVA: F3,9 = 40.16, p < 0.01, Supporting 
Information S1a) and the oscillatory flow regime (one-way 
ANOVA: F5,13 = 11.07, p < 0.01, Supporting Information S1b). 
In bare areas with no seagrass cover, the median grain size was 
295.84 ± 4.00 µm (n = 3; Figure 4), with 41% of the grains meas-
uring between 250 and 500 µm. This bare sediment began mov-
ing at an average unidirectional flow speed of 0.11 ± 0.02 m/s 
(95% CI, n = 3; Figure 3a), and at an rms oscillatory flow veloc-
ity of 0.11 ± 0.02 m/s (95% CI, n = 3; Figure 3b). Contrastingly, 
in areas where ungrazed T. testudinum is present, the volume of 
seagrass is the highest at 0.17 ± 0.03 m3 (n = 7), and a strong 
unidirectional flow of 0.50 ± 0.08 m/s (n = 4; Figure 3a) or an rms 
oscillatory flow velocity of 0.17 ± 0.03 m/s (n = 3; Figure 3b) were 
required to move the sediment beneath the ungrazed canopy.  
A post-hoc Tukey test showed that the critical erosion threshold 
was significantly greater within the ungrazed T. testudinum patches 
compared to bare areas, under both a unidirectional flow regime 
(Δ = 0.39, p < 0.01, Supporting Information S1a) and an oscilla-
tory flow regime (Δ = 0.06, p = 0.01, Supporting Information S1b). 
The sediment grain size did not significantly differ from that of 
bare areas, with a median grain size of 355.57 ± 48.97 µm (n = 3; 
Figure 4). Ungrazed T. testudinum had the longest leaves, with an 
average canopy height of 0.20 ± 0.02 m tall (n = 7; Figure 5a), and 
a benthic area coverage of 82.86 ± 5.60% (n = 7; Figure 5c). These 
long leaves bent over immediately in a unidirectional flow, and by a 
flow velocity of 0.40 m/s, the leaf of T. testudinum reached a maxi-
mum bending angle of 64.43 ± 25.74° (n = 3; Figure 5d). The dense 
cover of T. testudinum translated into a below-ground biomass 
of 298.34 ± 89.24 gdwt/m2 (n = 5) and an above-ground biomass 
(leaves and sheath) of 420.18 ± 126.11 gdwt/m2 (n = 5; Figure 5b).

F I G U R E  3   The critical erosion threshold (m/s) versus seagrass volume (area cover of seagrass × canopy height) under unidirectional  
(a) and oscillatory flow (b) conditions produced by portable field flumes. The five studied patch types are represented by different symbols, 
in (b) there are three additional measurements of grazed Thalassia testudinum conducted in area 2 (open diamonds) to coincide with the 
invasive Halophila stipulacea (black stars) measurements. The fitted line demonstrates the relationship between seagrass volume and 
the critical erosion threshold (unidirectional: p(SG volume) < 0.001, R2

(adj) = 0.833; oscillatory: p(SG volume) < 0.01, R2
(adj) = 0.64; Supporting 

Information S1c and S1d). Note the different y-axis scales
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3.2 | Influence of megaherbivore grazing on 
sediment stabilization by seagrass

Intensive megaherbivore grazing of T. testudinum in some areas re-
duced the volume of seagrass to 0.01 ± 0.01 m3 (n = 10) and the 
canopy height of T. testudinum by 80% to 0.04 ± 0.01 m (n = 10; 
Figure 5a). This corresponded with a 70% reduction in the above-
ground biomass to 125.17 ± 16.69 gdwt/m2 (n = 5) and a 31% re-
duction in below-ground biomass to 205.19 ± 58.70 gdwt/m2 (n = 5; 
Figure 5b) when compared to ungrazed areas of T. testudinum. The in-
tensive grazing of T. testudinum decreased its influence on the critical 

erosion threshold significantly in both flow regimes (Tukey test: 
Δunidirectional = 0.33, p < 0.01; Δoscillatory = 0.09, p < 0.01, Supporting 
Information S1a and S1b), so that the critical erosion threshold 
within the intensively grazed patches did not significantly vary from 
that of bare sediment. The critical erosion threshold within the 
grazed T. testudinum patches under the oscillatory flow regime did 
not significantly differ between the two study areas (Figure 2), and 
the sediment began moving at 0.08 ± 0.02 m/s (n = 6; Figure 3b) in 
both study areas. The median sediment grain size in grazed patches 
did not significantly differ from that of the ungrazed T. testudinum 
and bare patches (Figure 4). Between the two study areas, there was 

F I G U R E  4   The median grain size and grain size distribution of the sediment within the two study areas and each seagrass patch type 
where the critical erosion threshold measurements were conducted. Most seagrass patch types existed within the same area (study area 1,  
see Figure 2), however, the invasive Halophila stipulacea and an additional grazed Thalassia testudinum were measured in study area 2. To 
help with the comparison of the two study areas, the grain size distribution of bare sediment within study area 2 was also measured. Bars 
and points represent mean values ± 95% CI (n = 3). Different capital letters above points indicate a significant difference tested with Tukey 
HSD pair-wise comparisons (Supporting Information S1e), p < 0.05 are considered statistically significant

Bare
Invasive

H. stipulacea
Grazed

T. testudinum
Lightly grazed
T. testudinum

Ungrazed
T. testudinum

Grazed
T. testudinumBare 2

A B
AAAAA

Study area 1 Study area 2

G
ra

in
 s

iz
e

(µ
m

)

0–63

63–125

125–250

250–500

500–1,000
M

ed
ia

n
 g

ra
in

si
ze

 (
µ

m
)

0
200
400
600

0 50 0 50 0 50
% content
0 50 0 50 0 50 0 50

F I G U R E  5   The canopy height (a), 
leaf (white bars), sheath (light grey bars) 
and below-ground (dark grey bars) 
biomass (b) and percentage seagrass 
cover (c) is displayed for the dominant 
seagrass patches present in Lac Bay, 
Bonaire (Thalassia testudinum—grazed 
and ungrazed, and Halophila stipulacea). 
The angles at which the leaves of the 
seagrasses bend under increasing 
unidirectional flow velocities within a 
racetrack flume is depicted in (d). Bars and 
points represent means ± 95% CI (n = 3–7)

(c)

(a)

S
ea

g
ra

ss
 c

o
ve

r 
(%

)

0

20

40

60

80

100

C
an

o
p

y 
h

ei
g

h
t 

(m
)

0

0.05

0.10

0.15

0.20

0.25

Seagrass type

Grazed
 Thalassia

Lightly grazed
Thalassia

Ungrazed
Thalassia

Invasive
Halophila

Grazed Thalassia
Ungrazed Thalassia
Invasive Halophila

(d)

Leaf
Sheath
Below-ground

(b)

B
io

m
as

s 
(g

d
w

t /
m

2 )

0

200

400

Seagrass type

Grazed
 Thalassia

Ungrazed
Thalassia

Invasive
Halophila

100

80

60

40

20

0

20

Flow velocity (cm/s)
0 10 20 30 40 50



2032  |    Journal of Ecology JAMES Et Al.

almost double the proportion of silt grains (<63 µm) within area 2 
(10.07 ± 1.90%; n = 5) compared with area 1 (5.55 ± 2.54%; n = 3), 
however, there was no significant difference in the median grain size 
in both areas (Figure 4). The bending angle of grazed T. testudinum 
was restricted by its shortness, and grazed leaves bent by only 
14.20 ± 8.35° (n = 3) at the strongest flow of 0.5 m/s (Figure 5d).

Lightly grazed T. testudinum was a mix of grazed and ungrazed 
leaves, resulting in a seagrass volume 42% less than in completely un-
grazed areas (0.10 ± 0.02 m3; n = 6). The lightly grazed T. testudinum 
still provided protection to the sediment layer under a unidirectional 
flow regime, with a flow speed of 0.41 ± 0.01 m/s (n = 3; Figure 3a) 
required to move the sediment beneath the canopy, which was signifi-
cantly greater than the sediment in bare patches (Tukey test: Δ = 0.30, 
p < 0.01, Supporting Information S1a). However, under a wave regime, 
the critical erosion threshold did not significantly differ to that of bare 
areas (0.10 ± 0.01, n = 3; Figure 3b) and was significantly less than 
the ungrazed T. testudinum patches (Tukey test: Δ = 0.07, p < 0.01, 
Supporting Information S1b).

3.3 | Effect of invasive H. stipulacea on sediment 
stabilization

Halophila stipulacea had a high benthic cover of 86.67 ± 6.53% (Figure 5c). 
However, the short canopy height (0.04 ± 0.01 m, n = 3; Figure 5a) meant 
that the calculated seagrass volume was only 0.04 ± 0.01 m3 for areas 
inhabited by H. stipulacea (n = 3). H. stipulacea only occurred within the 
deeper second study area (Figure 2). The median grain size between the 
bare patches in the two opposing study areas did not significantly differ, 
however, the bare sediment within study area 2 had a greater proportion of 
fine grains (<125 µm) compared to the bare sediment within study area 1  
(Figure 4). The sediment within patches of invasive seagrass H. stipulacea, 
was however, significantly distinct to the sediment within all other sea-
grass patch types (one-way ANOVA; F6,17 = 6.43, p < 0.01; Supporting 
Information S1e). The median grain size within the H. stipulacea patches 
was the lowest observed at 167.10 ± 124.59 µm (n = 3), and the domi-
nant proportion of the sediment was very fine calcareous grains (<63 µm, 
Figure 4). Tukey pairwise comparisons showed that the median grain size 
within H. stipulacea patches was significantly finer than the sediment within 
the neighbouring grazed T. testudinum that was also in the second study 
area (Δ = −217.93, p < 0.01). The mean critical erosion threshold within the 
H. stipulacea patches under an oscillatory flow was 0.08 ± 0.01 m/s (n = 3; 
Figure 3b). The low canopy height of H. stipulacea contributed to it only 
having a mean above-ground biomass of 41.92 ± 10.11 g/m2 (n = 5), with 
a higher below-ground biomass of 98.77 ± 25.36 g/m2 (n = 5; Figure 5b). 
The short leaf of invasive H. stipulacea bent up to 33.48 ± 14.86° (n = 5) at 
flow speeds of 0.5 m/s (Figure 5d).

3.4 | Importance of meadow characteristics

The volume of seagrass within the different patch types exhibited a 
significant positive relationship with the critical erosion threshold in 

both the unidirectional flow (Linear regression: β = 7.55, tdf = 9 = 2.71, 
p = 0.02; Figure 3a) and the oscillatory flow regime (Linear regression: 
β = −2.14, tdf = 14 = −2.37, p = 0.03; Figure 3b). However, within the os-
cillatory flow regime, there was a significant interaction between the 
seagrass volume and sediment grain size (Linear regression: β = 0.01, 
tdf = 14 = 2.80, p = 0.01). The study area did not significantly affect 
the critical erosion threshold in the oscillatory flow measurements.

4  | DISCUSSION

The capacity of tropical seagrasses to stabilize the sediment surface 
and the influence of megaherbivore grazing on this sediment stabili-
zation was directly measured in situ, using two portable field flumes. 
Seagrass meadow morphology strongly affected the sediment stabi-
lization services, with seagrass patches that have a high seagrass vol-
ume, such as the tall and dense canopies of ungrazed T. testudinum, 
effectively protecting the sandy sediment surface from erosion in 
both unidirectional and oscillatory flow regimes. By reducing the 
seagrass canopy volume, megaherbivore grazing had a strong nega-
tive effect on the erosion-protection ecosystem service of the na-
tive T. testudinum meadows and increased the likelihood of erosion 
of the sediment surface. The sediment within the short canopy of 
H. stipulacea was also easily eroded, with only slow flows required 
to cause sediment resuspension within the invasive patches. The 
higher proportion of fine sediment within the H. stipulacea patches, 
however, has to be considered when evaluating the sediment stabili-
zation capacity of this invasive seagrass.

4.1 | Vegetation properties affect critical erosion 
threshold under flow and waves

In a unidirectional flow environment, the long, bendable, strap-like 
leaves of T. testudinum create a tightly packed barrier that deflects 
the main flow over the canopy rather than along the sediment sur-
face (Koch et al., 2006; Koch & Gust, 1999). This long, strap-like leaf 
morphology was also demonstrated to be advantageous in provid-
ing effective sediment stabilization by Widdows et al. (2008), who 
showed that in high flow conditions, sediment stability was in-
creased 10-fold within dense beds of Zostera marina compared to 
unvegetated sediments. Contrastingly, the short canopy of grazed 
T. testudinum scarcely bends, and as a result, sediment within the 
intensively grazed patches begins to move at similar flow velocities 
as in unvegetated areas.

The ability of dense ungrazed seagrass meadows to stabilize the 
surface sediment in oscillatory flow conditions still persists, but its 
effectiveness is reduced over twofold compared to unidirectional 
flow conditions. The loss of only a small amount of the canopy to 
light grazing reduced the sediment protection ability of T. testudinum 
to an extent that the seagrass had no significant effect on the critical 
erosion threshold. Strong unidirectional flow can create a skimming 
effect, which reduces the mixing between the bulk water and the 
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water inside the seagrass canopy (Koch & Gust, 1999), and thus re-
duces bottom shear. Contrastingly, oscillatory motion creates a more 
turbulent environment. Seagrass leaves sway back and forth with 
the oscillatory motion, leading to increased flow penetration and 
thereby allowing the flow to exert greater drag and lift forces on 
the seabed (Koch & Gust, 1999; Lowe, Koseff, & Monismith, 2005; 
Luhar, Coutu, Infantes, Fox, & Nepf, 2010). This turbulence and 
greater penetration of flow into the seagrass canopy results in 
smaller boundary layers at the seabed (Luhar et al., 2010; Tinoco & 
Coco, 2018), and increases the likelihood of sediment resuspension. 
In addition, stiff structures (i.e. seagrass shoots) increase turbulence 
inside the boundary layer (Tinoco & Coco, 2018), which can lead to 
enhanced erosion when flow reduction by leaves is inhibited due to, 
for example, grazing.

4.2 | Megaherbivore grazing lowers critical 
erosion threshold

The significant loss of above-ground biomass from megaherbivore 
grazing, lessens the amount of protection given by the seagrass to 
the sediment surface layer, and thus the erosion protection. A great 
effort has been put into the conservation of large herbivores, and 
is resulting in a recovery of green turtle populations (Chaloupka 
et al., 2008). This effort, unfortunately, has largely not extended to 
the conservation of the native seagrass populations that they are 
dependent upon, which are generally in decline (Orth et al., 2006). 
The high number of turtles residing within Lac Bay has led to 78% of 
the seagrass area being grazed (Christianen et al., 2018), significantly 
reducing the biomass of the native seagrass species T. testudinum.

Even though the above-ground biomass is reduced by grazing, 
which creates a more unstable surface sediment layer, the extensive 
root network of T. testudinum should continue to cement the deeper 
layers of sediment together, reducing its erodibility and helping to 
maintain the overall seabed (Christianen et al., 2013). The root net-
work of T. testudinum is robust and is resistant to extreme hydrody-
namic conditions (Cabaço, Santos, & Duarte, 2008; van Tussenbroek 
et al., 2008). This resilience to uprooting during storms thereby al-
lows T. testudinum to continue to provide erosion protection over a 
prolonged period. However, a high megaherbivore grazing pressure 
eventually impacts the below-ground biomass of seagrass, as the 
plants have to reallocate energy to photosynthetic tissue rather than 
roots (Dahl et al., 2016; Hemminga, 1998). A reduction in the root 
biomass of T. testudinum following grazing was observed in this pres-
ent study as well as by Christianen et al. (2014) and has the potential 
to create a ‘runaway feedback’ (Suykerbuyk et al., 2016). Further re-
ductions in the below-ground seagrass biomass could compromise 
the long-term stability of the sediment bed, and thereby, discour-
age the growth of native seagrass species. In addition, the voracity 
of the spread of H. stipulacea is hampering the self-regeneration of 
the native seagrass species, which threatens the natural ecosystem 
functioning of Caribbean seagrass meadows. Overall, there is urgent 
need to match the conservation of large herbivores with an equally 

strong conservation of their preferred grazing habitats of native sea-
grass (Christianen et al., 2018).

4.3 | Effects of invasive H. stipulacea on coastal 
protection services

Preferential grazing of native seagrass species by turtles within the 
deeper areas of the bay (<2 m), creates large areas of cropped, sparse 
vegetation, which has subsequently become overgrown by the in-
vasive H. stipulacea (Christianen et al., 2018). The sediment within 
the invasive seagrass patches was composed of a significantly higher 
proportion of fine grains compared to all other seagrass patches 
studied. More fine sediment grains are expected to accumulate in 
deeper regions compared with the shallows due to the reduction 
in wave forces reaching the seabed (Swift & Niedoroda, 1985). It is 
however noted that this cannot be the only reason for H. stipulacea 
having finer sediments, as the sediment within the H. stipulacea 
patch was even finer than the neighbouring grazed T. testudinum and 
bare patches that were present in the deeper site (study area 2).

The effect of the significantly smaller grain size in the H. stipulacea 
meadows must be considered in relation to its erosion protection 
of the seabed. Smaller unconsolidated sediment particles will move 
easier and at lower bottom shear stress values than larger particles 
(Shields, 1936). In our experiments, the oscillatory flow velocity at 
which the (smaller) calcareous grains within the invasive H. stipulacea  
patches were put in motion, did not significantly differ from the veloc-
ity observed for the larger grains in grazed T. testudinum (Figure 3b).  
As both populations are subject to similar physical conditions, it is 
not surprising to find that the sediment grains present in the mead-
ows start moving at a similar current velocity. A seagrass meadow 
would not be able to collect finer grains, such as is observed in  
H. stipulacea, if these were resuspended and carried away during 
normal physical conditions The critical erosion threshold of an rms 
oscillatory flow of around 0.08 m/s must therefore correspond to 
conditions that are sufficiently rare within the deeper regions of Lac 
Bay for the meadows to collect sediment of a grain size that is stable 
under conditions below this threshold.

As the erosion threshold and volume of seagrass is similar in the 
H. stipulacea and grazed T. testudinum patches within study area 2, the 
difference in grain size between these two patch types is intriguing. 
The high-density canopy of H. stipulacea, which is close to the sea-
bed, must effectively reduce the shear stress inside its canopy up to 
oscillatory flow velocities of 0.08 m/s, thereby preventing sediment 
resuspension and allowing for the accumulation of fine grains. In the 
same deeper region, the sparse shoot density of grazed T. testudinum 
does little to reduce the bed shear stress, and the sediment grain size 
distribution does not significantly differ to that of bare patches.

On occasions when the oscillatory flow at the seabed is >0.08 m/s 
in areas where H. stipulacea is present, such as during storm events, 
the presence of H. stipulacea constitutes a vulnerability for the sys-
tem. H. stipulacea is an opportunistic species, and although it is able 
to rapidly colonize bare areas (Hernández-Delgado et al., 2020), the 
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low below-ground biomass of H. stipulacea makes it vulnerable to up-
rooting (Malm, 2006). Large meadows of H. stipulacea were uprooted 
in 10-m deep waters within Oranjestad Bay, St Eustatius (Caribbean) 
after category 5 Hurricane Irma in 2017 (Pers. obser. 2017, Supporting 
Information S2). Contrastingly, meadows of T. testudinum on the 
neighbouring island of St Martin, were unaffected even though they 
were in the direct path of the same hurricane. The replacement of 
T. testudinum by H. stipulacea, which is susceptible to uprooting during 
strong hydrodynamic events, could potentially leave vast areas of the 
seabed bare and exposed, hence vulnerable to erosion for periods of 
time after severe storms.

4.4 | Storm resilience of seagrass ecosystems

We postulate that the storm resilience of a seagrass ecosystem can be 
determined by the erosion resilience and uprooting resilience of the 
seagrass meadow (Figure 6). In this way, ungrazed T. testudinum mead-
ows increase the storm resilience of the tropical seagrass ecosystem, 
by stabilizing the sediment surface under strong oscillatory flow at the 
seabed (i.e. between 0.15 and 0.2 m/s), and through the extensive root 
network that ensures the meadow and seabed remains intact even 
during strong storm events (van Tussenbroek et al., 2008; Figure 6). 
Intensive megaherbivore grazing has a strong negative effect on the 
storm resilience during storms through the loss of above-ground bio-
mass, and thereby, reduction in sediment stabilization. The robust root 
network of the climax seagrass, however, helps to maintain the seabed 

integrity even when grazed (Figure 6). Intensive grazing also facilitates 
the spread of opportunistic seagrass species that can quickly colonize 
the bare sediment (Christianen et al., 2018). Seagrasses with more op-
portunistic life strategies allocate less energy into the development 
of their below-ground biomass, and are therefore, more vulnerable to 
uprooting in storms (Preen, Lee Long, & Coles, 1995; van Tussenbroek 
et al., 2008). This susceptibility to uprooting reduces the overall storm 
resilience of the seagrass ecosystem, and potentially accelerates the 
spread of H. stipulacea by dispersing vegetative propagules (Smulders 
et al., 2017).

4.5 | Mechanistic study of sediment dynamics

Observational studies examining the effect of seagrass meadows and 
grazing on sediment stability highlight the variability of the sediment 
dynamics between sites. Intertidal seagrass meadows of T. hemprichii 
experienced significant erosion after the above-ground biomass was 
clipped to mimic grazing (Dahl et al., 2016; Githaiga, Frouws, Kairo, & 
Huxham, 2019). Contrastingly, Johnson, Gulick, Bolten, and Bjorndal 
(2019) reported no significant difference in the sediment level be-
tween grazed and ungrazed plots of T. testudinum over a 3-month 
experiment. The opposing observations between sites are likely to 
be caused by variations in the hydrodynamic regime, depth, seagrass 
morphology, sediment characteristics and sediment supply. Because 
the sediment dynamics of a site depend upon a range of local pro-
cesses, it is difficult to directly compare observations between sites. 

F I G U R E  6   The resilience of the ecosystem to storms can be demonstrated by the below-ground biomass of the seagrass (a proxy for 
uprooting resilience) and the critical erosion threshold under oscillatory flow (a proxy for erosion resilience). High below-ground biomass and 
effective sediment stabilization by ungrazed Thalassia testudinum (green circles) provides an ecosystem resilient to storm conditions. Heavy 
grazing of T. testudinum (blue circles) reduces the sediment stability. Invasion by Halophila stipulacea (red circles) results in a sediment surface 
vulnerable to erosion, while the low below-ground biomass of the invasive species makes it vulnerable to uprooting, potentially leading to 
bare areas after storms. Bare (yellow) areas have no vegetated biomass to protect the sediment, leaving these areas vulnerable to erosion 
during storms. Solid circles represent raw data, while larger shaded areas indicate the groupings of the different seagrass patch types. 
Seagrass illustrations obtained from IAN images (Collier 2019; Saxby 2019) [Colour figure can be viewed at wileyonlinelibrary.com]

Storm resilience

Native 
T. testudinum

Invasive 
H. stipulacea

Intensively grazed 
T. testudinum

Invasion by H. stipulacea

Bare

Intensive grazing

Proxy for uprooting resilience

P
ro

xy
 fo

r 
er

os
io

n 
re

si
lie

nc
e

S
ed

im
en

t 
th

re
sh

o
ld

 o
sc

ill
at

o
ry

 fl
o

w
 v

el
o

ci
ty

, m
/s

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Below ground biomass (g/m2)

0 50 100 150 200 250 300 350 400 450

www.wileyonlinelibrary.com


     |  2035Journal of EcologyJAMES Et Al.

A sheltered site with a steady sediment supply is unlikely to erode, 
even if the seagrass canopy is lost. In contrast, sites experiencing 
stronger hydrodynamic forces, such as in the intertidal zone, are 
highly likely to display a strong erosional response when the seagrass 
canopy is removed. Using field flumes, we provide mechanistic insight 
into the erosion protection provided by seagrass meadows. Although 
the absolute erosion threshold values are likely to differ between 
seagrass meadows depending upon the local sediment grain size, 
the mechanistic trends that are revealed remain the same, irrespec-
tive of local conditions. That is, (a) seagrass meadows provide less 
erosion protection under an oscillatory flow regime compared to a 
unidirectional flow regime and (b) the level of erosion protection is 
positively correlated to the volume (density and canopy height) of the 
seagrass canopy. By understanding the mechanisms of a key process 
of the ecosystem functioning, we can improve the development of 
ecosystem models, and thereby, make more robust predictions for 
the future of coastal ecosystems in this changing world.

4.6 | Ecosystem services under threat?

When examining the mechanisms that affect the erosion protection 
capacity of seagrass meadows, it is evident that the effectiveness 
of the erosion protection declines within a disturbed and degraded 
system. This decline in the provision of ecosystem services has been 
observed in other ecosystems too. The accumulation of peat is nega-
tively impacted by reduced growth of Sphagnum species in peatlands 
(Dieleman, Branfireun, Mclaughlin, & Lindo, 2015), and hydrology 
processes are affected by the loss of soil crusts in dryland commu-
nities (Ferrenberg, Reed, Belnap, & Schlesinger, 2015). Furthermore, 
community shifts towards more fast-growing opportunistic species 
disrupts the natural functioning of the ecosystem and may signifi-
cantly impact the ecosystem services provided. We see this in the 
alteration in the erosion protection services provided by the invasive 
opportunistic H. stipulacea, but this is also in line with other ecosys-
tems. Nutrification in grassland communities leads to species-shifts in 
both the plant community and also the associated pollinators (Habel 
et al., 2016), while shifts towards a turfing-algae dominated reef sys-
tems in the coastal environment impacts the abundance and composi-
tion of mussels (Sorte et al., 2017) and reef fish species (Bellwood, 
Hoey, Ackerman, & Depczynski, 2006). Ultimately, a shift in the bio-
logical community could cause a shift in the ecosystem services pro-
vided by that community. Further investigation is required to quantify 
the extent that ecosystem services are affected within different eco-
system types with global change, and the consequences that changing 
ecosystem services have on the associated communities.

The strong seabed stabilization by native climax seagrass species 
provides a vital coastal protection service throughout the Caribbean, 
by reducing erosion and maintaining a stable beach foreshore, even 
under storm conditions. Intensive grazing and opportunistic invasive 
species are not only threatening the abundance of native seagrass 
species but are also threatening the important coastal protection 
services that are provided by the native climax species.
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