
https://doi.org/10.3758/s13428-019-01314-1

GlassesViewer: Open-source software for viewing and analyzing
data from the Tobii Pro Glasses 2 eye tracker

Diederick C. Niehorster1 · Roy S. Hessels2 · Jeroen S. Benjamins3

© The Author(s) 2019

Abstract
We present GlassesViewer, open-source software for viewing and analyzing eye-tracking data of the Tobii Pro Glasses 2
head-mounted eye tracker as well as the scene and eye videos and other data streams (pupil size, gyroscope, accelerometer,
and TTL input) that this headset can record. The software provides the following functionality written in MATLAB: (1) a
graphical interface for navigating the study- and recording structure produced by the Tobii Glasses 2; (2) functionality to
unpack, parse, and synchronize the various data and video streams comprising a Glasses 2 recording; and (3) a graphical
interface for viewing the Glasses 2’s gaze direction, pupil size, gyroscope and accelerometer time-series data, along with
the recorded scene and eye camera videos. In this latter interface, segments of data can furthermore be labeled through user-
provided event classification algorithms or by means of manual annotation. Lastly, the toolbox provides integration with the
GazeCode tool by Benjamins et al. (2018), enabling a completely open-source workflow for analyzing Tobii Pro Glasses 2
recordings.

Keywords Head-mounted eye tracking · Wearable eye tracking · Mobile eye tracking · Eye movements · Data analysis ·
Event classification

Introduction

In the past several decades, mobile (head-worn) eye tracking
has become a popular research method that has found
widespread use across a range of fields. The opportunity
afforded by head-worn eye-tracking setups to acquire data
on the visual behavior of participants who freely move
around has enabled researchers to conduct studies in fields
such as vision science (Land, 1992; Land & Lee, 1994;
Ballard et al., 1995; Pelz & Canosa, 2001; Matthis et al.,
2018), social interaction between adults (Ho et al., 2015;
Rogers et al., 2018; Macdonald & Tatler, 2018; Rogers

� Diederick C. Niehorster
diederick c.niehorster@humlab.lu.se

1 Lund University Humanities Laboratory and Department
of Psychology, Lund University, Lund, Sweden

2 Experimental Psychology, Helmholtz Institute and
Developmental Psychology, Utrecht University, Utrecht,
The Netherlands

3 Experimental Psychology, Helmholtz Institute and Social,
Health and Organisational Psychology, Utrecht University,
Utrecht, The Netherlands

et al., 2019) or children and their parents (Yu & Smith,
2017; Suarez-Rivera et al., 2019), usability (Masood &
Thigambaram, 2015; Bergstrom & Schall, 2014), marketing
(Harwood & Jones, 2014), decision making (Gidlöf et al.,
2013; Gidlöf et al., 2017), surgery (Dik et al., 2016;
Harrison et al., 2016), navigation and wayfinding (Kiefer
et al., 2014; Koletsis et al., 2017) and education (McIntyre
et al., 2017; McIntyre & Foulsham, 2018).

Head-worn eye trackers typically consist of some form of
headset or glasses on which multiple cameras are mounted.
First, there is a scene camera that is pointed forward and
films the world in front of the participant. Second, there
are one or more cameras that film one or both eyes of
the participant. The images from one or more eye cameras
are processed by firmware or software—the headset and
the gaze processing code together form an eye-tracking
setup. The typical output of a head-worn eye-tracking setup
consists of the video of the scene camera along with gaze
direction, usually reported in the video frame of the scene
camera. The Tobii Pro Glasses 2, a system that records
binocular gaze direction, furthermore provides pupil size,
the 3D orientation of each eye ball in a coordinate system
fixed to the headset, and gyroscope and accelerometer data
indicating movement of the headset.

Published online: 2 2020January

Behavior Research Methods (2020) 52:1244–1253

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-019-01314-1&domain=pdf
http://orcid.org/0000-0002-4672-8756
mailto: diederick_c.niehorster@humlab.lu.se


Analysis of head-worn eye-tracking data often happens
in multiple steps. First, event classification (the labeling
of parts of, e.g., the eye-tracking data as, e.g., “fixations”
and “saccades”, see Hessels et al., 2018) is commonly
performed to extract episodes of the recording for further
analysis. Important to note here is that only few event
classification algorithms are available that are developed
for head-worn eye tracker signals (Hooge & Camps, 2013;
Hessels et al., in press; Larsson & et al. 2016; Kothari et al.,
2019), and that none of these appear to be implemented
in commercial software for head-worn eye-tracking data
analysis.

In many fields, such as psychology, researchers using
head-worn eye trackers are predominantly not interested in
how a participant’s eyes move in their head, but instead in
questions such as which objects in the world a person looked
at, in what order, and how long each object was looked
at (see Hessels et al., 2018, for a discussion of coordinate
systems in which gaze direction can be measured). As
such, after event classification, a common step is to use the
classified fixations to determine what objects an observer
looked at. This is however not straightforward for most
head-mounted eye-tracking research. Unlike in screen-
based eye tracking where the experimenter often has control
over the stimulus and knows what object was presented
where and when, the positions of objects in the scene video
of a head-worn eye tracker are usually unknown. Since
the scene video provided by the head-worn eye tracker is
recorded from the perspective of a moving observer, objects
of interest continuously change position when the observer
moves, or even disappear from view altogether. Analysis of
head-mounted eye-tracking data therefore requires mapping
the gaze direction provided by the eye tracker in the
reference frame of the scene video to specific objects in the
world. Unless the position and orientation of the headset
and the objects of interest in the world are known, or if the
location of objects in the scene video can be recovered by
automatic means (e.g., Brône et al., 2011), mapping gaze
to the object in the world is often carried out manually. We
will refer to this as manual mapping in this paper. While
some researchers perform manual mapping for individual
video frames or gaze samples (e.g., Land et al., 1999; Gidlöf
et al., 2013; Gidlöf et al., 2017), frequently researchers first
obtain episodes in the recording where gaze is fixed on an
object in the world (often called fixation classification or
event classification), and then code these episodes one at a
time (see, e.g., Hessels et al., in press).

The Tobii Pro Glasses 2 is a recent head-worn eye
tracker that is commonly used across a range of studies
(e.g., Harrison et al., 2016; Topolšek et al., 2016; Koletsis
et al., 2017; Rogers et al., 2018; Raptis et al., 2018).
However, analysis of the recordings is currently limited to
Tobii Pro Lab, a software package sold by the manufacturer

of this eye tracker, and other closed commercial software
packages such as offered by iMotions. Tobii Pro Lab aims
to provide the analysis options that a majority of Tobii’s
academic and industry clients want. For many researchers,
such as the authors of this paper, Tobii Pro Lab and
the other commercial packages offer insufficient flexibility
and insufficient control over the various analysis steps.
Specifically, Tobii Pro Lab only visualizes a limited amount
of the data available in a Glasses 2 recording (for instance,
the gyroscope and accelerometer data which may be helpful
to classify participant movement are not featured in the
interface at all), is limited in functionality (for instance,
only one fixation classifier can be chosen and its exact
algorithm is not known given that the implementation’s
source code cannot be inspected), is not extensible and
provides a workflow for manual mapping gaze data to
objects-of-interest that has been found to be inefficient
(Benjamins et al., 2018).

In this paper, we present GlassesViewer, an open-source
tool that enables easily navigating the study- and recording
structure produced by the Tobii Pro Glasses 2 and provides
tools for converting the recorded data to an easily readable
format and synchronizing all data streams and videos
together. It furthermore provides a graphical user interface
that can visualize and replay all data streams and both
scene and eye videos in a recording, contains an interface
for manual or automatic event classification, as well as
for viewing and adjusting the output of a manual mapping
procedure. Via integration with GazeCode (Benjamins et al.,
2018), users can manually map the events that were
classified with GlassesViewer’s tools (e.g., fixations) to
objects of interest in an intuitive and efficient manner,
and then view these mapped events on the recording’s
timeline in the GlassesViewer tool. In contrast to Tobii
Pro Lab, the GlassesViewer software presented here has
extensive built-in visualization capabilities, is built to be
highly configurable and extensible and uses data input
and output formats that allow for easy interoperability
with other software tools, such as the featured integration
with GazeCode. We consider GlassesViewer and GazeCode
together to offer a free and open-source1 replacement
for most of the functionality offered by the manufacturer
software. For a feature comparison, please refer to
Table 1. GlassesViewer is available from https://github.com/
dcnieho/GlassesViewer and GazeCode from https://github.
com/jsbenjamins/gazecode. GlassesViewer has been tested
with recordings made with Tobii Pro Glasses 2 firmware
versions 1.22.0-zucchinipaj, 1.25.0-citronkola

and 1.25.3-citronkola.

1Note however that both require MATLAB to run, which is not
open-source nor free software.

Behav Res (2020) 52:1244–1253 1245

https://github.com/dcnieho/GlassesViewer
https://github.com/dcnieho/GlassesViewer
https://github.com/jsbenjamins/gazecode
https://github.com/jsbenjamins/gazecode


Table 1 A comparison of the features offered by the GlassesViewer and GazeCode combination, and the Tobii Pro Lab Analysis module

Feature GlassesViewer + GazeCode Tobii Pro Lab Analysis module

Scene video playback yes yes

Eye video playback yes no

Data stream timeseries plots horizontal and vertical eye ori-
entation (per eye), pupil size,
eye angular velocity, gyroscope,
accelerometer

horizontal and vertical gaze posi-
tion on the video (binocular
only), gaze velocity

TTL signal visualization on timeline yes yes

Coding by selecting intervals on timeline yes no

Interactive event classifier parameter
adjustments

yes yes

Manual event mapping yes, using coding buttons or
keyboard keys

yes, using manually defined
events coupled to keyboard keys

Supported event types for manual
mapping

any fixations

Automatic event mapping no yes, for 2D planes

AOI analyses no yes

Extensible event classifiers yes no

Video export with overlaid visu-
alization

no yes

Data export yes, to MATLAB file yes, to csv file

The GlassesViewer tool

The GlassesViewer toolbox consists of tools for (1)
selecting, (2) parsing and (3) viewing and analyzing
Tobii Pro Glasses 2 recordings. Below we provide a
detailed description of the toolbox’s functionality. For
the reader who prefers to try out the tools directly,
we however recommend starting by following the steps
described in the quick start manual manual.md that
is available in the GlassesViewer repository on GitHub.
The first two tools described in the Sections “Recording
selector” and “Recording parser” are building blocks for
the glassesViewer graphical user interface described in
the Section “Recording viewer and analyzer graphical user
interface”. These first two tools can however also be used
stand-alone.

Recording selector

The Tobii Pro Glasses 2 stores studies and recordings in
a complex directory structure on its SD card. The names
of studies and recordings in this directory structure are
random strings (e.g. recording gzz7stc, which is part of
project raoscyb), and as such not human-readable. This
makes it hard to locate a specific study or recording. Glass-
esViewer therefore provides two functions to easily navigate
this structure. First, the function G2ProjectParser deter-
mines what studies (e.g., DemoIntegratie) and record-
ings (e.g., Recording011) are contained in a directory and

stores it in a Microsoft Excel file, lookup.xls. This file
contains information about all the studies in the directory,
and all the recordings in each study. Second, the function
recordingSelector reads this lookup file and presents a
graphical study and recording selection interface (Fig. 1).
When a recording is selected, the tool provides the path to
this recording in the directory structure, so the recording can
be located.

Recording parser

Each recording made by the Tobii Pro Glasses 2 is
comprised of a scene video file, an optional eye video
file, and a gzipped text file containing the headset’s data
streams encoded in packets of json-formatted text data. To
make the data in these files accessible, the GlassesViewer
toolbox contains functionality to parse, organize and
synchronize these data streams. It can furthermore extract
the timestamp for each frame in the video streams, and
then synchronize these frames to the recording’s data
streams. Parsing of a recording is performed by the
function getTobiiDataFromGlasses which provides the
processed data streams and video frame timestamps to the
caller in a MATLAB structure, and also stores this structure
to a file livedata.mat in the recording’s directory. During
parsing, getTobiiDataFromGlasses cleans up the data
streams by checking if a set of conditions is met for
each gaze sample—such as whether data for all gaze data
streams is available for a given sample. Gaps sometimes

Behav Res (2020) 52:1244–12531246



Fig. 1 The recording selector interface. When provided with the direc-
tory structure created on the SD card by the Tobii Pro Glasses 2, this
dialogue shows all the projects contained in the directory structure. For
each of the projects, it shows all the participants from whom data was

recorded (left panel), and for each participant all their recordings. Once
a recording is selected, the dialogue shows whether the recording was
preceded by a successful calibration (right panel)

occur in the gaze data recorded by the Glasses 2 and
can complicate the analysis of eye-tracking data (Hessels
et al., 2015). getTobiiDataFromGlasses detects these
gaps and fills them with “missing” gaze samples in such
a way that the recording’s gaze data sampling interval
is preserved. getTobiiDataFromGlasses furthermore
provides support for parsing recordings consisting of
multiple segments, which occur when the Tobii Pro Glasses
2 splits recordings longer than approximately an hour.

Recording viewer and analyzer graphical user
interface

The function glassesViewer selects and loads a recording
using the functionality provided by the two tools described
above and shows a flexible graphical user interface in which
all data streams along with the video files can be viewed
and annotated (see Fig. 2). glassesViewer furthermore
supports loading annotations (denoting, e.g., fixation

Fig. 2 The GlassesViewer recording viewer. On the left of the inter-
face, raw data streams are plotted along with a scarf plot showing
multiple annotation streams. To the right of these data stream plots,
the scene and eye videos are shown, along with a media player toolbar

for playback of the recording, and to allow selecting the time window
for which data are plotted in the data stream plots. Furthermore shown
when a recording is first opened is a panel indicating the data quality
(RMS-S2S precision and data loss) of the recording

Behav Res (2020) 52:1244–1253 1247



episodes or walking episodes) from text files, and the
automatic generation of annotations through running built-
in or user-provided event classifiers. The glassesViewer

tool’s settings can be configured through a JSON file,
or provided as a MATLAB struct when invoking the
function. Example default settings are provided in the
defaults.json file included with the glassesViewer

tool. A complete manual for the glassesViewer interface as
well as all the settings in the JSON file is found in the
readme.md file included with the glassesViewer tool.

Viewing a recording

Figure 2 shows a Tobii Pro Glasses 2 recording loaded in
the glassesViewer interface. The left side of the interface
shows a series of data streams plotting the raw gaze direc-
tion vectors decomposed into Fick angles (Fick, 1854;
Haslwanter, 1995) and plotted as azimuthal and elevational
eye orientations; the corresponding eye velocity as com-
puted from the eye orientation time series; pupil size; and
the raw gyroscope and accelerometer time series that are
available in a recording. Furthermore shown is a scarf
plot denoting manually or algorithmically created event
streams that will be discussed in the Section “Manual
and algorithmic event annotation” section below. Which
of the data stream plots are shown is configurable, both
in the settings JSON file, and in a settings panel in the
glassesViewer interface itself (Fig. 3). The eye veloc-
ity is computed in the following manner. First, smoothed
azimuthal (θ ) and elevational (ϕ) eye velocity time series are
computed using a Savitky–Golay differentiation filter (Sav-
itzky & Golay, 1964). The eye velocity (ω̇) is then computed
by ω̇ =

√
θ̇2 cos2 ϕ + ϕ̇2 (Niehorster et al., 2015).

To the right of the data stream plots, the scene video
and, if available, eye videos are shown. Underneath the
scene video, a media player toolbar is provided, allowing
to play and pause a recording, as well as jump forward and
backward in time, adjust the time window that is shown
in the data stream plots, and loop the playback during that
time window. On top of the scene video, the recorded gaze
position is shown as a green dot when the Glasses 2 headset
based its reported gaze position on data from both eyes, and
as a red dot when the reported gaze position is based on data
from a single eye.2

2The Tobii Pro Glasses 2 determines the gaze position in the scene
video from binocular data. If data for only one eye is available, gaze
position on the video is determined under the assumption that the
vergence distance of the two eyes did not change since binocular
data was last available. In some experimental situations this is a valid
assumption, but not in all. As such, we color-code the gaze marker in
the video to make the researcher aware that they must decide whether
to use gaze position data on the video originating from only a single
eye. For a note of caution regarding using vergence in pupil-based eye
trackers, see Hooge et al. (2019).

Fig. 3 The settings panel of the glassesViewer recording viewer
enables changing various settings while a recording is loaded in the
glassesViewer interface. The Savitzky–Golay window setting changes
the number of filter taps used for calculating instantaneous eye
velocity, and the two list boxes underneath denote which time series
are visible in the interface and in which order (left box). Data stream
plots can be hidden from view by moving them to the right box,
allowing maximum screen space for the data stream plots that the user
is interested in viewing

Underneath the media player toolbar, a panel indicating
the data quality of the recording is shown. To ensure that
a recording’s data quality is sufficient to allow for a valid
analysis, it is of utmost importance that the user is aware
of these statistics (Holmqvist et al., 2012; Niehorster et al.,
in press; Nyström et al., 2013; Hessels et al., 2015;
Niehorster et al., 2018). We have therefore decided to
display them prominently in the interface. Specifically, two
aspects of data quality are reported, separately for the
azimuth and elevation gaze direction signals of the left and
right eyes. First, a measure of the random variation in the
gaze direction signal (often referred to as its precision) is
provided by means of the root-mean-square of the distance
between the gaze directions of adjacent gaze samples
(RMS-S2S). The RMS-S2S measure was calculated with
a moving window (default length 300 ms), yielding a list
of RMS-S2S values. To get an estimate of the RMS-S2S
during periods where the eyes move slowly (fixations on
static or moving objects while the participant’s head is
also either static or moving), the median of all the RMS-
S2S values was computed and displayed in the interface.
This RMS-S2S measure is intended to provide a value
that can be used to compare various recordings performed
with the same system setup, making the user aware of
recordings that are of significantly worse quality than others
in their set. Second, data loss, the number of invalid gaze
samples as a percentage of all gaze samples in the recording
is presented.

Behav Res (2020) 52:1244–12531248



Manual and algorithmic event annotation

The glassesViewer interface provides annotation func-
tionality, allowing users to manually label episodes in the
recording, or to have episodes labeled algorithmically. For
this functionality, glassesViewer uses event streams.
Each event stream is a separate, user-configured contiguous
series of labels denoting specific episodes in the recording.
Users could for instance in one stream code whether the
eyes are rotating slowly (slow phase; ‘fixation’ or ‘smooth
pursuit’) or rapidly (fast phase; ‘saccade’) in the head of the
participant (Hessels et al., 2018), while in another stream
coding whether the participant is walking or standing still
and use a third stream to view a coding of which object-
of-interest the participant is looking at. Event streams and
their annotation categories are set up in the JSON settings
file, which is documented in the readme.md file. The pro-
duced coding is stored in a file coding.mat alongside a
recording’s livedata.mat file.

At any time, one of the coding streams is active, meaning
that its codes are displayed through highlighting in each of
the data stream plots (see Fig. 4). By clicking on any of the
data stream plots, a new annotation can be added ranging
from the end of the previous annotation until the clicked
time. When clicking an existing annotation, the labeled
category can be changed or the annotation can be removed.

The start- and end time of annotations can be changed by
dragging and annotations can be split by holding down the
shift key while clicking on the time where a new annotation
should be inserted. Lastly, users can set up their annotation
scheme such that flags can be applied to them. For instance,
when coding for fixations and saccades, users can set up
a flag to augment the saccade annotation with information
about whether the saccade has a vergence component or not.

Besides manually produced annotations, event streams
can also come from multiple other sources:

TTL signals: The Tobii Pro Glasses 2 includes a TTL
port through which events, such as sync signals or
button presses, can be timestamped and recorded.
glassesViewer can be set up such that an event stream
is automatically generated from the TTL activity.

Text files: To provide simple interoperability with other
tools, an event stream can be loaded from a text file. If the
user manually adjusts the loaded annotations, they can
be reset to those contained in the text file with a button
in the interface. A full description of how to set this up
is provided in the readme.md file that comes with the
GlassesViewer toolbox.

Classification algorithms: Lastly, glassesViewer can
produce annotations by calling user-provided algorithms.
These algorithms are provided with a recording’s data

Fig. 4 The glassesViewer recording viewer showing an event coding.
When an event stream containing coding for the current time window
is selected, the coded episodes are shaded on each of the data stream
plots. Furthermore shown is an open coding panel allowing one to

change an already coded episode to another label, or to place a new
code in each of the event streams. The currently active event stream is
indicated by the red arrow next to the scarf plot

Behav Res (2020) 52:1244–1253 1249



streams and are expected to return an event stream. The
MATLAB function to call is defined in the JSON settings
file, along with parameter settings. These parameters can
be marked as user-settable, in which case a dialogue
becomes available in the interface (Fig. 5) allowing the
user to change the parameter settings of the algorithm
and rerun it to produce an updated event stream.
glassesViewer comes with two classifiers (Hooge &
Camps, 2013; Hessels et al., in press) that split the
gaze data into episodes where the eye moves fast, and
episodes where the eye moves slowly. Shown in Fig. 4
is the classification produced by the Hessels et al.
(in press) algorithm, and in Fig. 5 the settings for this
algorithm are shown.

Regarding the use of event classification, it is important
to realize that use of the event classification algorithms
provided by GlassesViewer comes with the same caveats as
use of those provided by Tobii Pro Lab or any other software
package. Specifically, the user has to assure themselves
that the algorithm and its settings produce classifications
(e.g., “fixations”) that have the properties desired for
further analysis. Example properties that may be relevant

Fig. 5 Classifier settings for the glassesViewer recording viewer.
Shown are the settings for the Hessels et al. (in press) slow and
fast phase classifier. For each setting, a textbox is available through
which the value can be changed, and besides the textbox, the range
of allowed values is indicated. The recalculate button performs event
classification with the selected settings, and the restore defaults button
resets the parameter values to their initial values as defined in the JSON
settings file

for specific use cases are that all events are at least of
a specific minimum duration, that eye velocity during a
fixation episode does not exceed a given threshold, or
conversely that the slow eye-in-head gaze shifts associated
with pursuit or VOR activity do not break up the classified
event. These are properties of the event classifier output
that have to be determined a-priori by the researcher (see,
e.g., Hessels et al., 2017) and have to be checked by
the researchers through inspection of the classified events
using, e.g., GlassesViewer’s timeline (see Fig. 4). Failure to
do either of these steps and unthinkingly accepting a default
algorithm or its default settings may lead to improper event
classifications and thereby invalid study conclusions.

Integration with GazeCode

To provide researchers with a complete, more flexible
and fully transparent replacement to Tobii’s software for
viewing and analyzing recordings made with the Tobii
Pro Glasses 2, a close but optional integration between
the GlassesViewer toolbox and GazeCode (Benjamins
et al., 2018) has been developed. GazeCode,3 available
from https://github.com/jsbenjamins/gazecode, is a tool
developed for efficient manual mapping of participant gaze
onto the visual stimulus by assigning each look to a
predefined category (such as “teapot”, “cup”, “spoon”).
GazeCode was designed with a minimalistic interface that
only shows the information necessary for this task and
allows for straightforward keyboard-based operation. As
such, a test performed by Benjamins et al. (2018) found
that coders were able to annotate the same gaze data with
GazeCode at double the rate they obtained when using the
Tobii Pro Lab software.

By means of the integration between GazeCode and
GlassesViewer, GazeCode can now use GlassesViewer’s
functionality to parse and load a Tobii Pro Glasses 2
recording. It can furthermore load any of the event
coding streams produced with the GlassesViewer tool, or
invoke GlassesViewer’s functionality to produce these event
streams automatically. Finally, after the researcher is done
manually mapping, e.g., a participant’s gaze to objects in
the world, the new event stream containing the researcher’s
annotations is stored in the coding.mat file, allowing it to
be viewed on the timeline provided by the glassesViewer

interface and potentially manually adjusted.

3Note that besides data from the Tobii Pro Glasses 2, GazeCode also
supports data from SMI, Pupil-Labs and Positive Science head-worn
eye trackers.

Behav Res (2020) 52:1244–12531250

https://github.com/jsbenjamins/gazecode


Example use and workflow

To demonstrate the workflow using the GlassesViewer and
GazeCode tools, we have made a brief example recording
where a participant was asked to search a notice board
for red pushpins used to attach posters to the board,
among pushpins with different colors. The participant was
instructed to press a button on a custom-built response
box connected to the Glasses 2’s recording unit (further
described in Appendix) for each red push pin that they
found. When loading the example recording from the
demo_data directory included with the glassesViewer

tool, these button presses are visualized as an event stream,
and they can be chosen in GazeCode as the stream for which
to conduct manual mapping.

The complete example workflow including all steps one
may wish to perform in the glassesViewer interface,
further manual mapping in GazeCode and then reviewing
this mapping in glassesViewer is provided in the
manual.md file that is included with the glassesViewer

tool. The user is referred to this manual for an up-to-date
walk-through of the glassesViewer tool.

Conclusions

In this article, we presented GlassesViewer, a toolbox for
viewing and analyzing recordings made with the Tobii
Pro Glasses 2 head-mounted eye tracker. It provides
tools for selecting, parsing, viewing and manually or
automatically annotating such recordings. It is a flexible
and fully transparent tool which, together with the efficient
GazeCode manual mapper, provides a replacement for most
of the functionality offered by the analysis module of the
commercial Tobii Pro Lab software.

Acknowledgements We thank Pieter Schiphorst for building the
button box. The data and materials for the experiment are available
at https://github.com/dcnieho/GlassesViewer and https://github.com/
jsbenjamins/gazecode, and the data collection was not preregistered.
Open access funding provided by Lund University.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Appendix: A button
box for use with the Tobii Pro Glasses 2

A button box (see Fig. 6) was built by our technician at
Utrecht University. It is a one-button box that sends a TTL
signal as long as the button is pressed. It operates on one
CR2032 battery, and can be plugged directly into the Tobii
Pro Glasses 2 recording unit. It is possible that similar
products could be bought off-the-shelf.

Fig. 6 Button box for Tobii Pro Glasses 2. As long as the button is
pressed, this box sends a TTL signal over a 3.5 mm jack that can be
plugged directly into the sync port on the Tobii Pro Glasses 2 recording
unit

References

Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995). Memory rep-
resentations in natural tasks. Journal of Cognitive Neuroscience,
7(1), 66–80. https://doi.org/10.1162/jocn.1995.7.1.66

Benjamins, J. S., Hessels, R. S., & Hooge, I. T. C. (2018). GazeCode:
Open-source software for manual mapping of mobile eye-tracking
data. In Proceedings of the 2018 ACM symposium on eye track-
ing research & applications. https://doi.org/10.1145/3204493.
3204568, (pp. 54:1–54:4). New York: ACM.

Bergstrom, J. R., & Schall, A. (2014). Eye tracking in user experi-
ence design. Boston: Morgan Kaufmann. https://doi.org/10.1016/
C2012-0-06867-6

Brône, G., Oben, B., & Goedemé, T. (2011). Towards a more effective
method for analyzing mobile eye-tracking data: Integrating gaze
data with object recognition algorithms. In Proceedings of the 1st
international workshop on pervasive eye tracking &#38; mobile
eye-based interaction. https://doi.org/10.1145/2029956.2029971,
(pp. 53–56). New York: ACM.

Behav Res (2020) 52:1244–1253 1251

https://github.com/dcnieho/GlassesViewer
https://github.com/jsbenjamins/gazecode
https://github.com/jsbenjamins/gazecode
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1162/jocn.1995.7.1.66
https://doi.org/10.1145/3204493.3204568
https://doi.org/10.1145/3204493.3204568
https://doi.org/10.1016/C2012-0-06867-6
https://doi.org/10.1016/C2012-0-06867-6
https://doi.org/10.1145/2029956.2029971


Dik, V. K., Hooge, I. T. C., van Oijen, M. G., & Siersema,
P. D. (2016). Measuring gaze patterns during colonoscopy:
A useful tool to evaluate colon inspection? European Jour-
nal of Gastroenterology & Hepatology, 28(12), 1400–1406.
https://doi.org/10.1097/MEG.0000000000000717

Fick, A. (1854). Die bewegungen des menschlichen augapfels.
Zeitschrift für rationelle Medicin, 4, 101–128.

Gidlöf, K., Anikin, A., Lingonblad, M., & Wallin, A. (2017). Looking
is buying. How visual attention and choice are affected by
consumer preferences and properties of the supermarket shelf.
Appetite, 116, 29–38.

Gidlöf, K., Wallin, A., Dewhurst, R., & Holmqvist, K. (2013).
Using eye tracking to trace a cognitive process: Gaze behaviour
during decision making in a natural environment. Journal of Eye
Movement Research, 6(1).

Harrison, T. K., Kim, T. E., Kou, A., Shum, C., Mariano,
E. R., Howard, S. K., & The ADAPT (Anesthesiology-
Directed Advanced Procedural Training) Research Group (2016).
Feasibility of eye-tracking technology to quantify expertise in
ultrasound-guided regional anesthesia. Journal of Anesthesia,
30(3), 530–533. https://doi.org/10.1007/s00540-016-2157-6

Harwood, T., & Jones, M. (2014). Mobile eye-tracking in retail
research. In Horsley, M., Eliot, M., Knight, B. A., & Reilly,
R. (Eds.) Current trends in eye tracking research, (pp. 183–199).
Cham: Springer International Publishing.

Haslwanter, T. (1995). Mathematics of three-dimensional eye rota-
tions. Vision Research, 35(12), 1727–1739. https://doi.org/10.
1016/0042-6989(94)00257-M

Hessels, R. S., Cornelissen, T. H. W., Kemner, C., & Hooge,
I. T. C. (2015). Qualitative tests of remote eyetracker recovery and
performance during head rotation. Behavior Research Methods,
47(3), 848–859.

Hessels, R. S., Niehorster, D. C., Kemner, C., & Hooge, I. T. C. (2017).
Noise-robust fixation detection in eye movement data: Identi-
fication by two-means clustering (I2MC). Behavior Research
Methods, 49(5), 1802–1823. https://doi.org/10.3758/s13428-016-
0822-1

Hessels, R. S., Niehorster, D. C., Nyström, M., Andersson, R., &
Hooge, I. T. C. (2018). Is the eye-movement field confused about
fixations and saccades? a survey among 124 researchers. Royal
Society Open Science, 5(8), 180502. https://doi.org/10.1098/rsos.
180502

Hessels, R. S., van Doorn, A. J., Benjamins, J. S., Holleman, G. A.,
& Hooge, I. T. C. (in press). Task-related gaze control in human
crowd navigation. Attention, Perception, & Psychophysics.

Ho, S., Foulsham, T., & Kingstone, A. (2015). Speaking and listening
with the eyes: Gaze signaling during dyadic interactions. PloS one,
10(8), e0136905.

Holmqvist, K., Nyström, M., & Mulvey, F. (2012). Eye tracker
data quality: What it is and how to measure it. In Proceed-
ings of the symposium on eye tracking research and appli-
cations. https://doi.org/10.1145/2168556.2168563, (pp. 45–52).
New York: ACM.

Hooge, I. T. C., & Camps, G. (2013). Scan path entropy and arrow
plots: Capturing scanning behavior of multiple observers. Fron-
tiers in Psychology, 4, 996. https://doi.org/10.3389/fpsyg.2013.
00996

Hooge, I. T. C., Hessels, R. S., & Nyström, M. (2019). Do pupil-based
binocular video eye trackers reliably measure vergence? Vision
Research, 156, 1–9. https://doi.org/10.1016/j.visres.2019.01.004

Kiefer, P., Giannopoulos, I., & Raubal, M. (2014). Where am I?
Investigating map matching during self-localization with mobile
eye tracking in an urban environment. Transactions in GIS, 18(5),
660–686. https://doi.org/10.1111/tgis.12067

Koletsis, E., van Elzakker, C. P. J. M., Kraak, M.-J., Cartwright,
W., Arrowsmith, C., & Field, K. (2017). An investigation into
challenges experienced when route planning, navigating and
wayfinding. International Journal of Cartography, 3(1), 4–18.
https://doi.org/10.1080/23729333.2017.1300996

Kothari, R., Yang, Z., Kanan, C., Bailey, R., Pelz, J., & Diaz,
G. (2019). Gaze-in-wild: A dataset for studying eye and head
coordination in everyday activities. arXiv:1905.13146.

Land, M. F. (1992). Predictable eye-head coordination during driving.
Nature, 359(6393), 318–320. https://doi.org/10.1038/359318a0

Land, M. F., & Lee, D. N. (1994). Where we look when we steer.
Nature, 369(6483), 742–744. https://doi.org/10.1038/369742a0

Land, M. F., Mennie, N., & Rusted, J. (1999). The roles of vision
and eye movements in the control of activities of daily living.
Perception, 28(11), 1311–1328. https://doi.org/10.1068/p2935

Larsson, L., et al. (2016). Head movement compensation and multi-
modal event detection in eye-tracking data for unconstrained head
movements. Journal of Neuroscience Methods.

Macdonald, R. G., & Tatler, B. W. (2018). Gaze in a real-world
social interaction: A dual eye-tracking study. Quarterly Journal of
Experimental Psychology, 1747021817739221.

Masood, M., & Thigambaram, M. (2015). The usability of mobile
applications for pre-schoolers. Procedia - Social and Behavioral
Sciences, 197, 1818–1826. (7th World Conference on Educational
Sciences). https://doi.org/10.1016/j.sbspro.2015.07.241

Matthis, J. S., Yates, J. L., & Hayhoe, M. M. (2018). Gaze and the
control of foot placement when walking in natural terrain. Current
Biology, 28(8), 1224–1233.e5. https://doi.org/10.1016/j.cub.2018.
03.008

McIntyre, N. A., & Foulsham, T. (2018). Scanpath analysis of
expertise and culture in teacher gaze in real-world classrooms.
Instructional Science, 46(3), 435–455.

McIntyre, N. A., Jarodzka, H., & Klassen, R. M. (2017). Capturing
teacher priorities: Using real-world eye-tracking to investigate
expert teacher priorities across two cultures. Learning and
Instruction.

Niehorster, D. C., Santini, T., Hessels, R. S., Hooge, I. T. C., Kasneci,
E., & Nyström, M. (in press). The impact of slippage on the data
quality of head-worn eye trackers. Behavior Research Methods.
https://doi.org/10.3758/s13428-019-01307-0

Niehorster, D. C., Cornelissen, T. H. W., Holmqvist, K., Hooge,
I. T. C., & Hessels, R. S. (2018). What to expect from your remote
eye-tracker when participants are unrestrained. Behavior Research
Methods, 50(1), 213–227.

Niehorster, D. C., Siu, W. W. F., & Li, L. (2015). Manual tracking
enhances smooth pursuit eye movements. Journal of Vision,
15(15), 11–11. https://doi.org/10.1167/15.15.11

Nyström, M., Andersson, R., Holmqvist, K., & van de Weijer, J.
(2013). The influence of calibration method and eye physiology
on eyetracking data quality. Behavior Research Methods, 45(1),
272–288. https://doi.org/10.3758/s13428-012-0247-4

Pelz, J. B., & Canosa, R. (2001). Oculomotor behavior and perceptual
strategies in complex tasks. Vision Research, 41(25), 3587–3596.
https://doi.org/10.1016/S0042-6989(01)00245-0

Raptis, G. E., Fidas, C., & Avouris, N. (2018). Effects of mixed-reality
on players’ behaviour and immersion in a cultural tourism game: A
cognitive processing perspective. International Journal of Human-
Computer Studies, 114, 69–79. (Advanced User Interfaces for
Cultural Heritage). https://doi.org/10.1016/j.ijhcs.2018.02.003

Rogers, S. L., Guidetti, O., Speelman, C. P., Longmuir, M., & Phillips,
R. (2019). Contact is in the eye of the beholder: The eye contact
illusion. Perception, 48(3), 248–252. https://doi.org/10.1177/
0301006619827486

Behav Res (2020) 52:1244–12531252

https://doi.org/10.1097/MEG.0000000000000717
https://doi.org/10.1007/s00540-016-2157-6
https://doi.org/10.1016/0042-6989(94)00257-M
https://doi.org/10.1016/0042-6989(94)00257-M
https://doi.org/10.3758/s13428-016-0822-1
https://doi.org/10.3758/s13428-016-0822-1
https://doi.org/10.1098/rsos.180502
https://doi.org/10.1098/rsos.180502
https://doi.org/10.1145/2168556.2168563
https://doi.org/10.3389/fpsyg.2013.00996
https://doi.org/10.3389/fpsyg.2013.00996
https://doi.org/10.1016/j.visres.2019.01.004
https://doi.org/10.1111/tgis.12067
https://doi.org/10.1080/23729333.2017.1300996
http://arxiv.org/abs/1905.13146
https://doi.org/10.1038/359318a0
https://doi.org/10.1038/369742a0
https://doi.org/10.1068/p2935
https://doi.org/10.1016/j.sbspro.2015.07.241
https://doi.org/10.1016/j.cub.2018.03.008
https://doi.org/10.1016/j.cub.2018.03.008
https://doi.org/10.3758/s13428-019-01307-0
https://doi.org/10.1167/15.15.11
https://doi.org/10.3758/s13428-012-0247-4
https://doi.org/10.1016/S0042-6989(01)00245-0
https://doi.org/10.1016/j.ijhcs.2018.02.003
https://doi.org/10.1177/0301006619827486
https://doi.org/10.1177/0301006619827486


Rogers, S. L., Speelman, C. P., Guidetti, O., & Longmuir, M. (2018).
Using dual eye tracking to uncover personal gaze patterns during
social interaction. Scientific Reports, 8(1), 4271.

Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation
of data by simplified least squares procedures. Analytical Chem-
istry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047

Suarez-Rivera, C., Smith, L. B., & Yu, C. (2019). Multimodal parent
behaviors within joint attention support sustained attention in
infants. Developmental Psychology, 55(1), 96.

Topolšek, D., Areh, I., & Cvahte, T. (2016). Examination of driver
detection of roadside traffic signs and advertisements using eye
tracking. Transportation Research Part F: Traffic Psychology
and Behaviour, 43, 212–224. https://doi.org/10.1016/j.trf.2016.
10.002

Yu, C., & Smith, L. B. (2017). Hand–eye coordination predicts joint
attention. Child Development, 88(6), 2060–2078.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Behav Res (2020) 52:1244–1253 1253

https://doi.org/10.1021/ac60214a047
https://doi.org/10.1016/j.trf.2016.10.002
https://doi.org/10.1016/j.trf.2016.10.002

	GlassesViewer: Open-source software for viewing and analyzing data from the Tobii Pro Glasses 2 eye tracker
	Abstract
	Introduction
	The GlassesViewer tool
	Recording selector
	Recording parser
	Recording viewer and analyzer graphical user interface
	Viewing a recording
	Manual and algorithmic event annotation


	Integration with GazeCode
	Example use and workflow
	Conclusions
	Appendix : A button box for use with the Tobii Pro Glasses 2
	References




