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Abstract: The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has
been challenged by the discovery of a variety of functional aggregates. However, an identification
of crucial differences between pathological and functional aggregation remains to be explored.
Functional protein aggregation is often reversible by nature in order to respond properly to changing
physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth
is a feature of functional amyloids, providing protection against the long-term existence of potentially
toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly
organized process that can be mediated by a multitude of biomolecular factors. In this overview,
we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic
acids and metal ions, in regulating functional protein aggregation. Our studies on the protein
GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein.
These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and
pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the
assembly into an amyloid state to exert several of their functions. A better understanding of functional
aggregate formation may also help in the prevention and treatment of amyloid-related diseases.

Keywords: protein aggregation; functional amyloids; amyloids; polyanions; heparin; metal ions;
GAPR-1; CAP superfamily

1. Introduction to Protein Aggregates: Two Sides of a Coin

Protein aggregation is a biochemical process in which proteins accumulate or clump together
to form aggregates and/or membrane-less inclusions, either intracellularly or extracellularly [1–4].
For a long time, protein aggregation was viewed exclusively as a pathological process, due to its
intimate relation with a number of devastating diseases. Amyloid formation is a distinct type of protein
aggregation in which soluble proteins assemble into highly ordered, biochemically stable fibrils with
a cross-β structure [3,5,6]. To date, approximately 50 amyloid-forming peptides and proteins have
been identified as the pathological hallmark of many human disorders [4]. However, the notion that
protein aggregation is inherently detrimental to cells has recently been challenged by the identification
of protein aggregates that play functional roles in physiology. The structure of amyloids enables
their use as scaffolds for biochemical activities and the compact nature of aggregates makes them
highly suitable as sites for protein storage. Functional protein aggregates appeared crucial for a
variety of biological activities, including the storage of peptide hormones [7,8], reproduction and
fertilization [9–11], pigmentation [12], necroptosis [13], antimicrobial responses [14], adaptation to
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stress [15,16], cellular dormancy [17–19], bacterial biofilm formation [20,21], regulating fungal-host
and fungal-fungal interactions [22], modulating epigenetic heritable phenotypes in yeast [23] and the
persistence of long-term memory in Drosophila [24].

The double-sided nature of amyloids as pathological or physiological assemblies, together
with several shared similarities (e.g., β-sheet structure, thermodynamic stability, specific tinctorial
properties [25], resistance to proteases, heat and SDS treatment, and similarities in high-resolution
structures [26,27]), make it challenging to clearly distinguish between “bad” and “good” amyloid
aggregates. To address this, a better characterization of the nature of protein aggregates will be
required by the consideration of additional properties, including function, reversibility, infectivity,
localization, composition and structure [3]. Factors affecting the amyloidogenic properties of proteins
are summarized in Figure 1 and will be discussed hereafter.
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2. Regulation of Functional Amyloid-Like Aggregate Formation

In contrast to pathological aggregates, functional aggregates are assembled under physiological
conditions without deleterious effects on cells, suggesting that the formation of these two types of
aggregates are regulated by different mechanisms. Soluble oligomeric intermediates formed during
aberrant amyloid aggregation are detrimental to cells [28,29]. The presence of these oligomers in cells
can result in membrane permeabilization, elevated Ca2+ concentrations, oxidative stress and cell
death [28–31]. Although functional aggregates are not lethal to cells, potentially toxic intermediates
do exist during their assembly [32]. For example, the intermediate oligomers of pigment cell-specific
pre-melanosomal protein (PMEL) and Orb2, a key protein for long-term memory formation in Drosophila,
are toxic, whereas the mature amyloid state of these proteins is functional [33,34]. In order to avoid
toxicity, functional aggregation must therefore be tightly regulated [32].
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2.1. Kinetics

Different from pathological aggregates, functional aggregation processes often occur with relatively
fast kinetics. Rapid growth rates of amyloid fibrils have been proposed as one of the protective
mechanisms to minimize the existence of intermediate oligomers [32,34]. For instance, recombinant
PMEL exhibits rapid fibrilization in vitro, with a fast transition from the monomeric state to mature
amyloids. Unlike pathological amyloids, which typically need several days to be formed in vitro,
the PMEL fibrillogenic domain requires only several minutes to form fibrils [12,35,36]. A similar rapid
fibrillation is observed for other functional amyloids, such as the antimicrobial peptide protegrin-1
(PG-1), cystatin-related epididymal spermatogenic (CRES) proteins, Orb2, and the bacterial curli protein
CsgA [11,14,34,37]. CsgA monomers form nascent fibrils very fast under native conditions, directly
folding and oligomerizing into minimal fibers and bypassing a transition through an intermediate,
non-amyloid oligomeric state [37]. When the prion-like domain (PLD) of Orb2 is swapped with the
amyloidogenic polyglutamine tract of exon 1 of the human huntingtin protein, the chimeric Orb2 protein
assembled much slower and with a longer existence of highly toxic oligomeric states. This suggests that,
in principle, Orb2 can form a toxic conformation. Vice versa, when the amyloidogenic polyglutamine
tract of exon 1 of the human huntingtin protein is replaced with the PLD of Orb2, the chimeric
huntingtin construct formed nontoxic, short-lived species. Altogether, rapid growth rate seems to be
one of the features which can distinguish functional from pathological aggregates [38].

2.2. Reversibility

As indicated above, protein aggregation has been widely used to control multiple physiological
processes in cells. Functional protein aggregation is often characterized by the reversible nature
of the aggregation process. Firstly, upon exposure to stress (e.g., heat shock, acidosis, nutrient
starvation, etc.), cells can assemble different types of condensates, such as nuclear amyloid bodies
(A-bodies) [16], Balbiani bodies [18], processing bodies (P-bodies) [39], heat-shock granules (HSGs) [40]
and cytoplasmic foci that contain heterogeneous protein:RNA complexes with amyloid-like biophysical
properties [15,41]. A well-studied example is the reversible formation of functional amyloid-like
aggregates by yeast pyruvate kinase Cdc19, a central regulator of cellular metabolism and cell
growth. Cdc19 forms aggregates under prolonged glucose starvation, which is reversed upon glucose
supplementation [15]. This process protects Cdc19 from stress-induced degradation, thereby ensuring
the restart of the cell cycle after stress [15]. Secondly, reversible aggregates are commonly associated
with protein storage [8,11,42,43]. For instance, prolactin and growth hormone (GH) are stored in
concentrated forms as protein aggregates in secretory granules. When needed, the protein aggregates
are rapidly dissolved into monomers, causing a hormone burst in the bloodstream [8,43]. Thirdly,
reversible regulation plays a vital role in the clearance of condensates, as well as the degradation
and clearance of disease-associated amyloid aggregates [44]. For clearance and degradation, several
pathways and machineries exist, e.g., autophagy, the ubiquitin-proteasome system (UPS), molecular
chaperones, and protein disaggregases [45]. The accumulation of aberrant aggregates can be caused
by proteostasis impairment, together with the appearance of the corresponding diseases [46,47].
Autophagy is an essential degradation pathway in clearing aberrant aggregates, such as those formed
by TDP-43, α-synuclein, tau and Aβ [48–51]. Impairments in autophagy are strongly associated
with neurodegeneration, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) [52,53].
Compounds that stimulate autophagy have been shown to improve TDP-43 clearance and to prevent
TDP-43 mediated cell death in a neuronal model with amyotrophic lateral sclerosis (ALS) [48].
UPS is another pathway for protein degradation [54], and impairment in UPS is also implicated
in neurodegeneration [55]. The accumulation of insoluble tau is associated with the dysfunction
of the proteasome and inhibition of ATPase in a mouse model. Increased cAMP concentrations in
the brain can enhance the activity of the proteasome and thereby promote the degradation of tau
aggregates [55]. In the cell, machineries such as molecular chaperones and proteases are required
for functional protein disaggregation. Upon heat stress, Pub1 forms biological condensates that are
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related to a restart of the cell cycle [56]. Release of the cell cycle arrest coincides with condensate
dissolution. In vitro, heat shock proteins (HSPs) such as Hsp104 are required for the disassembly of
heat-shock induced condensates [56]. Moreover, HSPs and protein disaggregases are also implicated
in combating protein misfolding and aberrant protein aggregation [57,58]. HSPs (e.g., Hsp70 and
Hsp90) are important inhibitors of protein aggregation by protecting the exposed hydrophobic regions
from aggregation [59–61]. Yeast Hsp104 can reverse toxic aggregates formed by α-synuclein, tau,
Aβ, PrP and amylin [62,63], thus reducing the toxic species and restoring native function to proteins
sequestered within aggregates [59]. Engineered Hsp104 variants have an enhanced ability to dissolve
protein aggregates that are associated with neurodegenerative diseases such as PD and ALS [64,65].
Altogether, these observations indicate that HSPs and proteases are used by cells to effectively reverse
both functional and aberrant aggregates, in order to maintain cellular function and homeostasis.

3. Other Factors Regulating Functional Protein Aggregation

Except rapid growth rates and reversible dynamics, there are several other ways to avoid potential
toxicity by regulating functional aggregation [32]. The expression and degradation of the precursors of
functional amyloid fibrils are tightly controlled because high levels of an amyloidogenic precursor could
initiate unwanted amyloid aggregation [32]. Moreover, in order to prevent unexpected interactions
between aggregates and other cellular components, numerous functional protein aggregation reactions
occur within distinct compartments, e.g., melanosomes, endocrine granules and acrosomes [7,32,42,66].
Finally, diverse classes of biomolecules have been identified in regulating functional protein aggregation
to ensure correct structural assembly and/or disassembly, e.g., lipids/membranes, glycosaminoglycans
(GAGs), nucleic acids, metal ions, heat shock proteins and proteases. A full understanding of how
these molecules and other biochemical factors regulate functional protein aggregation is only just
starting to emerge, and will be briefly discussed hereafter.

3.1. Polyanions

Polyanions, e.g., membranes containing negatively charged lipids, GAGs and nucleic acids, can act
as effective catalysts for protein aggregation by providing a platform where proteins bind through
electrostatic interactions, thus enhancing the local protein concentration. Through these interactions,
monomers can adopt a conformation and/or orientation that promotes their assembly into fibrillar
structures [67–73].

3.1.1. Lipids/Membranes

Membranes are involved in the amyloidogenesis of several proteins, such as Aβ, prion protein
(PrP), α-synuclein, islet amyloid polypeptide (IAPP), and Orb2A [74–76]. Upon interaction with
membranes, proteins can undergo a series of conformational changes, thus inducing the formation of
oligomers that are rich in cross β-sheet structures (annular pores and amyloid fibrils) [75]. Membrane
binding can also be directly involved in regulating functional amyloid formation [76,77]. For example,
Orb2 binding to anionic membranes results in a transition from a dynamic, intrinsically disordered
state to a less dynamic α-helix which prevents β-sheet formation and amyloidogenic aggregation of
Orb2 [76]. This inhibition by anionic membranes is proposed to be a potential mechanism regulating
Orb2 amyloidogenesis in vivo. A similar mechanism has been identified for aggregate formation
of Pmel17, involved in enhancing melanin synthesis [66]. Aggregation of the repeat domain (RPT)
derived from Pmel17 is modulated by lysophospholipid-containing vesicles [77]. The surfactant-like
lysophospholipid is of particular interest due to its high content in melanosomal membranes, and it
has been suggested that protein-lysophospholipid interactions within melanosomes may regulate
functional aggregation of Pmel17 in vivo [77]. TasA, a major matrix protein in biofilms of Bacillus subtilis,
interacts distinctively with bacterial model membranes. In the presence of eukaryotic model membranes
or in the absence of membranes, TasA forms fibers of similar structure and morphology. However,
upon the interaction of TasA with bacterial model membranes, disordered aggregates with a different
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β-sheet signature are formed and bacterial membranes deformed more extensively than eukaryotic
membranes, which could be crucial in providing integrity to biofilms [78]. Of note, regulation of
amyloid formation by membranes must be carefully regulated, as oligomers or aggregates formed on
membranes can cause damage to membranes, which is considered to be a main mechanism of amyloid
toxicity [79].

3.1.2. GAGs

Glycosaminoglycans (GAGs) are long, unbranched polysaccharides consisting of repeating
disaccharide subunits. They exist on the surface of cells or in the extracellular matrix of multicellular
organisms. GAGs, particularly heparan sulfate (HS) and its highly sulfated derivative heparin,
play important roles in protein aggregation, stability and resistance to proteolysis [69]. Pathological
aggregates of Aβ42, tau, α-synuclein and PrP induced by GAGs are implicated in neurodegenerative
diseases [80]. GAGs are also able to reduce the cytotoxicity of a number of amyloid systems by different
mechanisms [81]. GAGs-accelerated aggregation can provide protection against the cytotoxicity of
intermediate oligomers. For instance, heparin enhances the fibrillogenesis of IAPP aggregation
that is associated with type 2 diabetes. Heparin inhibits IAPP cytotoxicity in islet cells, whereas in
GAG-deficient cell lines, IAPP-induced toxicity could not be prevented [82]. Alternatively, protein
interaction with GAGs can increase protein stability and decrease its propensity to aggregate, such as
in the case of PrP [83]. The exact mechanism by which different GAGs influence protein structure and
aggregation, as well as the intercellular spread of these aggregates, remains elusive. Subtle differences
in the GAG backbone structure and charge density significantly alter the properties of the resulting
amyloid fibrils, as was shown for α-synuclein [84]. Distinct fibrils displayed variable levels of
cytotoxicity, but also exhibited an altered ability to internalize into cells [84]. Finally, GAGs can
inhibit the toxicity of protein oligomers by binding the oligomers to the cell surface, and in this
way preventing the interaction of the oligomers with cells, as has been shown for Escherichia coli
HypF (HypF-N) [85]. GAGs can also play a role in enhancing functional protein oligomerization and
aggregation. For example, low molecular weight heparin is able to induce many hormone peptides or
proteins to form amyloid fibrils [7].

3.1.3. Nucleic Acids

Nucleic acids (DNA and RNA) are large polymers of nucleotides with characteristics of polyanions.
Nucleic acids can not only induce and accelerate protein aggregation of e.g., PrP,α-synuclein, amyloid-β
and huntingtin [72], but can also reverse protein aggregation [86]. For example, HIV-1 Gag protein
undergoes nucleic acid-dependent aggregation, and an excess of nucleic acids can promote the
disassembly of the formed aggregates [86]. Additionally, nucleic acid-bound proteins are common
components of membraneless compartments (e.g., nucleoli, germ granules, Cajal bodies, stress granules
(SGs) and P-bodies) that exhibit liquid-like properties [17,87–95]. These cellular compartments are
associated with diverse biological processes, including RNA metabolism, ribosome biogenesis,
DNA damage response and signal transduction [87]. Their components are highly mobile and
can exchange with the surrounding medium rapidly and specifically through protein assembly and
disassembly [96,97].

3.1.4. Polyphosphate (PolyP)

PolyP contains a linear arrangement of inorganic phosphates that are connected via
phosphoanhydride bonds [98]. PolyP has been indicated to exhibit both anti- and pro-aggregation
properties [99]. Specifically, under oxidative stress or heat shock condition, polyP acts as a
protein-stabilizing scaffold that binds to protein unfolding intermediates and stabilizes them in
a soluble β-sheet-rich conformation, which prevents protein aggregation. Once the stress is released,
the polyP-bound proteins are refolded and restored into their native structures. PolyP is able to
enhance both functional amyloid formation (e.g., bacterial CsgA [100]) and disease-related amyloid
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aggregation (e.g., Aβ, α-synuclein and tau), and can also cause morphological changes in mature
fibrils [100,101]. In general, however, amyloid aggregates formed in the presence of polyP are not
cytotoxic, and therefore polyP is proposed as a physiologically relevant modifier in amyloidogenic
processes [99].

3.2. Metal Ions

Metal ions participate in both pathological and functional protein oligomerization and aggregation
via a variety of different mechanisms. Metal ions can (1) bridge two peptides or proteins; (2) change
the overall charge of proteins; (3) induce a conformational change within a protein; (4) induce changes
in fiber morphology [102].

Metal ions, such as Fe3+, Cu2+ and Zn2+, play essential roles in the brain. Toxic exposure of the
brain to metals and/or dyshomeostasis in metal metabolism are associated with protein misfolding and
aggregation in neurodegenerative diseases [103,104]. Specifically, Zn2+ ions accelerate the aggregation
of both Aβ and tau, which are the hallmarks of AD. High concentrations of Zn2+ binding to Aβ

causes an immediate conformational transition to a hydrophobic state which promotes fast protein
aggregation [105]. Zinc ions also enhance tau aggregation and accelerate tau toxicity in neuronal cells
via inducing the formation of intermolecular disulfide bonds [106]. Metal ions are also involved in
regulating functional protein oligomerization and aggregation. For example, Ca2+ binding to the
EF-hand motifs of S100A12 and Zn2+ binding to the dimeric S100A12 interface cooperatively induce a
conformational rearrangement within the protein that leads to protein oligomerization, which plays
a role in responding to inflammation [107,108]. Zinc ions also induce growth hormone aggregation,
which facilitates peptide storage [8]. Potassium channel tetramerization domain containing 1 (KCTD1)
family proteins play a role in regulating different signaling pathways. Copper ions binding to KCTD1
results in increased β-sheet content, promoting amyloid aggregation that is functionally cytotoxic in
initiating apoptosis [109].

3.3. Post-Translational Modifications

Most proteins translated from mRNA are subject to post-translational modifications (PTMs)
before executing their function(s) in different cell types. PTMs play a vital role in generating protein
heterogeneity and utilizing identical proteins for different cellular functions in different cell types. PTMs
such as methylation [110], glycosylation [111], acetylation [112–115], phosphorylation [15,25,116–122]
and cysteine modification [123–130] are major factors in modulating protein self-assembly and
disassembly. Phosphorylation is proposed as a protective mechanism to reduce toxic protein
aggregation [118,120]. For instance, hyperphosphorylation of the C-terminus of TDP-43 favors its
dissociation from aggregation and may facilitate its degradation by UPS [120]. Phosphorylation
and other PTMs are suggested as generic mechanisms to reversibly regulate the aggregation of
proteins containing low complexity regions (LCRs) [15,25]. For example, phosphorylation and
dephosphorylation of the hydrophobic, aggregation-prone LCR region in Cdc19 prevents and enhances
protein aggregation, respectively [25]. Crosstalk between different PTMs provides an additional layer
of regulation of protein aggregation [131–133]. This is illustrated by the fact that phosphorylation
of mutant huntingtin exon1 (Httex1) inhibits protein aggregation, whereas acetylation reverses the
inhibitory effect [132].

Cysteine oxidation is another well-studied PTM, playing a significant role in the regulation of
protein structure, stability, oligomerization and function [123,124,134]. The thiol group of cysteine
is sensitive to redox conversion. Cysteine residues can be reversibly oxidized to a disulfide bond
and to sulfenic acid, or irreversibly oxidized to sulfinic acid and sulfonic acid [135,136]. Sulfenic acid
modification of Cys-111 triggers the formation of nascent superoxide dismutase 1 (SOD1) oligomers,
which induce the fibrillization of both SOD1 and TDP-43 in cells [137]. Sulfonic acid modification of a
single cysteine in FF domain, a conserved domain involved in transcription, RNA splicing and signal
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transduction [138,139], suffices to enhance protein aggregation through destabilization of the native
conformation [124].

Transition between free cysteines and disulfide bonds is the most commonly occurring reversible
redox reaction involving cysteines, and enables the flexible regulation of protein structure and
function [140]. Native disulfide bonds are crucial for protein stability [141], and their disruption
can lead to protein destabilization and aberrant aggregation, as has been described for e.g., SOD1,
amylin and PrP [125,127,142,143]. For example, the disulfide bond in the amylin monomer stabilizes
the N-terminal α-helical structure, which prevents the formation of β-sheet structures [144,145].
The disulfide loop also protects amylin from aggregation through binding to the amyloid-prone regions
of amylin monomers [146]. The removal of disulfide bonds in native amylin oligomers causes structural
changes, decreases polymorphism and induces protein aggregation [125].

Disulfide bond cleavage also enhances functional protein aggregation. An interesting example is
presented by premelanosome protein (PMEL). PMEL forms a disulfide-bonded homodimer which
involves a cysteine-rich Kringle-like domain (KLD). This KLD is required to resolve PMEL dimers
that are formed in the endoplasmic reticulum into monomeric forms within the late Golgi or a
post-Golgi compartment. The cysteine residues within this KLD initiate a disulfide exchange
between intermolecular disulfide bonds (between PMEL monomers) to intramolecular disulfide
bonds (within a PMEL monomer) in an autocatalytic manner [147]. Somatostatin-14 (SST-14) is a
cyclic peptide hormone, and an amyloid structure is implicated in its storage. The disulfide bond
in SST-14 controls the cyclization process and hence its conformational flexibility, which in turn
associates strongly with its aggregation and disaggregation profiles. Native SST-14 aggregation
needs prolonged incubation and the resulting amyloids readily release the monomers. In contrast,
cleavage of the disulfide bond results in noncyclic SST-14, which may lead to increased accessibility
to the aggregation-prone region and heparin-interaction ability. As a result, the self-association
capacity of SST-14 is enhanced, but with a slower monomer releasing potency [126]. These results
also indicate a marked variation in the interpeptide hydrogen bonding network upon cleavage of
the disulfide bridge. Formation of non-native intermolecular disulfide bonds are also associated
with protein aggregation [128,129,148–150]. For instance, upon necroptosis induction, aggregates of
receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) concentrate and phosphorylate MLKL,
inducing structural changes of MLKL and facilitating disulfide bond formation. Disulfide bonds
stabilize the adopted structure and enhance downstream amyloid aggregation of MLKL, which is
functional in necroptosis [13]. Another example is represented by p16INK4A, which forms disulfide
bridged homodimers under mild oxidizing conditions. This dimerization induces conformational
rearrangements and leads to amyloid aggregation. The accumulation of p16INK4A inhibits oncogenic
transformation through regulating cell cycle arrest and senescence [130].

3.4. Emerging Factors Affecting Protein Aggregation

The presence of amyloid aggregates in the acrosomal matrix (AM) contributes to the stability of
the AM core, which plays an important role in sperm-zona pellucida (ZP) interactions. During the
acrosome reaction, the reversal of amyloid aggregates has been suggested to be an integral part of AM
dispersion [42]. Active proteases are suggested to be responsible for subsequent AM disassembly [151].
These results suggest that (glyco)protein assemblies could also function as a surface to stimulate protein
aggregation, possibly by polyanionic interactions.

Additionally, polyphenols can also affect protein aggregation at many levels. Polyphenols in
combination with β-cyclodextrin (β-CD) inhibit and disaggregate α-synuclein aggregation [152].
The protective effect of polyphenols has also been indicated in breaking up the pathological aggregates
formed by Aβ and tau [153]. Hydroxytyrosol is able to inhibit insulin amyloid formation and completely
reverse the toxicity induced by amyloid insulin aggregates in the cell [154]. Therefore, polyphenols
provide a promising approach for targeting neurodegenerative diseases.
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In summary, protein aggregation within cells is a highly complex process that can be affected
by multiple biomolecular factors, but a comprehensive view of how these factors individually and
collectively contribute to this process is lacking. Difficulties to reveal clear mechanisms of the
aggregation-related diseases is one of the reasons for a lack of efficient therapeutic strategies for
these devastating diseases. It has been hypothesized that functional aggregates could be a precursor
of pathological events [3]. Therefore, understanding how functional protein oligomerization and
aggregation is regulated in the cell could be vital for elucidating the molecular and cellular factors
promoting pathological aggregation, and for the design of new therapeutic strategies.

4. Crosstalk between Different Factors Affecting Amyloidogenesis of GAPR-1 and Members of
the CAP Superfamily Proteins

Amyloid-like aggregation of GAPR-1 is mediated by a variety of biomolecular factors [155–157],
as will be discussed below. We suggest that the cysteine-rich secretory proteins, antigen 5 and
pathogenesis-related proteins group 1 (CAP) domain is a structural domain, which can utilize its
amyloidogenic properties to regulate protein–protein interactions of other CAP family members as
well, through distinct and controlled aggregation pathways.

4.1. Amyloid-Like Aggregation of GAPR-1

GAPR-1 functions as a negative regulator of autophagy in mammalian cells [158]. It is associated
with lipid-enriched microdomains at the cytosolic leaflet of Golgi membranes, where it inhibits
autophagy by anchoring the autophagy-inducing protein Beclin 1 to the membrane [158,159]. How can
these cell biological properties relate to the amyloidogenic behavior of GAPR-1? Two distinct
aggregation pathways of GAPR-1 have been described [155–157], and the effects of zinc, copper,
heparin, disulfide bond formation and membranes in these pathways are summarized in Figure 2.

Within each pathway, there are several characteristic elements of functional protein aggregation.
Irrespective of the external trigger, GAPR-1 aggregation proceeds relatively fast, as determined with
ThT fluorescence. This indicates that upon initiation, GAPR-1 exists only for a short time in a native-like
oligomeric state. In the zinc-dependent pathway, GAPR-1 aggregation can be reversed by the depletion
of the metal ion, whereas oxidative conditions promote fast, irreversible aggregation followed by
formation of disulfide-bridged nuclei, resembling the classical nucleated growth mechanism.

The localization of GAPR-1 to lipid-enriched microdomains of the Golgi membrane allows locally
increased concentrations of GAPR-1 and provides additional beneficial conditions for the formation
of oligomeric structures. Tat-Beclin 1, a peptide derived from the evolutionary conserved domain
(ECD) of Beclin 1 with high therapeutic potential, binds to GAPR-1 to release GAPR-1-bound Beclin
1 and to induce autophagy [158]. Interestingly, a similar mechanism was described in neuronal
cells, where Beclin 1 was re-localized to lipid rafts of the plasma membrane by PrP to induce
autophagy in response to Aβ [160]. The interaction between GAPR-1 and Tat-Beclin 1 is proposed
to be tightly associated with the quaternary structure of GAPR-1 [161]. Beclin 1 is known to form
homo-oligomers [162] and its ECD was shown to cluster upon membrane binding, resulting in the
deformation of membrane surface areas [163]. We hypothesize that the interaction between GAPR-1
and Beclin 1 is dependent on their oligomeric/fibrillar states. In this light, the ability of GAPR-1 to
interact with oligomeric Aβ [157] could suggest that GAPR-1 not merely keeps Beclin 1 inactive, but is
capable of interacting with multiple oligomeric structures. In this model, GAPR-1 could function as
a molecular sensor for multiple amyloid oligomers in the cell, assuming this interaction is based on
structural properties. Thus, potentially harmful oligomers could successfully compete with Beclin 1
for an interaction with GAPR-1, resulting in the release of Beclin 1 and the subsequent activation of
autophagy. We envision this mechanism of the cell to clear up potentially harmful oligomers, which
could be a focus of future studies.
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4.2. Potential Regulation of Amyloid-Like Aggregation of CAP Family Members

An analysis of structural determinants for the amyloidogenic propensity of GAPR-1 predicted
amyloid-prone segments in the CAP1 and CAP2 motifs [157]. Due to the high conservation, CAP
proteins from all taxa contain these potentially amyloidogenic segments within these signature motifs.
This opens the possibility that a common function of the CAP domain lies within this structural
property [157]. Several clues in literature provide support for this hypothesis.

Allurin, a truncated CRISP protein from the female tract of Xenopus, functions as a sperm
chemoattractant [164]. Allurin was shown to be present in egg jelly (“egg water”) as stable, SDS-
and 2-mercaptoethanol-resistant multimers [165]. Moreover, the oligomerization of rat CRISP1
was regulated by Zn2+ binding and crucial for its association to spermatozoa during epididymal
maturation [166]. Similar to GAPR-1, human CRISP2 forms ThT-positive structures via interaction with
PI-containing liposomes [157]. Natrin, a CRISP protein from snake venom, modulates inflammation
via inducing the expression of vascular endothelial cell adhesion proteins [167]. This is proposed to
involve heparan sulfate- and Zn2+-dependent dimerization and/or the oligomerization of natrin [167].
For a more extensive discussion, we refer to a recent review [168].
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Figure 2. Hypothetical model for GAPR-1 amyloid-like aggregation. GAPR-1 binding to membranes
undergoes a structural rearrangement and a concentration step, resulting in protein amyloid
fibrillation [157,168]. Both zinc and copper ions binding modulate the quaternary structure of GAPR-1,
shifting native multimers to monomers. Zn2+ induced aggregation pathway is dependent on the
proposed metal binding site within GAPR-1, including His54 and His103, and independent of redox
conditions. Zn2+ modulated GAPR-1 assembly is reversible by chelating zinc ions, which reversibly
regulates the cysteine accessibility in GAPR-1. Disulfide bond formation is crucial for the initiation
of Cu2+ induced aggregation pathway. Cu2+ regulated GAPR-1 self-association is irreversible and
independent of the suggested metal binding site. Heparin acts as a scaffold on which GAPR-1 is
concentrated and oriented to promote protein assembly [155,156].

Protein oligomerization starts with dimerization, and a number of CAP family members possess
this structural property. PR-1-type pathogenesis-related protein (PR-1-5) identified in wheat exists
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primarily as homodimers in vitro, and is resistant to proteases. Interestingly, a PR-1-5 monomeric
mutant revealed a diminished protease resistance [169]. The dimeric PR-1-5 is able to interact with ToxA
and is involved in ToxA-induced necrosis in sensitive wheat [170]. Other CAP family members that were
shown to form dimers include Fpr1 from Fusarium oxysporum [171], and an Ancylostoma-secreted protein
secreted by infective larvae of the human hookworm Necator americanus (Na-ASP-2) [172]). Several other
CAP family members were shown to crystalize as stable dimers (e.g., an Ancylostoma-secreted protein
from Ostertagia ostertagi (Oo-ASP-1) [173], Na-ASP-1 [174], hookworm platelet inhibitor (HPI) [175],
a bacterial CAP superfamily protein (BB0689) [176] and natrin [177]). The crystal structure of a CAP
superfamily protein from fungus (MpPR-1i) revealed a heptameric structure [178].

GAPR-1 is (partially) present as dimers in solution [179] and on Golgi membranes [159] and
crystallizes as a dimer [180]. We recently proposed that the almost continuousβ-sheet in crystallographic
GAPR-1 dimers facilitates GAPR-1 oligomerization [168] (also see Figure 3A). This orientation of
monomers in the dimer suggests that no dramatic structural rearrangements are required, and only
subtle structural changes might be sufficient to allow an extension of the β-sheet structure in an
oligomeric arrangement. Indeed, only minimal structural rearrangements are observed in the GAPR-1
molecule during amyloid-like aggregation [157].
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Figure 3. Tertiary structures of dimeric cysteine-rich secretory proteins, antigen 5 and
pathogenesis-related proteins group 1 (CAP) superfamily proteins. The dimeric tertiary structures of
GAPR-1 (A), Hookworn Paltelet Inhibitor (HPI) (B), Oo-ASP-1 (C), BB0689 (D), Natrin (E), Na-ASP-1
(F), Mg2+-bound Pry1 CAP domain (G) and Zn2+-bound Natrin (H) are presented with one monomer
in dark green and another monomer in orange. β-Sheets are highlighted in light green. Images
were created using 3D view in PDB website (www.rcsb.org) and the following PDB entry files: 1SMB
(GAPR-1); 4TPV (Hookworn Paltelet Inhibitor, HPI); 4G2U (Oo-ASP-1); AD53 (BB0689); 2GIZ (Natrin);
3NT8 (Na-ASP-1), 5JYS (Mg2+-bound Pry1 CAP domain); and 3MZ8 (Zn2+-bound Natrin).

An essential feature of the β-sheet continuation from one monomer to the next monomer is
the antiparallel β-sheet arrangement of β-sheets in each monomer (Figure 3A). This arrangement of
antiparallel β-sheets is present in all CAP family members, as part of the unique α-β-α-fold described in
previously determined structures of the CAP superfamily [181]. Some of the CAP family members that
crystallize as a dimer are shown in Figure 3. From these arrangements, it becomes clear that only some
dimeric CAP family members show the formation of continuous β-sheets, such as the Mg2+-bound CAP
domain of yeast Pry1 (Figure 3G) and the Zn2+-bound natrin dimer (Figure 3H) [167,182]. However,
several other CAP family members do not form a continuous β-sheet in crystallographic dimers
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(Figure 3B–F). Nevertheless, in all cases, the β-sheets are readily exposed to the surface, and the
formation of alternative dimeric arrangements could allow the formation of continuous β-sheets
in dimeric/oligomeric structures. Thus, the formation of amyloid-like oligomeric structures would
not depend so much on structural rearrangements in individual monomers (as indeed observed
for GAPR-1), but rather depend on the formation of dimer structures with a continuous β-sheet
arrangement. In this respect, it is interesting to note that GAPR-1 can form a different dimeric structure
in the presence of IP6 [183].

Dimer formation may also induce different types of amyloid-like aggregation pathways. Indeed,
the amyloid-like aggregation of GAPR-1 is controlled by the redox state and by different types of
metal ions, allowing the control of different types of aggregation pathways (Figure 2), as visualized by
electron microscopy [155].

Cysteine oxidation of monomeric GAPR-1 enhances the exposure of C-terminal aggregation-prone
regions (APRs), which in turn accelerates GAPR-1 aggregation under oxidative conditions [155].
Whether the disulfide bond in the copper-induced aggregation pathway is formed intra- or
inter-molecularly needs to be further explored. Different from GAPR-1, the majority of CAP superfamily
members are secreted and contain significantly more cysteine residues, most of which are present in
disulfide bonds. Disulfide bridges are responsible for protein stability in the extracellular environment,
which is highly relevant for many CAP superfamily members. Specifically, disulfide bridges contribute
strongly to the high thermal, pH, and proteolytic stability of PR-1-like proteins [184]. The absence
of disulfide bridges in PR-1-like proteins in Fusarium oxysporum is proposed to render them more
accessible to cleavage by host proteases, which may allow these types of fungi to evade detection by
the plant immune system [171]. Moreover, Oo-ASP-1 from Ostertagia ostertagi forms inter-molecular
disulfide-bond dependent dimers. The disulfide bond is important for both tertiary and quaternary
structures of Oo-ASP-1, and is also suggested to be vital for proteolytic stability [173]. These evidences
suggest that disulfide bonds and/or disulfide bridged oligomerization play crucial roles in the protein
structural stability of CAP superfamily members, and in the regulation of their protein function.

Zinc and copper homeostasis can be a major factor in regulating distinct GAPR-1 aggregation
pathways [155,156]. Zinc and copper are the second and third most abundant transition metals in
organisms, respectively [185]. The amount of zinc and copper ions in cells (0.3–20 mM Zn2+, depending
on cell type; <10−18 M Cu2+) and in blood (12–16 µM Zn2+; 10–22 µM Cu2+) is strictly maintained at
low concentrations and most of it is associated with proteins [186–188]. Altered GAPR-1 aggregation
is observed when copper ions are chelated by the addition of EDTA after a nucleation step in the
presence of heparin and 20–100 µM copper [155]. This indicates that excess copper binds to GAPR-1
non-specifically, and that specific protein structural reorientations occur at low copper concentrations.

High concentrations of zinc are present in several organs and cell types, such as in the brain (up
to 150 mM) [189], the mammalian testis, the epididymis, and in the prostate (1–2.5 mM) [186,190–193].
Zinc ions are widely associated with the reproductive process, including spermatogenesis, sperm
maturation, capacitation, acrosome reaction, conception and embryonic implantation [194–197].
Cysteine-rich secretory protein 1 (CRISP1) is a member of the CAP superfamily; it is expressed in
the epididymis and cumulus cells, and it plays multifunctional roles in spermatozoa maturation,
capacitation, sperm-oocyte interaction and acrosome reaction [198–204]. Rat CRISP1 has been shown
to oligomerize in the presence of 0.5–2 mM zinc ions in vitro, and these oligomers play a role in rat
sperm maturation [166]. Our in vitro study shows that human CRISP1 is able to form high molecular
weight structures in the presence of physiologically relevant zinc concentrations (0.3–1 mM), and that
the oligomers are dissolved upon the removal of zinc ions (data not published). This indicates that,
under physiological conditions, CRISP1 may exhibit its functions in fertilization through zinc regulated
protein assembly and disassembly.

High expression levels of amyloidogenic proteins are also a key factor in amyloid formation [32]
and CAP superfamily members are often found to be up-regulated under specific conditions.
GAPR-1 is highly expressed in immune-related cells and tissues (e.g., monocytes, leukocytes, lung,
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spleen and embryonic tissue), and enriched in the lumen of the extracellular vesicles secreted from
prostate cells [159,205]. GAPR-1 is also enriched during neonatally induced neurodegeneration in
rat hippocampus [206]. Our combined results open the possibility that GAPR-1 oligomerization and
aggregation may play a functional role in immunology, fertilization and autophagy. On the other
hand, the level of oligomeric precursors of functional aggregates must be tightly regulated because
the presence of high concentrations of amyloidogenic precursor could result in cellular disorders [32].
The expression level of GAPR-1 is significantly enhanced in the epithelial cells of fibrotic kidney [207].
These observations indicate that changes in GAPR-1 expression level are associated with regulating its
biological function, which is one of the potential mechanisms to control functional aggregation. Many
members of the PR-1 subfamily are up-regulated in the infected tissue [208,209]. At the structural level,
PR-1 proteins contain a CAP domain with only short N- and C-terminal extensions, indicating that the
properties of the CAP domain (e.g., oligomerization) determine the function of PR-1 proteins in plants.
Dimerization has been shown to enhance the resistance of PR-1-5 to proteolytic attack, which may be
involved in protease-mediated programmed cell death pathways in plants [169]. Moreover, CRISP3 is
expressed at low levels in the normal prostate and is highly up-regulated in the cancerous prostate [210].
In contrast, glioma pathogenesis-related protein 1 (GLIPR1) is down-regulated in prostate cancer,
while forced GLIPR1 overexpression is pro-apoptotic in prostate cancer cells and is suggested as a
prostate-cancer therapy [211]. Altogether, these observations indicate that regulating the expression
level of CAP superfamily members is a widely applied mechanism for regulating protein function.
Whether these examples are related to the aggregation-related properties of CAP superfamily members
remains to be investigated.
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Abbreviations

GAGs glycosaminoglycans
PTMs post-translational modifications
HSPs heat shock proteins
polyP polyphosphate
PMEL pre-melanosomal protein
PG-1 protegrin-1
CRESs cystatin-related epididymal spermatogenic proteins
PLD prion-like domain
A-bodies amyloid bodies
P-bodies processing bodies
HSGs heat-shock granules
SGs stress granules
GH growth hormone
AM acrosomal matrix
USP ubiquitin-proteasome system
RPT repeat domain
HS heparan sulfate
IAPP islet amyloid polypeptide
AD Alzheimer’s disease
PD Parkinson’s disease
ALS amyotrophic lateral sclerosis
HypF-N Escherichia coli HypF
KCTD1 potassium channel tetramerization domain containing 1
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LCR low complexity region
Httex1 phosphorylation of mutant huntingtin exon1
SOD1 superoxide dismutase 1
PrP prion protein
KLD Kringle-like domain
SST-14 somatostatin-14
RIPK1 receptor-interacting protein kinase 1
MLKL mixed-lineage kinase domain-like protein
ZP sperm-zona pellucida
β-CD β-cyclodextrin
GAPR-1 golgi-associated pathogenesis-related protein 1
CRISP 1 cysteine-rich secretory protein 1
ECD evolutionary conserved domain
CAP cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1
APRs aggregation-prone regions
PR-1 pathogenesis related protein 1
GLIPR1 glioma pathogenesis-related protein 1
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