
Algebraic equations of state for the liquid crystalline
phase behavior of hard rods

V. F. D. Peters,1 M. Vis,1, 2 H. H. Wensink,3 and R. Tuinier1, 4, ∗

1Laboratory of Physical Chemistry, Department of Chemical
Engineering and Chemistry & Institute for Complex Molecular Systems,

Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
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Based on simplifications of previous numerical calculations [Graf and Löwen, Phys. Rev. E 59,
1932 (1999)], we propose algebraic free energy expressions for the smectic-A liquid crystal phase and
the crystal phases of hard spherocylinders. Quantitative agreement with simulations is found for the
resulting equations of state. The free energy expressions can be used to straightforwardly compute
the full phase behavior for all aspect ratios and to provide a suitable benchmark for exploring how
attractive interrod interactions mediate the phase stability through perturbation approaches such
as free-volume or van der Waals theory.

I. INTRODUCTION

Viruses often have rod-like shapes and can display a
variety of lyotropic liquid crystal phases, as found from
studies on dispersions of tobacco mosaic virus [1] or the
bacteriophage feline distemper [2]. Similar liquid crystal
phases have been studied in synthetic systems of rod-like
boehmite or silica colloidal dispersions [3, 4]. To under-
stand the role of particle shape and configurational en-
tropy on the stability of these colloidal phases, it is useful
to examine a system of hard-core particles, where vol-
ume exclusion between the cores prohibits particle over-
lap without the presence of additional soft interactions.

For monodisperse hard spherocylinders Monte Carlo
simulations have revealed the emergence of isotropic, ne-
matic, smectic-A and crystal phases as the concentra-
tion is increased (see Figure 1) [5–7]. In the isotropic
and nematic phases the particles can freely move in all
directions, while there is a preferred orientation of the
particles in the nematic phase [8]. The smectic-A phase
consists of particles that are roughly confined in layers
wherein the rods are aligned normal to the layer and dif-
fuse laterally thus displaying the behavior of a crowded
liquid. The crystal phases are characterized by a sim-
ilar lamellar organization but with the rods exhibiting
long-ranged hexagonal order across the layer. In the
AAA crystal phase rods are stacked directly on top of
each other, while for the ABC crystal they are stacked
in between the rods of the adjacent layers. The stacking
in the ABC crystal is therefore equivalent to that of an
FCC crystal. For relatively short rods the nematic, the
smectic-A, and AAA phases become metastable. Other
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FIG. 1. Schematic images of the isotropic (I), nematic (N),
smectic-A (SmA), AAA crystal, and ABC crystal phase states
of hard spherocylinder suspensions.

liquid crystal phases such as the smectic-B and colum-
nar phases have been reported experimentally and their
stability is attributed to additional interactions, polydis-
persity or semiflexibility [2, 4, 9–13].

While significant progress has been made on develop-
ing predictive theories for the isotropic and nematic fluid
stability, an accurate thermodynamic description of the
SmA and crystal phases remains a challenging problem.
[14]. Density functional theory [15–19] has proven a pow-
erful but technically involved theoretical framework pro-
viding good agreement with simulation results for the
isotropic–nematic and nematic–smectic-A phase transi-
tions. As a much simpler alternative to density func-
tional theory, extended cell theory provides reasonable
agreement for the full phase behavior of short rods in-
volving crystal phases [20]. Nonetheless, both theoreti-
cal methods rely heavily on non-analytical expressions of
the excess free energy, which have to be evaluated nu-
merically.

For the columnar liquid crystal phase of colloidal
platelets an analytical scaling expression for the free en-
ergy was obtained from an extended cell theory [21, 22]
and the predicted phase behavior was found to agree
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well with computer simulation results. This expression
also enabled the use of free volume theory to determine
the phase behavior of mixtures of suspensions containing
plates and non-adsorbing polymers [23]. Inspired by this
approach, we aim to seek analytical free energy expres-
sions for the smectic-A and crystal phases of rods from an
extended cell theory and map out the complete phase di-
agram of rod suspensions. This approach, being entirely
algebraic, considerably reduces the complexity and com-
putational cost involved in determining the smectic-A,
AAA, and ABC equations of state and associated crystal
spacing. Our algebraic theory provides a suitable start-
ing point towards more extended approaches based on
perturbation or free volume theories, aimed at incorpo-
rating soft rod interactions [24, 25], depletion effects [26]
and particle semiflexibility [27].

II. THEORY

A. Formulation of the free energy of hard
spherocylinders

Onsager’s treatment of the entropy of anisotropic
(hard) particle dispersions is the foundation of numer-
ous theories for liquid crystal phases [28]. Based on his
definition, the Helmholtz free energy F of a system of
hard spherocylinders with length L and diameter D can
be written in terms of the following entropic contribu-
tions [28]:

f =
Fv0

V kBT
= fid + for + fpack. (1)

Here v0 = πD3/6+πD2L/4 is the spherocylinder volume,
V the system volume, kB Boltzmann’s constant, and T
temperature.

The ideal free energy fid is given by fid =
η ln (ηΛ3/v0)− η, with Λ the de Broglie wavelength and
η = v0ρ the rod volume fraction with ρ the number den-
sity of rods. The orientational free energy for is deter-
mined by the orientational entropy, while the packing
free energy fpack depends on the translational entropy
the rods experience. Both depend on the probability of
the particle to adopt a certain orientation, described by
the orientational distribution function ψ(Ω) with Ω the
solid angle. The function ψ(Ω) is normalized as follows:∫

ψ(Ω)dΩ = 1. (2)

Since for an isotropic phase all orientations are equally
probable, the orientational distribution function is a con-
stant: ψ = 1/(4π). For ordered phases, the rods have a
preferred direction and ψ(Ω) can be found by a func-
tional minimization of the total free energy with respect
to ψ(Ω) or algebraically through the use of a trial func-
tion that depends on a single variational parameter. The

orientational free energy for per particle is related to
ψ(Ω) by the following expression [28]:

for

η
=

∫
ψ(Ω) ln [4πψ(Ω)]dΩ, (3)

which for an isotropic phase leads to for = 0. The ap-
proach to obtain the packing free energy fpack depends
on the phase state, as detailed in the following sections.

B. Isotropic and nematic phase

The free energy of the fluid phases without long-ranged
positional order, the isotropic and nematic phases, was
described by Onsager up to the second virial term, which
is proportional to the orientationally averaged excluded
volume [28]. This gives an exact solution for rod dis-
persions in the limit of infinitely long and thin rods
(L/D → ∞). At finite L/D rods are commonly rep-
resented as spherocylinders, i.e. cylinders equipped with
a hemispherical endcap at either tip, for which higher-
order virial terms need to be somehow included. This
can be done using the approximate Scaled Particle The-
ory (SPT) or Parsons–Lee (PL) equations of state, which
provide reasonably accurate approximations of fpack [29–
32]. The SPT and PL expressions of fpack are respec-
tively [29–32]:

fpack,SPT

η
= − ln (1− η) + a

η

1− η
+

1

2
b

η2

(1− η)2
, (4)

and

fpack,PL

η
=

4η − 3η2

4(1− η)2

(
4 + z

3(Γ− 1)2

3Γ− 1

)
, (5)

with

a = 3 + z
3(Γ− 1)2

3Γ− 1
,

b =
12Γ(2Γ− 1)

(3Γ− 1)2
+ z

12Γ(Γ− 1)2

(3Γ− 1)2
,

z =
4

π

∫ ∫
ψ(Ω)ψ(Ω′)| sin γ|dΩdΩ′.

Here Γ = L/D + 1 and γ is the angle between two sphe-
rocylinders with solid angles Ω and Ω′.

For an isotropic phase z reduces to 1, while for the
nematic phase it is more complex and an expression for
ψ(Ω) is required. Minimization of the free energy can be
done numerically [33, 34] or using a trial function which
enables an analytical solution. While an accurate trial
function has been proposed by Onsager in his original
paper [24, 28], we will use the simpler Gaussian distri-
bution introduced by Odijk following from the limit of
strongly aligned rods (large κ) [35, 36]:

ψ(θ) ≈

{
(κ/4π) exp [− (1/2)κθ2] 0 ≤ θ ≤ π/2,
(κ/4π) exp [− (1/2)κ(π − θ)2] π/2 ≤ θ ≤ π,

(6)
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where θ is the polar angle with respect to the director of
the nematic phase and the parameter κ, related to the
width of the distribution, is found from the leading order
asymptotic expressions for the orientational averages in
for and fpack and subsequent minimization ∂f/∂κ = 0.
This leads to the following expressions:

for

η
≈ lnκ− 1, (7)

z ≈ 4√
πκ
, (8)

κSPT ≈
9(Γ− 1)4

4π(3Γ− 1)2

(
4η

1− η
+

8Γ

3Γ− 1

η2

(1− η)2

)2

, (9)

κPL ≈
9(Γ− 1)4

4π(3Γ− 1)2

(4η − 3η2)2

(1− η)4
. (10)

To partially correct for the approximate nature of the
Gaussian ψ(θ) a value of −0.139 is added to f/η for the
nematic phase to improve the comparison with simula-
tion results [37]. This value is the free energy difference
in the Onsager limit (L/D → ∞) between the Gaussian
approximation and the exact numerical result [38]. The
total free energy expression of the isotropic and nematic
phase thus becomes [37]:

fI = fid + fpack, (11)

fN = fid + for + fpack − 0.139η. (12)

Upon comparing the resulting osmotic pressure and
phase behavior with simulation results [6, 7], we found
that the SPT approximation is the most accurate for long
rods (Onsager limit), while the PL approximation is the
most accurate for short rods (sphere limit). Therefore we
have used the following interpolation ansatz:

fI/N = gfI/N,SPT + (1− g)fI/N,PL, (13)

with the sigmoidal function:

g =
1

1 + eΓt−Γ
, (14)

where Γt = 6 represents the typical transition value con-
necting the Onsager limit (Γ→∞) and the sphere limit
(Γ→ 1).

C. Smectic-A Phase

Graf and Löwen [20] numerically solved an extended
cell theory model for the smectic-A phase. In their model,
spherocylinders are assumed to be confined in discrete
layers with spacing ∆⊥ while the particles can freely
move within these layers. The free energy of the smectic-
A phase is split into the following terms:

fSmA = fid + for + fpack, (15)

= for + f‖ + f⊥, (16)

where f‖ is the free energy related to the fluid-like behav-
ior in the two dimensions parallel to the layers and f⊥
is the free energy related to the positional order in the
dimension orthogonal to the layers. We first consider f‖
and f⊥ separately after which we minimize the total free
energy with respect to ψ(Ω) and the layer spacing ∆⊥.

In the case of perfectly aligned rods, the equation of
state of a 2D fluid of hard discs with diameterD describes
the pressure Π2D in the dimensions parallel to the layers.
While there is no exact expression for this fluid phase,
there are accurate approximations for the entire concen-
tration range [39]. The following simple scaled particle
theory result is used [40]:

Π2D

ρ2DkBT
=

1

(1− η2D)
2 . (17)

where η2D = a0ρ2D is the area fraction of spherocylin-
ders with ρ2D the number of particles per unit area in
a smectic layer and a0 = πD2/4 the particle area. This
expression is accurate up to η2D ≈ 0.7, close to the fluid–
solid transition of hard discs, where the compressibility
from SPT only deviates less than 3% from simulation
results [41]. The area fraction is related to the volume
fraction η in the following way:

η =
v0

a0

η2D

∆⊥
=

3Γ− 1

3∆̄⊥
η2D, (18)

where ∆̄⊥ = ∆⊥/D and Γ = L/D+ 1. This leads to the
following free energy f‖ for perfectly aligned spherocylin-
ders:

f‖,al

η
= ln

(
η2DΛ2

a0

)
− 1− ln (1− η2D) +

η2D

1− η2D
. (19)

Upon accounting for rotations of the rods, the excluded
area projected by a single rod should increase. We define
aeff as the effective projected lateral area occupied by
each spherocylinder within the layer. The size Deff could
be interpreted as the orientationally averaged minimal
(i.e. at particle contact) center-of-mass distance between
spherocylinders. Previously, a definition based on the
orientationally averaged width of a spherocylinder in the
plane of the layers was used [20]:

Deff

D
= D̄eff = 1 + (Γ− 1)

∫
ψ(Ω)|Ω ·Ωθ=π/2|dΩ. (20)

Here |Ω · Ωθ=π/2| is the dot product of the solid angles
Ω and Ωθ=π/2, where θ is the polar angle with respect to
the director of the smectic-A phase. However, this defi-
nition does not take into account configurations of other
spherocylinders and thus overestimates D̄eff . The result-
ing overestimated loss of entropy and other discrepancies
were corrected by adding a (negative) free energy term
based on comparisons with simulation results [7].

A similar problem appears for the columnar phase of
plates upon quantifying an effective length L̄eff of the
plates confined in hexagonal tubes [21, 22]. Likewise a
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single particle integral was used, but to compensate for
the other particles and the averaging over the azimuthal
angle a prefactor ‘1/2’ was introduced in front of the inte-
gral. The benefit of adding a correction in the definition
of L̄eff or D̄eff opposed to the addition of a free energy
term is that it leads to more realistic values for ψ(Ω) and
for that are comparable to those for the nematic phase.

Thus, we choose to rescale the integral from Eq. 20
by a factor A leading to the following definition of the
effective rod diameter D̄eff :

D̄eff ≈ 1 +A(Γ− 1)

∫
ψ(Ω)| sin(θ)|dΩ, (21)

where A was chosen such as to fit the resulting equations
of state and nematic–smectic-A phase transitions to those
obtained from computer simulations [6, 7]. This means
the factor A varies depending on whether the equations of
state for the nematic phase is based on SPT (A = 0.41η)
or PL (A = 0.28η) and hence we have used the interpo-
lation A = 0.41ηh with h = g + (1− g)0.28/0.41. As the
smectic-A phase is expected to be the preferred phase
state near η ∼ 0.4− 0.6, A attains values near 0.1− 0.2,
which is significantly smaller than the factor A = 1/2
proposed for plates. The difference may be related to the
additional degree of freedom within the confined layers
as opposed to the confined hexagonal tubes leading to a
relatively larger number of configurations of the particles
at shorter distances. Unrelated discrepancies in the free
energy from for instance the penetration of rods in other
layers would also influence the value of A. Addition-
ally, it was found that instead of taking A as a constant
the inclusion of linear η-dependence led to an improve-
ment especially when comparing the resulting equations
of state with computer simulation results. The free en-
ergy of a system of effective 2D discs can be obtained
from Eq. 19 by substituting a0 with aeff and η2D with
η2Daeff/a0 = η2DD̄

2
eff [20]:

f‖

η
= ln

(
η2DΛ2

a0

)
− 1

− ln
(
1− η2DD̄

2
eff

)
+

η2DD̄
2
eff

1− η2DD̄2
eff

.

(22)

For the dimension orthogonal to the layers, we consider
a 1D lattice with a lattice spacing ∆⊥. From cell theory
[42] it follows that the free energy is related to the free
space available to the rod. As the rod is confined in
a cell of length ∆⊥, the free space is simply given by
∆⊥−L−D. The free energy in the dimension orthogonal
to the layers thus becomes [20]:

f⊥
η

= ln
Λ

D
− ln

(
∆̄⊥ − Γ

)
. (23)

The total free energy expression can now be obtained
from Eq. 16. Recalling the different entropic contribu-
tions in Eq. 15 we write the packing free energy as fol-

lows:

fpack

η
= − ln

(
1− η2DD̄

2
eff

)
+

η2DD̄
2
eff

1− η2DD̄2
eff

− ln
(
1− Γ/∆̄⊥

)
.

(24)

Now for, D̄eff , and ∆̄⊥ can be determined by simulta-
neously minimizing the total free energy with respect to
ψ(Ω) and ∆̄⊥.

Free energy minimization

Given that the free energy only depends on single par-
ticle orientational integrations, it is possible to carry out
the minimization with respect to ψ(Ω) analytically. The
minimization equation reads as follows:

A(Γ− 1)

[
4η2DD̄eff(

1− η2DD̄2
eff

) +
2η2

2DD̄
3
eff

(1− η2DD̄2
eff)2

]
| sin θ|

+ log [4πψ(θ)]− λ = 0,

(25)

where λ is the Lagrange multiplier ensuring the normal-
ization of ψ(θ) (cf. Eq. 2). This leads to the follow-
ing expression for the orientational distribution function
ψ(θ):

ψ(θ) = Z−1 exp [−κ| sin θ|], (26)

with

κ = A(Γ− 1)

[
4η2DD̄eff(

1− η2DD̄2
eff

) +
2η2

2DD̄
3
eff

(1− η2DD̄2
eff)2

]
, (27)

and

Z =

∫
exp [−κ| sin θ|]dΩ. (28)

Similar to the nematic phase, the spherocylinders are
strongly aligned so that κ � 1. Therefore, we again
retain only the leading order contribution for κ � 1,
which is an exponential distribution:

ψ(θ) ≈

{(
κ2/4π

)
exp (−κθ) 0 ≤ θ ≤ π/2,(

κ2/4π
)

exp (−κ(π − θ)) π/2 ≤ θ ≤ π.
(29)

This leads to

D̄eff ≈ 1 +A(Γ− 1)
2

κ
= 1 + ξ, (30)

for

η
≈ 2 lnκ− 2, (31)

where ξ can be interpreted as the effective increase in
diameter. It should be noted that for a columnar phase
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of platelets with an effective length L̄eff the same form of
Eqs. 29–31 was obtained [21, 22].

The value of ξ can be found by inserting Eq. 30 into
Eq. 27:

2

ξ
=

κ

A(Γ− 1)

=
4η2D(1 + ξ)

1− η2D(1 + ξ)2
+

2η2
2D(1 + ξ)3

[1− η2D(1 + ξ)2]
2 .

(32)

It follows that ξ and thus D̄eff are only a function of η2D,
so fpack does not depend on A. Instead, the parameter A
is only important for for/η through the term 2 lnA. Thus
adjusting A to correct the free energy is essentially equiv-
alent to adding an extra free energy term as in previous
work [20].

To solve Eq. 32 we multiply both sides with [1−η2D(1+
ξ)2]2 and take the leading order expression for ξ � 1:

κ ≈ 2A(Γ− 1)
6η2D − 5η2

2D

(1− η2D)2
. (33)

Interestingly, it hardly matters whether one takes Eq. 29
or the same trial function as for the nematic phase (Eq.
6); D̄eff and fpack have equal results and for/η is only
increased by the additional term 1 − ln (8/π), which is
a few percent at most for small L/D. Similarly, mini-
mizing the free energy of the nematic phase using Eq.
29 results in a similar expression for fpack and increases
for/η with a similar magnitude by the additional term
2 ln (15

√
π/16) − 1. The difference between the use of a

Gaussian or exponential distribution for the orientational
distribution function ψ(θ) for these liquid crystal phases
is therefore almost negligible.

Since η2D is a function of ∆̄⊥, a minimization of the
free energy with respect to ∆̄⊥ also requires simplifica-
tions in order to maintain tractable analytical expres-
sions. It is convenient to first use η2D = ζ∆̄⊥/Γ, with ζ
defined by:

ζ =
3Γ

3Γ− 1
η. (34)

Minimizing the free energy with respect to ∆̄⊥/Γ
and taking the leading order contribution in the limit
∆̄⊥/Γ→ 1 gives:

∆̄⊥
Γ

= 1 +
(6− 5ζ)(1− ζ)2(1− 27ζ + 41ζ2 − 16ζ3)2∑9

i=0 kiζ
i

,

(35)
where the values of the constants ki are listed in Table I
and a full derivation is given in Appendix A.

D. AAA crystal phase

The free energy of the AAA crystal phase can also be
described by a cell theory model similar to the numeri-
cal solution of Graf and Löwen [20]. Here each sphero-
cylinder is confined in a discrete hexagonal prism with

TABLE I. Values for ki in Eqs. 35 and C3

.

k0 12 k4 -288,904 k8 -105,024

k1 -385 k5 534,956 k9 14,080

k2 -4,980 k6 -553,098

k3 75,048 k7 328,296

a cross-sectional area of
√

3∆2
‖/2 and height ∆⊥. The

height of these prisms ∆⊥ is similar to the lattice spac-
ing used for the smectic-A phase. The hexagonal prism
is the Wigner–Seitz cell [43] of perfectly aligned sphero-
cylinders in an AAA crystal. It follows that the volume
of this cell equals the available volume per particle 1/ρ:

1

ρ
=

√
3∆2
‖∆⊥

2
. (36)

The close-packed volume fraction of an AAA crystal,
where ∆‖ → D and ∆⊥ → L+D is thus:

ηcp,AAA =
π (3Γ− 1)

6
√

3Γ
, (37)

and it follows that

∆̄⊥ =
xΓ

∆̄2
‖
, (38)

where x = ηcp,AAA/η and ∆̄i = ∆i/D. For aligned sphe-
rocylinders the free volume in this cell is given by:

Vfree,al =

√
3
(
∆‖ −D

)2
(∆⊥ − L−D)

2
. (39)

This leads to the following free energy for aligned sphe-
rocylinders:

fAAA,al

η
= ln

Λ3

v0
− ln

6
√

3

π (3Γ− 1)

− ln
(
∆̄‖ − 1

)2 − ln
(
∆̄⊥ − Γ

)
,

(40)

or using Eqs. 37 and 38:

fAAA,al

η
= ln

Λ3

v0
+ ln ηcp,AAA

− ln
(
∆̄‖ − 1

)2 − ln

(
x

∆̄2
‖
− 1

)
.

(41)

This free energy represents the free energy of a 2D
lattice of discs combined with that of a 1D lattice, rep-
resenting the projections perpendicular and parallel re-
spectively to the (fixed) direction of each rod. To remain
consistent with the treatment of the smectic-A phase, the
effect of weak orientational fluctuations of the rods is es-
timated by substituting the free energy of the lattice of
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FIG. 2. Two types of free area in a 2D hexagonal crystal are
indicated for the central particle. The yellow area denotes the
free area the particle has when confined within the Wigner–
Seitz cell, which is indicated by the solid lines. The red and
yellow area combined denote the free area the particle has
within the confinement of the neigboring particles.

2D discs with that of effective 2D discs with diameter
Deff as described in Eq. 21:

fAAA

η
= for + ln

Λ3

v0
+ ln ηcp,AAA

− ln
(
∆̄‖ − D̄eff

)2 − ln

(
x

∆̄2
‖
− 1

)
,

(42)

where the parameter A = 0.225ηh in the definition of
Deff was chosen based on comparison with simulation re-
sults for the equations of state and the AAA–ABC phase
transition [6, 7]. The dependence of the parameter A on
the volume fraction η again leads to an improvement in
the comparison with the equations of state from the sim-
ulations. This value of A is however significantly lower
than for the smectic-A phase and this is most likely due
to an underestimation of the free volume from neglecting
the penetration of rods into neighboring cells.

We should note that the expressions for the free en-
ergy of disks in a 2D fluid or lattice lead to a significant
deviation on the fluid–solid phase transition observed in
computer simulations [44, 45]. Better agreement is ob-
tained by using a free energy for the 2D lattice based on
the free area of a particle confined by their neighboring
particles which are fixed on their average position [45, 46].
To illustrate the difference in free area with confining the
particle into a Wigner–Seitz cell, an example is given in
Figure 2. The shape of the free area resembles a hexagon
in both cases, but the length scale of this hexagon differs
by a factor 2 and thus the area by a factor ∼ 4. This

leads to an extra constant term − ln 4 to the free energy
per particle f/η. Using a similar approach for the free
length of a 1D lattice f/η would decrease by − ln 2. In
the case of the smectic-A and AAA phase this would lead
to an extra constant term − ln k with k = 2 and k = 8
respectively. This extra term was absorbed in the correc-
tion by the parameter A, but when we decouple A and
k for the smectic-A and AAA phase, we would obtain
A = 0.58ηh and A = 0.64ηh, respectively. The difference
in the parameter A is thus much smaller when the factor
k is considered. For simplicity we have however only in-
cluded parameter A in our expressions as the free energy
is equivalent and the factor k can only be approximated.

Free energy minimization

The free energy of Eq. 42 is minimized with respect to
ψ(Ω) under the normalization constraint and leads to:

2A (Γ− 1)

∆̄‖ − D̄eff
| sin θ|+ log [4πψ(θ)]− λ = 0. (43)

By defining a parameter κ as:

κ =
2A (Γ− 1)

∆̄‖ − D̄eff
, (44)

the resulting ψ(θ), D̄eff , and for can be approximated for
κ � 1 similar to Eqs. 29, 30, and 31. This means that
also for the AAA phase the parameter A is only affecting
the contribution 2 lnA but not D̄eff . The parameter κ is
found analytically from solving Eq. 44 using Eq. 30:

κ =
4A (Γ− 1)

∆̄‖ − 1
. (45)

Minimizing the free energy of Eq. 42 with respect to ∆̄‖
provides the following analytical solution for ∆̄‖:

∆̄‖ =
61/3x+

(
9x+ x

√
3 (27− 2x)

)2/3

62/3
(

9x+ x
√

3 (27− 2x)
)1/3

. (46)

In the close-packed limit (x = 1) this expression reduces
to ∆̄‖ = 1 as expected. From Eq. 38 the value of ∆̄⊥ can
also be obtained. Note that for aligned spherocylinders
the expressions ∆̄‖ = x1/3 and ∆̄⊥ = Γx1/3 are obtained.
This result was used by Graf and Löwen [20] instead of
the free energy minimization with respect to the lattice
constants.

E. ABC crystal phase

To describe the free energy of the ABC crystal Graf
and Löwen also used cell theory [20]. Here, the free vol-
ume is assumed to be shaped as a rhombic dodecahe-
dron analogous to the corresponding fcc crystal of hard
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spheres. In making this assumption the distances be-
tween the particles are fixed in a position that does not
necessarily correspond to the free energy minimum. Thus
we base our approach on the cell theory result of Tay-
lor et al. for aligned spherocylinders [47]. In this the-
ory each spherocylinder is confined to a discrete hexag-
onal tube with a cross-sectional area of

√
3∆2
‖/2 and

height ∆⊥. The ends of the tube are capped with hemi-
dodecahedrons of total volume

√
2∆3
‖/2. The shape of

these caps is based on the shape of the Wigner–Seitz cell
of an fcc crystal for spheres, which is a rhombic dodec-
ahedron. The cell is similar to that of the AAA crystal
except at the ends. The height ∆⊥ of the hexagonal tube
is therefore smaller than ∆⊥ for the AAA or smectic-A
phase. As these cells should be close-packed and space-
filling, the total volume of the cell is equal to 1/ρ :

1

ρ
= ∆2

‖,al

√
3∆⊥,al +

√
2∆‖,al

2
. (47)

In the limit of ∆‖,al → D and ∆⊥,al → L this leads to
close-packing of hard spherocylinders:

ηcp =
π (3Γ− 1)

6
(√

3 (Γ− 1) +
√

2
) . (48)

The expression for ∆̄⊥,al can be written as:

∆̄⊥,al =
xal

∆̄2
‖,al

(
(Γ− 1) +

√
2√
3

)
−
√

2∆̄‖,al√
3

, (49)

where xal = ηcp/η. The free volume of the aligned sphe-
rocylinders inside this cell is given by:

Vfree,al =(
∆‖,al −D

)2 √3 (∆⊥,al − L) +
√

2
(
∆‖,al −D

)
2

.
(50)

The free energy then becomes:

fABC,al

η
= ln

Λ3

v0
− ln

6
√

3

π (3Γ− 1)
− ln

(
∆̄‖,al − 1

)2
− ln

((
∆̄⊥,al − (Γ− 1)

)
+

√
2√
3

(
∆̄‖,al − 1

))
.

(51)

Using Eqs. 48 and 49 this can be rewritten as:

fABC,al

η
= ln

Λ3

v0
+ ln ηcp

− ln
(
∆̄‖,al − 1

)2 − ln

(
xal

∆̄2
‖,al

− 1

)
.

(52)

Notice the strong similarity with Eq. 41, where the only
difference is in the close-packed volume fraction.

To include orientational fluctuations a similar ap-
proach can again be used by replacing the free energy

of a 2D disc hexagonal crystal with that of an effec-
tive 2D disc with diameter Deff . The subsequent free
energy minimization is the same as for the AAA crys-
tal with the only difference being the filling fraction at
close-packing. While this suffices to reproduce the equa-
tion of state and the phase coexistence curves obtained
from computer simulations [6, 7], the agreement could
be improved even further. For the previously discussed
phases discrepancies in the free volume were corrected
by the parameter A (or k), but for the ABC phase the
discrepancy in the tube free volume and the end caps
is not necessarily the same and thus a single parameter
might be insufficient. Instead we assume the free volume
to take the following form:

Vfree =(
∆‖ −Deff

)2 √3 (∆⊥ − L) +
√

2B
(
∆‖ −D

)
2

,
(53)

where we have introduced a second correction parameter
B, which is assumed constant. The relation between ∆⊥
and ∆‖ is now approximated as:

∆̄⊥ ≈
x

∆̄2
‖

(
(Γ− 1) +

√
2B√
3

)
−
√

2B∆̄‖√
3

, (54)

where x = ηref/η and

ηref =
π (3Γ− 1)

6
(√

3 (Γ− 1) +
√

2B
) . (55)

The free energy of the ABC crystal is then given by

fABC

η
= for + ln

Λ3

v0
+ ln ηref

− ln
(
∆̄‖ − D̄eff

)2 − ln

(
x

∆̄2
‖
− 1

)
,

(56)

with parameters A = 0.239ηh and B = 1.16. Here the
parameter B was chosen primarily to match with the
osmotic pressure data from the simulations of McGrother
et al. [6] which is unaffected by the interpolations. The
parameter A was chosen to match the ABC–smectic-A
phase coexistence simulation results [7], while retaining
the same η dependence as in the other phases. Notice
that the value of A is quite similar to that of the AAA
crystal. After minimizing the free energy Deff , for, and
∆̄‖ are given by Eqs. 30, 31, 46 with x = ηref/η and
κ follows from Eq. 45. The expressions, however, break
down near the close-packing since the parallel spacing
becomes smaller than the spherocylinder length which is
unphysical.

F. Phase behavior; binodals

The free energy expressions can be applied to predict
the phase behavior of hard spherocylinders. We calculate
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FIG. 3. Volume fraction dependence of the excess free en-
ergy of the smectic-A phase of Eq. 15, for + fpack. Free en-
ergy obtained using numerical minimization (data points) is
compared to approximate analytical results (solid curves) for
aspect ratios L/D = 5, 50 and 500, where both use the cor-
rection parameter A = 0.41ηh based on fits to the simulation
data [6, 7].

the concentrations at the binodal by solving the coexis-
tence equations for the phases I and II:

µ̃I = µ̃II, (57)

Π̃I = Π̃II. (58)

Here the normalized chemical potential µ̃ = µ/(kBT )
follows from µ̃ = ∂f/∂η and the normalized pressure

Π̃ = Πv0/(kBT ) follows from Π̃ = ηµ̃ − f . Using Eqs.

13, 15, 42, and 56 the expressions for µ̃ and Π̃ of the
isotropic, nematic, smectic-A, AAA and ABC phase are
given in Appendix B, C, and D. By solving Eqs. 57 and 58
for two of these phases, the concentrations at the binodal
of these two phases is obtained. At a specific L/D and η
the single phase or phase coexistence with the lowest f
is the most stable. For certain L/D it is also possible to
have coexistence with a third phase, where µ̃I = µ̃III and

Π̃I = Π̃III holds in addition to Eqs. 57 and 58.

III. RESULTS AND DISCUSSION

Here we will study the accuracy of the new analyti-
cal free energy expressions for the smectic-A, AAA crys-
tal and ABC crystal phases in predicting the phase be-
havior of hard spherocylinders. We put less emphasis
on the isotropic–nematic phase transition as this has al-
ready been examined more in depth using both PL and
SPT theory [24, 37]. First we focus on verifying the ana-
lytical free energy of the smectic-A phase by comparing
it to numerical results. The predicted excess free en-
ergy, for + fpack, of the smectic-A phase for aspect ratios
L/D = 5, 50 and 500 is plotted in Figure 3 for both
numerical minimization of Eq. 15 (data points) and the

simplified analytical minimization of section II C (solid
curves). It is clear that the difference between the simpli-
fied analytical and numerical minimization is negligible
for η & 0.25 in all cases. At lower volume fractions the
assumption of κ� 1 and the analytical expression break
down due to relatively large orientational freedom for di-
lute rods. The smectic-A phase is however metastable at
those rod concentrations [6, 7], so this deviation is irrel-
evant for our purpose. The same arguments hold for the
crystal phases.

Next we show in Figure 4 a comparison of our analyt-
ical equations of state with simulation results for various
L/D values [6, 7] (see Eqs. B6, C2, and D2 for the explicit
equations for the osmotic pressure). For the smectic-A
and ABC phase we find good agreement for all studied
L/D values in comparison to the simulation results of
McGrother et al. [6] The simulation results of Bolhuis
and Frenkel [7] show a slightly lower osmotic pressure for
the smectic-A and crystal phases. The inclusion of η in

A leads to an additional term in Π̃ of 2η, which is the
approximate difference between the uncorrected pressure
of the smectic-A phase and the simulation results for all
L/D values. The agreement with simulations is a strong
improvement with respect to the reported equations of
state from density functional theory [18].

The phase coexistences resulting the analytical equa-
tions of state are as plotted (curves) in Figure 5 as a
function of the inverse aspect ratio D/L. The phase
behavior is compared to Monte Carlo simulation results
(data points) for hard spherocylinders [7]. A particular
region of interest in this work is the nematic–smectic-
A coexistence, which is in reasonable agreement with
the simulations. The coexistence drops slightly to lower
volume fractions as D/L is decreased. For this co-
existence the best agreement with the simulations was
achieved for short rods using PL for the nematic phase
and A = 0.28η as correction parameter for the smectic-
A phase. Due to inconsistencies between the two the-
ories however, the transition drops to volume fractions
below 0.3 for D/L . 0.1. Using SPT for the nematic
phase the best agreement for short rods was achieved
with A = 0.41η, which still retains a similar concentra-
tion range for the phase transition of long rods. The main
issue with SPT however is that it leads to different triple
points for short rods: the nematic phase is predicted to
become stable at higher D/L than the smectic-A phase.
Thus while the SPT free energy expressions provides a
better general description, it is more appropriate to use
the Parsons–Lee description for the short rod region.
This has led to our use of the aforementioned sigmoidal
interpolation between the two equations of state. Note
that a higher value of A would shift the phase coexistence
to higher volume fractions for all L/D. Without any cor-
rection, the volume fraction of the nematic–smectic-A
coexistence curves would increase by about 0.1–0.2. The
choice of parameter A for the ABC and AAA phase gives
excellent agreement with simulations for the smectic-A–
ABC and AAA–ABC phase coexistence. Additionally,
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FIG. 4. Predicted equations of state (curves) for hard spherocylinders of aspect ratio L/D = (a) 3.4, (b) 4, (c) 5, and (d) 40
as indicated. The symbols are simulation results from McGrother et al. [6] (filled) and from Bolhuis and Frenkel [7] (open).

the smectic-A–AAA, isotropic–smectic-A and isotropic–
ABC phase coexistence conforms to computer simula-
tions, while these did not directly influence the choices
for A.

Comparing the results in Figure 5 to the previous nu-
merical results by Graf and Löwen [20], the agreement
with simulations of all coexistence curves is improved.
The main reason for the improvement of the nematic–
smectic-A coexistence curve comes from a more accurate
choice for the nematic free energy and the inclusion of
η in the correction term. For both crystal phases the
improvement comes from the free energy minimization
over the lattice constants and the different corrections in
A and B. The most recent density functional theories
on the nematic–smectic-A phase transition [17–19] have
shown improved or comparable agreement for short rods
with simulations. The main deviation between our re-
sults and density functional theory results is in the order
of the nematic–smectic-A transition at small D/L. While
the order of the transition could not be determined con-
clusively in simulations [7], it is implied in our method
that all phase transitions represent discontinuous first or-
der phase transitions. Density functional theory however

predicts for long rods that the nematic–smectic-A phase
transition becomes a continuous second order phase tran-
sition after a certain tricritical point [15, 16, 18, 19], but
the location of this point is unclear. Similar to our re-
sults in the Onsager limit (D/L → 0) the bifurcation
point of this second order phase transition is predicted
to be near η ∼ 0.4 [16, 19, 48], which is slightly below the
value found in the simulations. Interestingly, simulations
performed for semi-flexible hard spherocylinders revealed
this phase transition to be first order [13].

In addition density functional theory, and in particu-
lar fundamental measure theory, has been extended to
include arbitrary convex particle shapes, though it re-
mains numerically involved [49, 50]. As our focus has
been on deriving algebraic free energy expressions for
hard spherocylinders in particular, the presented expres-
sions are not applicable for different particle shapes. For
similar uniaxial and convex shaped particles as regular
hard cylinders [22] or hexagonal plates it should however
be possible to use our methodology to derive new alge-
braic free energy expressions by adjusting the geometrical
considerations behind the excluded volume (fluid phases)
and cell free volume (crystalline phases).
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our predictions based on algebraic expressions for all phase
states. The data points are simulation results from Bolhuis
and Frenkel [7].

IV. CONCLUDING REMARKS

We have presented a comprehensive algebraic descrip-
tion for the free energies of the principal thermodynamic
phases (including the smectic-A, AAA, and ABC phase)
of hard rod-like particles providing expressions for the
equations of state. Based on previous numerical cal-
culations, these expressions provide a computationally
straightforward method to predict phase coexistences,
while providing additional structural information for the
smectic-A and crystal phases in terms of the equilib-
rium lattice spacings. Using empirical corrections for
the nematic, smectic-A, AAA, and ABC free energies,
we find that the predicted phase behavior is in quanti-
tative agreement with results from computer simulations
and density functional theory. An important advantage
of the algebraic free energy expressions is that they pave
the way towards more realistic descriptions of colloidal
liquid crystals based on perturbation or free volume the-
ories in which the effects of soft rod-rod interactions (gen-
erated by e.g. van der Waals, depletion or electrostatic
forces) can be incorporated. This is particularly relevant
for understanding the role of rod flexibility and soft in-
teractions in driving the competitive stability of smectic,
columnar and crystal order in suspensions of rod-shaped
colloids, which remains an outstanding issue.
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Appendix A: Minimization of lattice spacing

For the minimization of the free energy with respect
to ∆̄⊥/Γ it is convenient to first express the derivative of
f/η with respect to η2D:

η2D
∂f/η

∂η2D
=

2(6− 4η2D)

(6− 5η2D)(1− η2D)

+

(
1(

1− η2DD̄2
eff

)2 − 1

)(
1− 4

(1− η2D)(3− 2η2D)

(6− 5η2D)2η2DD̄eff

)
.

(A1)

This allows us to write the minimization condition as:

∂f/η

∂∆̄⊥/Γ
=

(
η2D

df/η

dη2D
+

1

1− ∆̄⊥/Γ

)
Γ

∆̄⊥
= 0. (A2)

The left-hand side of Eq. A2 can be rewritten as a poly-
nomial of ∆̄⊥/Γ by multiplying with a factor:

∆̄2
⊥

Γ2

(
1− ∆̄⊥

Γ

)
(6− 5η2D) (1− η2D)

2

×
(
1− 27η2D + 41η2

2D − 16η3
2D

)2
.

(A3)

Taking the limit ∆̄⊥/Γ → 1 of the resulting polynomial
leads to a linear relation of ∆̄⊥/Γ, which is used to find
the approximate solution given by Eq. 35.

Appendix B: Chemical potential and osmotic
pressure of the isotropic and nematic phase

The normalized chemical potential µ̃ and the normal-

ized pressure Π̃ are given by µ̃ = ∂f/∂η and Π̃ = ηµ̃− f .
Using the free energy expressions of Eqs. 11 and 12, which
follow ∂f/∂κ = 0, this gives for both the isotropic and
nematic phase [37]:

µ̃SPT =
fSPT

η
+

1

1− η
+ a

η

(1− η)
2 + b

η2

(1− η)
3 , (B1)

µ̃PL =
fPL

η
+ 1 +

2n− n2

2(1− n)3

(
4 +

3(Γ− 1)2

3Γ− 1

)
, (B2)

µ̃ = gµ̃SPT + (1− g)µ̃PL, (B3)

Π̃SPT

η
=

1

1− η
+ a

η

(1− η)
2 + b

η2

(1− η)
3 , (B4)

Π̃PL

η
= 1 +

2n− n2

2(1− n)3

(
4 +

3(Γ− 1)2

3Γ− 1

)
, (B5)

Π̃ = gΠ̃SPT + (1− g)Π̃PL. (B6)

Appendix C: Chemical potential and osmotic
pressure of the smectic-A phase

The normalized chemical potential µ̃ and the normal-

ized pressure Π̃ were calculated by µ̃ = ∂f/∂η and
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TABLE II. Values for li in Eq. C3

.

l0 891 l5 -101,462,282 l10 27,625,680

l1 -74,532 l6 173,571,605 l11 -5,499,680

l2 999,914 l7 -198,678,876 l12 487,680

l3 -8,373,233 l8 154,739,944

l4 37,933,935 l9 -81,271,047

Π̃ = ηµ̃− f using Eqs. 15 and A1:

µ̃ =
f

η
+ 1 +

2ηA′

A

+ η2D
df/η

dη2D

(
1 +

ζ∆̄′⊥
∆̄⊥

)
+

1

1− ∆̄⊥/Γ

ζ∆̄′⊥
∆̄⊥

,

(C1)

Π̃

η
= 1 +

2ηA′

A

+ η2D
df/η

dη2D

(
1 +

ζ∆̄′⊥
∆̄⊥

)
+

1

1− ∆̄⊥/Γ

ζ∆̄′⊥
∆̄⊥

,

(C2)

where ∆̄′⊥ is given by:

∆̄′⊥
Γ

=
−2(1− ζ)(1− 27ζ + 41ζ2 − 16ζ3)(∑9

i=0 kiζ
i
)2

12∑
i=0

liζ
i. (C3)

Here the values of the constants ki and li is given in Ta-
bles I and II. While these equations were used for our re-
sults, it is insightful to also give the leading order expres-

sions, which are exact for ∂f/∂κ = 0 and ∂f/∂∆⊥ = 0:

µ̃ =
f

η
+

2ηA′

A
+

1(
1− η2DD̄2

eff

)2 , (C4)

Π̃

η
=

2ηA′

A
+

1(
1− η2DD̄2

eff

)2 . (C5)

These leading order equations have a maximum deviation
of around 6% for η ≥ 0.4 and L/D ≥ 3 with Eqs. C1 and
C2.

Appendix D: Chemical potential and osmotic
pressure of the crystal phases

The normalized chemical potential µ̃ and the normal-

ized pressure Π̃ is given by µ̃ = ∂f/∂η and Π̃ = ηµ̃− f .
Using the minimized free energy expressions of Eqs. 42
and 56, which follow from ∂f/∂κ = 0 and ∂f/∂∆‖ = 0,
this gives:

µ̃ =
f

η
+

2ηA′

A
+

1

1− ∆̄2
‖/x

, (D1)

Π̃

η
=

2ηA′

A
+

1

1− ∆̄2
‖/x

, (D2)

where x = ηcp,AAA/η for the AAA crystal and x = ηref/η
for the ABC crystal.
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