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� Three QSAR models predict combined
toxicity of binary mixtures in honey
bees.

� Models were validated using robust
internal and external parameters.

� Predictions of combined toxicity for
untested binary mixtures are
provided.

� The use of quasi-SMILES improves the
statistical quality of the models.
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a b s t r a c t

Pollinators such as honey bees are of considerable importance, because of the crucial pollination services
they provide for food crops and wild plants. Since bees are exposed to a wide range of multiple chemicals
‘‘mixtures” both of anthropogenic (e.g. plant protection products) and natural origin (e.g. plant toxins),
understanding their combined toxicity is critical. Although honey bees are employed worldwide as sur-
rogate species for Apis and non-Apis bees in toxicity tests, it is practically unfeasible to perform in vivo
tests for all mixtures of chemicals. Therefore, Quantitative Structure-Activity Relationships (QSAR) mod-
els can be developed using available data and can provide useful tools to predict such combined toxicity.
Here, three different QSAR models within the CORAL software have been calibrated and validated for
honey bees (A. mellifera) to predict the acute contact mixtures potency (LD50-mix), in two regression
based-models, and the nature of combined toxicity (synergism / non-synergism) in a classification-
based model. Experimental data on binary mixtures (n = 123) (LD50-mix) including dose response data
(n = 97) and corresponding Toxic Unit values were retrieved from EFSA databases. The models were built
using the principle of extraction of attributes from SMILES (or quasi-SMILES) while calculating so-called
correlation weights for these attributes using Monte Carlo techniques. The two regression models were
validated for their reliability and robustness (R2 = 0.89, CCC = 0.92, Q2 = 0.81; R2 = 0.87, CCC = 0.89,
Q2 = 0.75). The classification model was validated using sensitivity (=0.86), specificity (=1), accuracy
(=0.96), and Matthews correlation coefficient (MCC = 0.90) as qualitative statistical validation parame-
ters. Results indicate that these QSAR models successfully predict acute contact toxicity of binary mix-
tures in honey bees and can support prioritisation of multiple chemicals of concerns. Data gaps and
ologiche
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further development of QSAR models for honey bees are highlighted particularly for chronic and sub-
lethal effects.

� 2019 Elsevier B.V. All rights reserved.
1. Introduction

Honey bees (Apis mellifera), solitary bees and bumble bees rep-
resent important environmental non-target species particularly
because of their crucial pollination services for food crops and their
contribution to the maintenance and reproduction of wild plant
communities and biodiversity (Klein et al., 2007; Vanengelsdorp
and Meixner, 2010; Lambert et al., 2012). Honey bees are
employed worldwide as surrogate species for Apis and non-Apis
bees to perform toxicity tests on single pesticides (EFSA, 2013; U.
S. EPA, 2014). In addition, they also represent sentinel species
together with their hive products as bioindicators (i.e. honey, pro-
polis, pollen) to investigate environmental contamination by regu-
lated products (e.g. Plant Protection Products (PPPs), veterinary
drugs) or anthropogenic (polycyclic aromatic hydrocarbons, heavy
metals) and natural contaminants (mycotoxins, plant alkaloids and
flavonoids) (Lambert et al., 2012; Johnson et al., 2012, 2013;
Bargańska et al., 2016; Tosi et al., 2018; Skorbiłowicz et al.,
2018). As a matter of fact, bees are exposed to these as multiple
substances ‘‘mixtures”, either by foraging on contaminated areas
or through contaminated food stored and consumed in the hive.
Over the last decade, scientific advisory bodies and governmental
agencies have developed methods and frameworks to assess such
mixtures issues (U.S. EPA, 2003; Kemi, 2015; EFSA, 2009; EFSA
PPR Panel, 2012, 2013; EFSA, 2014; Backhaus and Faust, 2012;
Kienzler et al., 2016; Nys et al., 2018). In this context, the recent
EFSA MIXTOX guidance document (More et al., 2019) has illus-
trated methods and case studies in bees providing opportunities
to investigate their contribution to bee health compared with other
stressors (e.g. varroa, viruses) and to develop holistic risk assess-
ment methodologies (EFSA, 2013, 2016; EFSA, 2017; Rortais
et al., 2017). In order to further understand combined toxicity in
honey bees, a recent meta-analysis (Carnesecchi et al., 2019) of
acute contact laboratory toxicity assays on PPPs and veterinary
drugs highlighted synergisms and antagonisms in 72% and 11% of
datasets, respectively. For most observed synergisms, cytochrome
P450 (CYP) inhibition was the major mechanism resulting in a
decrease in elimination and an increase in the toxicity of the binary
mixture (Carnesecchi et al., 2019; Johnson et al., 2013; Wade et al.,
2019). Although the authors identified numerous data gaps, such
combined toxicity databases potentially allow developing predic-
tive Quantitative Structure-Activity Relationships (QSAR) tools
particularly because it is rather impossible to test all possible mix-
tures in bees for their acute or chronic effects. Such QSAR tools are
only available for single chemicals but to date not for the predic-
tion of combined toxicity (Venko et al., 2017; Singh et al., 2014;
Hamadache et al., 2018; Como et al., 2017).

Hence, this manuscript describes the development and applica-
tion of three innovative predictive QSAR models for honey bees
within the CORAL software namely (i) two regression-based QSAR
models predicting acute (contact) mixtures potency (pLD50-mix) in
a quantitative manner, and (ii) a classification-based model pre-
dicting the nature of combined toxicity for organic binary mixtures
(i.e. synergism / non-synergism). Calibration and validation of the
models are described using available experimental data, simplified
molecular input-line entry system (SMILES) and attributes. Valida-
tion is assessed using independent datasets and associated statis-
tics (i.e. correlation weights) (Toropova et al., 2012; Toropov
et al., 2012a, 2019). Finally, conclusions highlight the potential
application of such in silico tools for the hazard assessment and pri-
oritisation of organic binary mixtures in ecological risk assessment.
2. Material and methods

2.1. Experimental data

Experimental data from laboratory studies on honey bees mea-
suring the combined toxicity (LD50-mix) and Toxic Units (TUs) fol-
lowing acute contact exposure to organic binary mixtures were
retrieved from an EFSA database described in our recent meta-
analysis (Carnesecchi et al., 2019). The database provides quantita-
tive information (e.g. Toxic Unit, LD50 � 24 h) on 123 mixtures
studies.

First, a simple regression model (Approach A) to predict mix-
ture potency (LD50-mix) was developed from the LD50-mix dataset
(n = 123) while considering as input two chemical structures rep-
resented by simplified molecular input-line entry system (SMILES)
(Table S1). As second step, a dataset including only dose response
data (n = 97) on binary mixtures (Approach B) was created to
develop (i) a regression-based model to predict the potency of
the binary mixtures (pLD50-mix) and (ii) a classification-based
model to predict the nature of the combined toxicity (synergism/
non-synergism), taking into account Toxic Units (TUs) for each
chemical in the mixture (Table 1). Hence, in Approach B, quantita-
tive data on TUs were used as additional features and were repre-
sented as quasi-SMILES (Toropov et al., 2018; Toropova et al.,
2019a). The TU approach assumes that predictions for combined
toxicity in the binary mixture follow the Concentration Addition
(CA) model (Fig. 1) given the quantitative composition of each
chemical within the binary mixture in relation to their relative
potency (Jonker et al., 2005). A detailed account of the methodolo-
gies for TU calculation is provided elsewhere (Carnesecchi et al.,
2019).

With regards to data pruning, no OECD guidelines are available
for designing binary mixtures toxicity experiments in honey bees.
Hence, it was not possible to follow any harmonised criteria in the
data pruning steps, in contrast to what is available in the OECD
guideline for testing single chemicals (OECD, 1998). Since the sci-
entific literature most often reports in vivo LD50-mix as mg active
substance/bee as a median lethal dose after 24 h, model results
were expressed as pLD50-mix (i.e. negative decimal logarithm log
[1/LD50]), logarithm of the inverse of the lethal dose to kill 50% of
honey bees in the tested sample (Toropova et al., 2012; Iwasa
et al., 2004; Johnson et al., 2012, 2013).
2.2. Development of the models

2.2.1. Approach A – Regression model (pLD50-mix)
The chemical structure of the two-component mixtures is rep-

resented using the disconnected simplified molecular input-line
entry system (SMILES) (Table S1), where the ‘‘.” (period or ‘‘dot”)
is used to represent disconnections (Hunter et al., 1987). The total
number of data (n = 123) are randomly split into four sets: training
set (�25%; TRN), invisible training set (�25%; iTRN), calibration set
(�25%; CLB), and validation set (�25%; VLD) sets, each of which
contains independent datasets and has a specific purpose:



Table 1
Overview of the QSAR models developed here. Input data (e.g. number and class of substances) and endpoints are reported for both models.

Input data
(n)

Features Statistical method Classes and number (n) of
substances

Endpoint/Model

Approach A
123 � SMILESA –

SMILESB
� Method Monte Carlo
(MCC)

� Fungicide (13)
� Insecticide/acaricide (12)
� Synergist (3)

� Regression-based model (pLD50-mix 24 h)

Approach B
97 � SMILESA –

SMILESB
� Toxic Unit

� Method Monte Carlo
(MCC)

� Quasi-SMILES

� Insecticide/acaricide (11)
� Fungicide (11)
� Synergist (1)

� Regression- based model (pLD50-mix 24 h)
� Classification-based model (synergism, non-
synergism)

CA
(Concentration 

Addition)

No deviations

Additive

M = 1

Deviations

Antagonism

M > 1

Synergism

M < 1

n

i
iM UT

1

Non-synergism Synergism 

Σ=
=

Fig. 1. Decision tree for predicting combined toxicity of binary mixtures (M) (i.e.
dose addition, synergism and antagonism) according to Concentration addition (CA)
model and Toxic Unit (TU) approach. Two classes (synergism and non-synergism)
are identified as outputs of the classification model (Approach B).
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1. The TRN set is the core dataset of the QSAR model. Compounds
from this set are used to generate correlation weights giving
maximal value of the target function using Monte Carlo
optimisation;

2. The iTRN set inspects whether the model predictions are satis-
factory using data for compounds that are independent from
the TRN set;

3. The CLB set detects the start of the overtraining of the model.
4. The VLD set is used for the validation of the prediction model as

a final step.
2.2.1.1. Optimal descriptor. The optimal descriptor used to develop
the QSAR model for the combined toxicity of binary mixtures in
honey bees (Approach A) is the following:

DCW T�;N�ð Þ ¼
X

k¼1

CWðSkÞ þ
X

k¼1

CWðSSkÞ þ
X

k¼1

CWðSSSkÞ ð1Þ

The Sk is the ‘‘SMILES-atom” i.e. one or two symbols (e.g. ‘C’, ‘N’,
‘O’, etc.) and cannot be examined separately (e.g. ‘Cl’, ‘Si’, etc.). The
SSk is a combination of two SMILES-atoms. The CW(Sk), CW(SSk),
and CW(SSSk) are so-called correlation weights of the above-
mentioned attributes of SMILES. The numerical data on the CW
(Sk), CW(SSk), and CW(SSSk) are calculated using the Monte Carlo
method, i.e. the optimisation procedure which gives maximal value
of target function (TF):

TF ¼ rTRN þ riTRN � rTRN � riTRNj j � 0:1 ð2Þ
where the rTRN and riTRN are correlation coefficients between
observed and predicted endpoints for the training and invisible
training sets, respectively.
2.2.1.2. Statistical criteria. In order to evaluate a regression model
on combined toxicity of binary mixtures (pLD50-mix) in honey bees,
the following statistical criteria are used: determination coefficient
(R2), cross-validated determination coefficient (Q2) which mea-
sures prediction power, root mean squared error (RMSE), mean
absolute error (MAE), Fischer F-ratio (F) and concordance correla-
tion coefficient (CCC) (Roy et al., 2012; Chirico and Gramatica,
2012). The latter is defined as a complementary or alternative sta-
tistical criterion for external validation measures, particularly
when other statistical criteria are in conflict. Results of the analyses
are provided in Table 2.

2.2.2. Approach B – classification and regression models based on Toxic
Unit

Approach B aims at developing two QSAR models on experi-
mental dose response data (n = 97) while using the CORAL soft-
ware. TUs for each chemical in the binary mixture are used as
additional features to develop i) a regression-based model to pre-
dict the potency of the binary mixture (pLD50-mix) and ii) a
classification-based model to predict the nature of the combined
toxicity (synergism/non-synergism). In both models, toxicity data
for binary mixtures are represented by the so-called quasi–simpli-
fied molecular input-line entry system (quasi-SMILES) which is
analogue of the traditional SMILES applied in QSPR/QSAR analyses
but makes use of all available data (not only information about the
molecular structure) (Toropov et al., 2018). The total number of
data (n = 97) were randomly split into the training (�25%), invis-
ible training (�25%), calibration (�25%), and validation (�25%)
sets.

2.2.2.1. Optimal descriptor. Two kinds of optimal descriptors are
calculated for i) the regression models and ii) the classification
models, respectively:

DCW T�;N�ð Þ ¼
XNA

k¼1

CWðSkÞ þ
XNA�1

k¼1

CWðSSkÞ þ
XNA�2

k¼1

CWðSSSkÞ ð3Þ

DCW T�;N�ð Þ ¼
XNA

k¼1

CWðSkÞ þ
XNA�1

k¼1

CWðSSkÞ ð4Þ

All parameters are already described in Eq. (1). However, the
number of attributes in SMILES (NA) is added for including TU val-
ues (TUA, TUB) as additional features. As a consequence, QSARmod-
els are calculated with the Monte Carlo optimisation based on two
kinds of target functions TF1 (see Eq. (2)) and TF2:

TF2 ¼ TF1 þ IICCLB � 0:1 ð5Þ
Where, the IICCLB is calculated with data on the calibration (CLB)

set as follows:

IICCLB ¼ rCLB
minð�MAE CLB;þMAE CLBÞ
maxð�MAE CLB;þMAE CLBÞ ð6Þ
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�MAE CLB ¼ 1
�N

X�N

k¼1

Dkj j; Dk < 0;�N is the number of Dk < 0

ð7Þ

þMAECLB ¼ 1
þN

XþN

k¼1

Dkj j;Dk P 0;þN is the number of Dk P 0 ð8Þ

Dk ¼ observedk � calculatedk ð9Þ
The observed and calculated are corresponding values of the

endpoint.
Having the numerical data on the CW(Sk), CW(SSk) and CW

(SSSk), the predictive model is calculated using the Least Squares
method and data for compounds within the training set:

pEC50 ¼ C0 þ C1 � DCW T�;N�ð Þ ð10Þ
2.2.2.2. Statistical criteria. Statistical criteria for the regression-
based QSAR model (Approach B) have been applied as described
in Section 2.2.1 (Approach A). In addition, TUs were used here as
an additional feature to improve the performance of the regression
and classification-based models developed according to Approach
B. In addition, other statistical criteria were used namely: sensitiv-
ity, specificity, accuracy, and Mattews correlation coefficient (MCC)
to in order to build up the classification model for two classes: syn-
ergism (1) and non-synergism (0) (Toropova and Toropov, 2017;
Toropov et al., 2012b). Generally, the MCC coefficient is applied
in machine learning to measure the quality of binary classifications
and it can be used when the classes present very different sizes
(Dao et al., 2011).

Sensitiv ity ¼ TP
TP þ FN

ð11Þ

Specificity ¼ TN
TN þ FP

ð12Þ

Accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

ð13Þ

MCC ¼ TP x TN � FP x FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð14Þ

TP, TN, FP and FN represent the number of true positives, true
negatives, false positives and false negatives, respectively, in a con-
fusion matrix. MCC values range between �1 and +1, while the lat-
ter indicates a perfect prediction, a value of 0 indicate a prediction
no better than a random one, and a value of �1 show total dis-
agreement between predicted and observed values (Dao et al.,
2011).

2.2.2.3. Model(s) validation and mechanistic interpretation (Approach
A and B). Model validation for both approaches (A and B) used sta-
tistical parameters for modelling internal (i.e. calibration) and
external validations in order to estimate the predictive capability
and the goodness of fitness of the QSAR models (Qin et al., 2018).
With regard to regression-based QSAR models, the statistical qual-
ity of the fitted equations was evaluated using the determination
coefficient (R2), concordance correlation coefficient (CCC), cross-
validated determination coefficient (Q2), root mean squared error
(RMSE), mean absolute error (MAE) and Fischer F-ratio (F) (Roy
et al., 2012). Results for the assessment of statistical quality of
the regression models following approaches A and B are presented
in Tables 2 and 3, respectively (Sections 3.1 and 3.2.1).

Similarly, the classification model (synergism/non-synergism)
has been validated according to the following statistical parame-
ters: sensitivity, specificity, accuracy, and MCC and results for the
assessment of the statistical quality are presented in Table 4
(Section 3.2.2).

The ‘‘Mechanistic interpretation” is defined as the causality
between a substance and its toxicity (or not-toxicity) and it is
required when developing a QSAR model as described in the OECD
guidelines (OECD, 2007), ‘‘a mechanistic interpretation, if possible” so
that establishing a correlation and a causal relationship between
the chemical structure of the compound and its toxicity (OECD
principle 5) (Thoreau, 2016). The CORAL models provide the mech-
anistic interpretation in the form of promoters either increasing or
decreasing potency of a chemical (Toropova and Toropov, 2017,
2018; Toropov et al., 2019). Here, the mechanistic interpretation
is obtained by means of the results of several runs of the Monte
Carlo optimisation. In particular, molecular features extracted from
SMILES, providing stable positive correlation weights in several
runs of the Monte Carlo optimisation, can be recognised as promot-
ers of increase in the toxic potency of the mixture (pLD50-mix). In
contrast, molecular features presenting only negative correlation
weights in several runs of the optimisation are promoters of a
decrease in the toxic potency of the mixture.
2.2.2.4. Applicability domain (Approach A and B). The applicability
domain is an important component of QSAR analyses (OECD,
2007). According to OECD principle 3, a QSAR model should have
a well-defined applicability domain. Applicability domain is
defined as the area or chemical space represented by the molecular
properties or structural information of the chemicals used for the
model development. A collection of conceptions of applicability
domains for different QSAR approaches is available and include:
(i) physico-chemical domain, (ii) structural domain, (iii) response
domain and (iv) integrated methods (Gadaleta and Catto, 2016).
However, for models developed in the CORAL software, the statis-
tical defects of SMILES calculated according to the distribution of
available data into the training (TRN), invisible training (iTRN), cal-
ibration (CLB), and validation (VLD) sets are the basis to define the
applicability domain. Here for both approaches (A and B) the same
methods (Toropova et al., 2018) were applied for the assessment of
the applicability domain defined according to distribution of
SMILES attributes in the training and calibration sets following
two steps:

Step 1: the definition of statistical defect (dk) for each SMILES
attribute (Ak = Sk, SSk, SSSk) involved (non-blocked) to construct
the model;

dk ¼
PðAkÞ � P0ðAkÞ
�� ��
N Akð Þ þ N0 Akð Þ ð15Þ

where P(Ak) and P0(Ak) are the probabilities of Ak in the training and
calibration sets, respectively; N(Ak) and N0(Ak) are the frequencies of
Ak in the training and calibration sets, respectively.

Step 2: The calculation for all substances of the statistical
SMILES-defect (Dj):

Dj ¼
XNA

k¼1

dk ð16Þ

where NA is the number of non-blocked SMILES attributes in the
SMILES.

A substance falls in the domain of applicability if

Dj < 2 � D
�

ð17Þ

where D
�
is average of the statistical SMILES-defect for the training

set.
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3. Results and discussion

3.1. Approach A – Regression model (pLD50-mix)
3.1.1. Model validation and mechanistic interpretation
The regression-based QSARmodel developed here aimed at pre-

dicting the combined toxicity (pLD50-mix) of binary mixtures of
organic compounds in honey bees (n = 123) while considering
chemical structures of the two components represented by discon-
nected SMILES as features. The regression-based QSAR model has
been built using three equations according to three random splits,
which include the TRN, iTRN, CLB, and VLD sets. Results with the
following equations for each random splits are:

pLD50�mix ¼ �3:6089ð�0:0708Þ þ 0:1126ð�0:0020Þ � DCWð1;15Þ
ð18Þ

pLD50�mix ¼ �3:2651ð�0:0668Þ þ 0:1498ð�0:0038Þ � DCWð1;15Þ
ð19Þ

pLD50�mix ¼ �3:9621ð�0:0855Þ þ 0:1338ð�0:0030Þ � DCWð1;15Þ
ð20Þ

Table 2 provides the results of the applications of statistical cri-
teria and the characteristics of the regression-based models with
the corresponding Eqs. (18)–(20). The predictability of the models
has been assessed using (i) determination coefficient (R2) (a model
has desired predictability if R2 > 0.65) (Roy et al., 2012); (ii) concor-
dance correlation coefficient (CCC) which indicates good pre-
dictability of the model if CCC > 0.85 (Chirico and Gramatica,
2012); and (iii) cross-validated determination coefficient (Q2)
requiring a value larger than 0.70 to be interpreted as reliable mod-
els (Chirico and Gramatica, 2012). According to our statistics
(Table 2), results can be considered satisfactory. The most reliable
model ‘‘best split” is represented by Eq. (19) showing R2 = 0.87,
CCC = 0.89 and Q2 = 0.75 (Table 2 and Fig. 2), respectively. Simi-
larly, Eq. (20) provides good statistics for split 3 (R2 = 0.83;
CCC = 0.84; Q2 = 0.72). To date, no QSAR models for predicting
acute toxicity of organic binary mixtures in insects have been pub-
lished in the scientific literature. Toropova et al. (2012) developed
a QSAR model using CORAL software for toxicity of binary mixtures
(expressed as pEC50 – decrease in light emission in Photobacterium
phosphoreum) presenting R2 > 0.86 across six different splits.

The mechanistic interpretation has been obtained through three
runs of the Monte Carlo optimisation. Molecular features providing
stable positive correlation weights have been recognised as pro-
moters of increase in the toxic potency of the mixture (pLD50-
Table 2
Statistical quality of regression-based QSAR model for the prediction of acute contact toxic
indicate the most reliable model ‘‘best split” across three different splits.

Split Set n* R2 CCC

1 TRN* 31 0.72 0.84
iTRN 31 0.55 0.66
CLB 31 0.74 0.82
VLD 30 0.77

2 TRN* 30 0.62 0.76
iTRN 31 0.62 0.75
CLB 31 0.79 0.89
VLD 31 0.87

3 TRN* 31 0.60 0.75
iTRN 30 0.60 0.77
CLB 31 0.75 0.84
VLD 31 0.83

* n = number of pairs of SMILES in a set; R2 = determination coefficient; CCC = co
RMSE = root mean squared error; MAE = mean absolute error; F = Fischer F-ratio.
mix). In contrast, molecular features presenting only negative corre-
lation weights in the three runs of the Monte Carlo optimisation
are considered as promoters of decrease in the toxic potency of
the mixture (pLD50-mix). Hence, according to our results oxygen
atoms connected with double bonds, presence of rings, as well as
presence of atoms of nitrogen are promoters of pLD50-mix increase.
Similarly, carbon atoms connected with double bonds, triple
bonds, presence of fluorine as well as nitrogen involved in a ring
are promoters of pLD50-mix decrease (Table S2). However, it is nec-
essary to take into account the prevalence of corresponding fea-
tures in the training set and validation set so that rare attributes
are not considered as source of reliable heuristic hypotheses.

3.2. Approach B – classification and regression models based on Toxic
Units

According to materials and methods, dose response data
(n = 97) were used to develop two QSAR models taking into
account mixtures ratios expressed as TUs. Results for each model
to provide i) quantitative predictions of acute contact toxicity of
binary mixtures (pLD50-mix) and ii) classification of combined tox-
icity (qualitative) (synergism/non-synergism) are illustrated below
in Sections 3.2.1 and 3.2.2, respectively.

3.2.1. Regression model (pLD50-mix; toxic unit)
3.2.1.1. Model validation and mechanistic interpretation. The statisti-
cal quality of the regression-based QSAR model (pLD50-mix) includ-
ing TUs as additional features is shown in Table 3. The QSAR model
is built on four statistical models according to four random splits,
which include the TRN, iTRN, CLB, and VLD sets. Results with the
following equations for each random splits are:

pLD50�mix ¼ �3:1822116 �0:0231229ð Þ
þ 0:0791914 �0:0006750ð Þ � DCW 1;15ð Þ ð21Þ

pLD50�mix ¼ �6:0814987 �0:0642473ð Þ
þ 0:1193315 �0:0013066ð Þ � DCW 1;15ð Þ ð22Þ

pLD50�mix ¼ �3:1281529 �0:0260826ð Þ
þ 0:0720372 �0:0007152ð Þ � DCW 1;15ð Þ ð23Þ

pLD50�mix ¼ �6:2876839 �0:0806048ð Þ
þ 0:0469456 �0:0006665ð Þ � DCW 1;15ð Þ ð24Þ

Results of statistical characteristics for the four models calcu-
lated with corresponding Eqs. (21)–(24) are presented in Table 3.
Similarly to Approach A for the regression model (Section 3.1),
ity of binary mixtures (pLD50-mix) (Approach A). Statistical values highlighted in bold

Q2 RMSE MAE F

0.68 0.70 0.51 75
0.50 0.81 0.63 35
0.71 0.47 0.40 82

0.49 0.40
0.57 0.77 0.61 45
0.58 0.68 0.51 48
0.75 0.51 0.39 111

0.45 0.34
0.55 0.75 0.56 43
0.55 0.66 0.50 42
0.72 0.57 0.48 88

0.48 0.37

ncordance correlation coefficient; Q2 = cross-validated determination coefficient;
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Fig. 2. Observed versus predicted log[1/LD50-mix] of binary mixtures for the regression-based model (Approach A), split 2 ‘‘best split”. R2
all (determination coefficient) and RMSE

(root mean squared error) are provided for all compounds (i.e. compounds from training, invisible training, calibration, and validation sets).

Table 3
Mechanistic interpretation and statistical robustness of the QSAR model for the prediction of acute contact toxicity of binary mixtures in honey bees based on Monte Carlo
calculation with target functions 2 (TF2). Statistical values highlighted in bold indicate the most reliable model ‘‘best split” across three different splits.

Split Set n R2 CCC Q2 RMSE F

1 TRN* 25 0.97 0.99 0.97 0.19 863
iTRN 24 0.98 0.96 0.98 0.29 1140
CLB 24 0.85 0.92 0.81 0.30 122
VLD 24 0.89 0.53

2 TRN 25 0.96 0.98 0.95 0.25 512
iTRN 24 0.96 0.96 0.95 0.31 492
CLB 24 0.79 0.88 0.73 0.35 81
VLD 24 0.81 0.62

3 TRN 24 0.96 0.98 0.95 0.21 522
iTRN 24 0.95 0.95 0.94 0.33 462
CLB 24 0.74 0.84 0.69 0.55 63
VLD 25 0.75 0.61

4 TRN 24 0.94 0.97 0.92 0.29 324
iTRN 24 0.94 0.96 0.92 0.29 325
CLB 24 0.86 0.92 0.84 0.45 133
VLD 25 0.78 0.51

* TRN, iTRN, CLB, and VLD are the training, invisible training, calibration, and validation sets, respectively; n is the number of mixtures in a set; R2 is determination
coefficient, CCC is concordance correlation coefficient; Q2 is leave-one-out cross-validated correlation coefficient; RMSE is root means squared error; F is Fischer F-ratio.
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the predictability of the models has been assessed according to: (i)
determination of the R2 coefficient so that the model has a desired
predictability with R2 > 0.65) (Roy et al., 2012); (ii) concordance
correlation coefficient (CCC) for which good predictability is repre-
sented by CCC > 0.85) (Chirico and Gramatica, 2012); and (iii)
cross-validated determination coefficient (Q2) which is supposed
to be larger than 0.70 for reliable models (Chirico and Gramatica,
2012). Hence, according to our statistics (Table 3 and Fig. 3), results
can be considered satisfactory. In particular, the most reliable
model is represented by Eq. (21) showing R2 = 0.89, CCC = 0.92
and Q2 = 0.81. Similarly, Eq. (24) provides good statistics
(R2 = 0.78; CCC = 0.92; Q2 = 0.84), being R2 slightly smaller than
the one resulting from Eq. (21). Recently, Qin et al. (2018) devel-
oped a regression model for predicting mixture toxicities (additive
and non-additive) of antibiotics and pesticide in Aliivibrio fischeri
showing R2

m = 0.68. However, results are not comparable due to
the diversity of chemical classes and statistical approach used.
Mechanistic interpretation and statistical robustness of the
CORAL model has been investigated using quasi-SMILES attributes
and one run of Monte Carlo optimisation for the calculation of cor-
relation weights for characterising either an overestimation or
underestimation in predictions of the acute contact toxicity values
for honey bees. According to our results (Tables S3 and S4), (i) pos-
itive correlation weights with SMILES attributes are interpreted as
an increase in the acute contact toxicity (synergy) of the binary
mixture; and (ii) negative correlation weights with SMILES attri-
butes are associated with a decrease in the acute contact toxicity
of the binary mixture (antagonism).

3.2.2. Classification model (synergism/non-synergism and toxic unit)
3.2.2.1. Model validation and mechanistic interpretation. Statistical
robustness of the classification model on organic binary mixtures
effect (synergism/non-synergism) has been tested and presented
in Table 4. Table S5 contains the observed versus predicted syner-
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gism data. According to our results, the accuracy of the model in
validation set is 0.96 and 0.87 in the calibration set. Similarly,
specificity (=1.00), sensitivity (=0.86) and MCC (=0.90) for valida-
tion demonstrated robust results. To date, only classification mod-
els for single substances in honey bees are available in the
literature such as Venko et al. (2017) and Como et al. (2017) pre-
senting an accuracy = 0.84, sensitivity = 0.80, specificity = 0.86
and MCC = 0.67 (test set).

The logic behind the mechanistic interpretation of the classifi-
cation model is based on three runs of Monte Carlo optimisation
(see Section 3.2.1). Results on the classification model built up by
means of the semi-correlation (Toropova et al., 2019b) are shown
in Table 5. Similarly, the full list of correlation weights (CW) used
for calculations of the classification model is provided in Table S6.
Table 4
Statistical quality of the classification-based model for binary mixtures effect (i.e.
synergism/non-synergism).

Set Statistical quality of model

Training TP *= 5; TN = 19; FP = 0; FN = 0; N = 24
Sensitivity = 1.00
Specificity = 1.00
Accuracy = 1.00
MCC = 1.00

Invisible Training TP = 5; TN = 18; FP = 0; FN = 1; N = 24
Sensitivity = 0.83
Specificity = 1.00
Accuracy = 0.96
MCC = 0.8885

Calibration TP = 3; TN = 18; FP = 0; FN = 3; N = 24
Sensitivity = 0.50
Specificity = 1.00
Accuracy = 0.88
MCC = 0.66

Validation TP = 6; TN = 18; FP = 0; FN = 1; N = 25
Sensitivity = 0.86
Specificity = 1.00
Accuracy = 0.96
MCC = 0.90

* TP, TN, FP and FN represent the number of true positives, true negatives, false
positives and false negatives, respectively, in a confusion matrix.
3.3. Comparative assessment

3.3.1. Applicability of Approach A and Approach B
This manuscript presents three innovative QSAR models (two

regression- and one classification-based) developed for the predic-
tion of combined toxicity of binary mixtures in honey bees to date,
notwithstanding that other models for predicting binary mixtures
toxicity already exist in the literature (Kim et al., 2018; Qin et al.,
2018; Muratov et al., 2012; Tian et al., 2013; Toropova et al.,
2012;Wang et al., 2018a).

Two different approaches (A and B) have been applied and val-
idated using the CORAL software for predicting both acute mix-
tures potency (pLD50-mix) and the nature of combined toxicity
(synergism/non-synergism). In particular, we demonstrated how
depending on the availability of quantitative data on binary mix-
tures (e.g. dose-response, toxic unit, etc.), two different notation
methods (traditional SMILES or quasi-SMILES) can be applied for
developing robust regression- and classification-based QSAR mod-
els (Table 1).

Approach A (Section 3.1) allowed building up one regression-
based QSAR model using as input the chemical structure of two-
component mixtures codified as disconnected SMILES. Indeed, this
is a simplistic representation of combined toxicity of binary mix-
ture understanding, since the model does not take into account
mixture ratio (e.g. toxic unit), thus ignoring the relative potency
of each chemical contributing to the overall mixture toxicity
(Bopp et al., 2015). Similar models have been already published
in the literature for predicting binary mixtures toxicity in bacteria
(Toropova et al., 2012; Wang et al., 2018a) and flammability of bin-
ary liquid mixtures (Toropova et al., 2019a). As a consequence,
Approach A can be considered as valuable tool for the preliminary
screening of chemical mixtures of concern in the case of lack of
information on the potency of each component, by integrating
available mechanistic and biological data on the specific target spe-
cies (More et al., 2019; EFSA, 2013).

In contrast, Approach B considered additional quantitative
information such as TUs for each chemical codified in quasi-
SMILES (Toropov et al., 2018; Toropova et al., 2018). Hence,
Approach B results of more interpretable than Approach A for pre-



Table 5
Mechanistic interpretation for categorical model ‘‘synergism / non-synergism” according to Approach B. Full list is provided in supplementary materials.

No.* SAk CWs Run 1 CWs Run 2 CWs Run 3 N1 N2 N3 Dj

1 %. . ... . ........ 1.67 1.07 1.58 24 24 24 0.000
2 =. . .1. . ... . .... 1.34 1.46 1.80 24 23 24 0.000
3 C. . .(. . ... . .... 0.40 0.25 0.29 24 24 24 0.000
4 C. . .2. . ... . .... 0.39 0.63 0.55 24 24 24 0.000
5 C. . . = . . ... . .... 0.11 0.03 0.40 24 24 24 0.000
6 C. . .C. . ... . .... 0.24 0.37 0.43 24 24 24 0.000
7 ^. . .%. . ... . .... 1.28 1.52 0.79 24 24 24 0.000
8 ^. . ... . ........ 0.89 0.85 1.59 24 24 24 0.000
9 ^. . .C. . ... . .... 1.64 0.53 1.03 24 24 24 0.000
10 1. . .(. . ... . .... 0.52 0.58 0.93 23 22 22 0.001
11 5. . ... . ........ 0.73 0.88 0.62 23 22 22 0.001
12 N. . .C. . ... . .... 0.58 0.37 0.39 21 15 18 0.003
13 3. . ... . ........ 0.61 0.46 0.78 20 18 17 0.003
14 C. . .3. . ... . .... 0.46 0.06 0.59 20 18 17 0.003
15 1. . .%. . ... . .... 1.95 1.46 1.95 12 13 10 0.004
1 1. . ... . ........ �0.73 �0.30 �0.55 24 24 24 0.000
2 =. . ... . ........ �0.18 �0.08 �0.07 24 24 24 0.000
3 C. . ... . ........ �0.02 �0.30 �0.27 24 24 24 0.000
4 C. . .1. . ... . .... �0.39 �0.42 �0.72 24 24 24 0.000
5 N. . .(. . ... . .... �0.15 �0.29 �0.12 23 20 21 0.002
6 (. . .(. . ... . .... �0.51 �0.31 �0.58 22 18 18 0.004
7 O. . . = . . ... . .... �0.54 �0.09 �1.05 22 22 20 0.002
8 3. . .(. . ... . .... �0.12 �0.17 �0.46 20 18 17 0.003
9 C. . .#. . ... . .... �0.39 �0.52 �0.47 16 10 14 0.003
10 N. . .#. . ... . .... �0.41 �0.38 �0.42 16 10 14 0.003
11 F. . .(. . ... . .... �0.06 �0.11 �0.32 15 9 12 0.005
12 Cl.0.1. . ... . .... �0.54 �0.70 �0.50 10 7 8 0.005
13 4. . .%. . ... . .... �0.42 �0.21 �0.23 5 5 2 0.018
14 Cl.0.2. . ... . .... �0.39 �0.37 �0.37 5 3 4 0.005
15 2. . .%. . ... . .... �0.28 �0.55 �0.41 4 3 7 0.011

* N1, N2, and N3 are number of SAk in the training, invisible training, and calibration sets, respectively. CW = Correleation Weights as in Eq. (1); Dj = SMILES-defect as in Eq.
(16).
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dicting (i) the potency of organic binary mixtures (pLD50-mix) and
(ii) the nature of combined toxicity (i.e. synergism / non-
synergism). In addition, our results confirm that the statistical
quality of regression-based model (Approach B) improved when
including Toxic Unit as additional feature (Fig. 4). Regarding the
classification-based model (Approach B), the scientific literature
describes the effects of a given chemical mixture either as interac-
tive (e.g. synergism, antagonism) or non-interactive (i.e. additive)
when assuming concentration addition (CA) as default model
(More et al., 2019). However, due to lack of experimental data,
our classification model is based on two classes synergism (1)
and non-synergism (0) (Toropova and Toropov, 2017). Neverthe-
Fig. 4. Comparison of two QSAR regression models following Approaches A and B.
Results of the statistical quality and statistical methods are presented. Results of the
statistical quality are highlighted in red for the best model here developed. R2-
= determination coefficient; CCC = concordance correlation coefficient; Q2 = cross-
validated determination coefficient. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
less, this approach can result as highly conservative for predicting
synergistic effects of binary mixture interactions. Indeed, a recent
meta-analysis (Carnesecchi et al., 2019) confirmed that in honey
bees, interactions were observed for 72% of cases as synergism
and 28% as non-synergism (i.e. 17% additive, 11% antagonism).
Similarly, such QSAR models can be applied to further refine cur-
rent thresholds used in Model Deviation Ratio (MDR) and Esti-
mated Mean Ratio (EMR) calculations (Belden et al., 2007;
Carnesecchi et al., 2019; Cedergreen, 2014).

3.3.2. SMILES attributes as drivers of binary mixture toxicity
Currently, most QSAR models investigating binary mixture tox-

icity provide qualitative or quantitative predictions of the toxico-
logical endpoint without consideration of molecular feature(s)
that may be responsible for an increase or a decrease in toxicity
(Kim and Kim, 2015;Wang et al., 2018b). Here, this study demon-
strates how the CORAL software can be applied to identify molec-
ular features as drivers of binary mixture toxicity (pLD50-mix) i.e.
SMILES attributes (SAk) using Monte Carlo optimisation. According
to our results (Tables S2–S4 and S6), the regression- and
classification-based QSAR models (Approach A and B) showed that
SMILES attributes with stable positive correlation weights (CWs)
can be interpreted as promoters of an increase (synergism) in acute
contact toxicity (pLD50-mix) of the binary mixture in bees. In con-
trast, molecular features presenting negative CWs, from the Monte
Carlo optimisation, can be interpreted as promoters of a decrease
(antagonism) in the acute toxicity of the binary mixture. Generally
speaking, it is recommended to avoid generating rules which are
supported by few experimental data, and these can be identified
by the software and qualified as ‘‘rare attributes”. The attributes
which are used by the QSAR models can be interpreted as associ-
ated to specific chemical features related to the acute contact tox-
icity of the binary mixture. From the statistical basis of the CORAL
models, Fig. 5 illustrates examples of molecular features associated



Fig. 5. Example of SMILES attributes associated with positive or negative correlation weights (CW) in binary mixture toxicity (piperonyl butoxide + acetamiprid). CW were
demonstrated in two out of three the QSAR models following three runs of Monte Carlo optimisation. Red circles indicate SMILES attributes with positive correlation
coefficient (i.e. increase combined toxicity). Green circles indicate SMILES attributes with negative correlation coefficient (i.e. decrease combined toxicity). [C. . .#. . ... . ....]
indicates the presence of carbon atom(s) connected with triple bond; [C... = .......] indicates the presence of carbon atom(s) connected with double bonds. [C...2.......] indicates
the presence of two rings in the binary mixtures. [C...(... = ...] indicates the presence of carbon atom(s) with double bonds and branched chain. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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with either an increase or a decrease in the acute contact toxicity of
the binary mixtures in bees. Overall, these innovative bee QSAR
models developed within the CORAL software identify the most
frequent molecular features that are associated with the binary
mixture and its acute contact toxicity including the co-presence
of functional groups associated with reactivity (e.g. double or triple
bonds), the branching level of the molecule and steric components
or the presence of certain atoms associated with polarity (e.g.
nitrogen).
Fig. 6. Conceptual framework for integrating results from multiple in silico tools (Mode o
Evidence (WoE) approach (Hardy et al., 2017; Benfenati et al., 2019).
4. Conclusions and further perspectives

This manuscript has explored the development of innovative
QSAR models for the prediction of acute contact toxicity of binary
mixtures in bees through their calibration, validation and mecha-
nistic interpretation:

- Two regression-based models predicting acute (contact) mix-
tures potency (pLD50-mix) in a quantitative manner validated
f Action, Read-across, (Q)SAR and Activity-Activity relationship) within a Weight of
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with statistical tests, which were demonstrated to have be reli-
able and robust (Approach A: R2 = 0.87, CCC = 0.89, Q2 = 0.75;
Approach B: R2 = 0.89, CCC = 0.92, Q2 = 0.81).

- A classification-based model predicting the nature of the com-
bined toxicity (synergism, non-synergism) validated using
qualitative statistical validation parameters i.e. sensitivity
(=0.86), specificity (=1.00), accuracy (=0.96), and Mattews cor-
relation coefficient (MCC = 0.90). These models are currently
being implemented within the VEGA-HUB platform (https://
www.vegahub.eu/) as well as on CORAL software/databases
(http://www.insilico.eu/coral/).

To date, such QSAR models were not previously available and
this manuscript shows the potential use of in silico tools as part
of New Approaches Methodologies (NAMs), particularly in the con-
text of prioritisation and hazard assessment of potentially haz-
ardous mixtures in honey bees (More et al., 2019). With regard
to the chemical space of the models here developed, it is worth
noting that the training sets are mostly constructed with available
binary mixture data of limited toxicological and structural diver-
sity (mostly conazole fungicides, pyrethroids and neonicotinoid
insecticides) which reflects the limited applicability domain of
these models. As a consequence, it is recommended to apply these
QSAR models for predicting the combined toxicity (pLD50-mix) of
similar binary mixtures such as plant protection products (PPPs),
veterinary drugs and their (potential) formulations in honey bees.

Finally, data gaps remain and still limit the development and
broader applications of such QSAR models in honey bees:

- Acute contact toxicity data (e.g. mortality) are the major avail-
able datasets for a significant number of compounds and their
mixtures but chronic toxicity oral data and toxicity data for
sub-lethal effects in honey bees and wild bees are still lacking
(Carnesecchi et al., 2019).

- Experimental toxicokinetic data (e.g. half-life, bioaccumulation)
are also lacking particularly to develop ad-hoc QSAR models for
further characterisation of the impact of persistence on com-
bined toxicity of multiple chemicals in bees (including interac-
tions). With such dataset, QSAR models can be integrated with
Dynamic Energy Budget models to provide a refined under-
standing of combined toxicity at the honey bee population level
(Spurgeon et al., 2017; Hesketh et al., 2016).

- Although QSAR models for the prediction of the Mode of Action
(MoA) of chemicals have been developed for aquatic species
(Kienzler et al., 2019), the integration of such (qualitative) infor-
mation into QSAR models for predicting mixture toxicity results
challenging. In this context, the ongoing EFSA’s OpenFoodTox
2.0 ‘‘OptiTox” project (Fig. 6) aims to develop new predictive
tools and integrate results from multiple in silico methods ((Q)
SAR, MoA predictors, read-across and Activity-Activity relation-
ship within a Weight of Evidence (WoE) strategy (Hardy et al.,
2017; Benfenati et al., 2019).

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The views expressed in this manuscript do not reflect the views
of the European Food Safety Authority and are the authors only.
This work was supported by the European Food Safety Authority
(EFSA) [contract number: OC/EFSA/SCER/2018/01 and NP/EFSA/
AFSCO/2016/02 (Edoardo Carnesecchi)]; and LIFE-VERMEER
(LIFE16 ENV/IT/000167). Authors would like to thank Cosima Toma
(European Chemicals Agency) for constructive criticism of the
manuscript and Matteo Sironi (Istituto di Ricerche Farmacologiche
Mario Negri IRCCS) for the graphic design support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.scitotenv.2019.135302.

References

Backhaus, T., Faust, M., 2012. Predictive environmental risk assessment of chemical
mixtures: a conceptual framework. Environ. Sci. Technol. 10.1021/es2034125.
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