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Abstract

Eye movement modelling examples (EMMEs) are instructional videos of a model's

demonstration and explanation of a task that also show where the model is looking.

EMMEs are expected to synchronize students' visual attention with the model's,

leading to better learning than regular video modelling examples (MEs). However,

synchronization is seldom directly tested. Moreover, recent research suggests that

EMMEs might be more effective than ME for low prior knowledge learners. We

therefore used a 2 × 2 between-subjects design to investigate if the effectiveness of

EMMEs (EMMEs/ME) is moderated by prior knowledge (high/low, manipulated by

pretraining), applying eye tracking to assess synchronization. Contrary to expecta-

tions, EMMEs did not lead to higher learning outcomes than ME, and no interaction

with prior knowledge was found. Structural equation modelling shows the mecha-

nism through which EMMEs affect learning: Seeing the model's eye movements hel-

ped learners to look faster at referenced information, which was associated with

higher learning outcomes.
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eye movement modelling examples, instructional videos, joint attention, observational
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1 | INTRODUCTION

The present study addresses the effects of prior knowledge (PK) and

joint attention on learning from eye movement modelling examples

(EMMEs). EMMEs are digital instructional videos that can be used in

online or blended learning environments, which not only show a

model's (e.g., a task expert's or teacher's) demonstration and explana-

tion of a task by means of a screen-recording (with or without voice-

over) but also show where the model was looking by means of a gaze

cursor (e.g., a cross, circle, or dot) overlaid on the screen-recording.

EMMEs were designed based on the assumption that following the

model's gaze would synchronize students' visual attention with the

model's, establishing joint attention, which would lead to better learn-

ing outcomes than regular screen-recording video examples that do

not show the model's eye movements (Van Gog, Jarodzka, Scheiter,

Gerjets, & Paas, 2009). However, whether this joint attention indeed

occurs is seldom directly tested, and thus far, studies have not

addressed the relationship between joint attention and learning out-

comes directly. Moreover, as we will discuss below, evidence for the

effectiveness of EMMEs compared with regular video examples is
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mixed. Recent research suggests PK might influence effectiveness,

with EMMEs being more effective for low PK learners (i.e., if the

learner does not know the name of symbols used in the task), but

effects of PK have not yet been tested within a single study.

1.1 | Learning from video examples

Observing how another person performs a task is a very natural way

of learning (Bandura, 1977; Gergely, 2013), and the effectiveness of

example-based learning has been shown in a wide variety of domains

(for reviews: Van Gog & Rummel, 2010; Van Gog, Rummel, & Renkl,

2019). With the advent of modern technology, it has become very

easy to create and share video modelling examples (MEs; i.e., “how to”

videos), in which a “model” (e.g., a task expert, teacher, or more

knowledgeable peer) demonstrates and explains how to perform a

task. Thus, it is not surprising that video MEs are a common ingredient

in contemporary online or blended learning environments. However,

it is known that example-based learning is only effective when the

examples are well designed (as shown early on by Tarmizi & Sweller,

1988), and a specific challenge in video MEs lies in the fact that infor-

mation is often transient (Ayres & Paas, 2007). To learn effectively

from multimedia materials (like video MEs), learners need to select

(i.e., attend to) the corresponding elements in the verbal and pictorial

information, organize these into a coherent mental representation,

and integrate this representation with PK (Mayer, 2014). Because the

model's verbal explanation is transient (and the pictorial information

might be too), learners need to attend to the pictorial information that

the model is referring to at the right time. If the timely selection of the

right information is hampered, information is not available for organiz-

ing and integrating, and learners will have difficulties understanding

the model's demonstration and explanation. In other words, one major

issue when it comes to video example design is how to ensure that

students pay attention to the same information that the model is

referring to, at the same time; that is, how to establish joint attention.

1.2 | Joint attention in video examples and the
role of PK

Joint attention is fundamental to social communication and learning

(Butterworth, 1995). It underlies early (language) learning (Bloom, 2002;

Meltzoff & Brooks, 2013; Scaife & Bruner, 1975) and leads to better

understanding of what another person is saying (e.g., Richardson &

Dale, 2005). In face-to-face modelling situations, the model and learner

can regularly monitor (by visually checking-back) whether joint atten-

tion to an object is established and maintained; however, this is impos-

sible when studying video examples in asynchronous computer-based

learning environments. This can pose a problem for learning from video

examples, because in complex and information-rich tasks (e.g., learning

to troubleshoot electronic circuits), joint attention is not a given.

That is, even though the model will verbally refer to elements of

the pictorial information in the explanation, this may not suffice to

quickly guide students' attention to that information. The verbal refer-

ents used by the model may be ambiguous for students if they cannot

see what the model is looking at, especially in visually complex tasks.

For instance, suppose the model talks about a “variable resistor” in an

electronic circuit. If students do not yet know the symbol for variable

resistor and/or the circuit contains multiple variable resistors, then

the model's verbal explanation may not suffice to guide students'

attention to the right location at the right time (i.e., to establish joint

attention), and—because the video is moving on—students' under-

standing may be hampered.

In video examples in which the model is visible (e.g., standing next

to the slides: Van Wermeskerken, Ravensbergen, & van Gog, 2018;

manipulating objects on a table: Van Gog, Verveer, & Verveer, 2014),

joint attention can be established by means of gaze or gesture cues

(i.e., the model looking or pointing at the information she or he is

referring to; e.g., Mayer & DaPra, 2012; Ouwehand, van Gog, & Paas,

2015). In screen-recording examples (in which the model's computer

screen is recorded on which she or he demonstrates the task;

e.g., Van Gog et al., 2009), this is more difficult, but eye-tracking tech-

nology provides a unique tool to establish joint attention: The model's

eye fixations (i.e., centre of visual attention) can be recorded during

the demonstration and displayed in the video ME by means of a gaze

cursor (e.g., a cross, circle, or dot). These EMMEs were designed based

on the assumption that following the model's gaze would synchronize

students' visual attention with the model's, establishing joint atten-

tion, which would lead to better learning outcomes than regular

screen-recording video examples that do not show the model's eye

movements (Van Gog et al., 2009).

Yet the assumption that EMMEs establish joint attention is sel-

dom directly tested. The studies that did address how EMMEs affect

students' attention during example study indeed found evidence of

beneficial effects of EMMEs on joint attention: EMMEs were shown

to help learners to adopt the model's viewing pattern (i.e., smaller

distance between model's and learners' viewing location; Jarodzka,

Van Gog, Dorr, Scheiter, & Gerjets, 2013) and look at the pictorial

information that was verbally referenced by the model faster

(i.e., Van Marlen, Van Wermeskerken, Jarodzka, & Van Gog, 2016,

Experiment 2, 2018, Experiment 1) than regular video examples.

However, the relation between the effects of EMMEs on students'

viewing behaviour and their learning outcomes was not tested

directly.

Moreover, evidence regarding the effectiveness of EMMEs for

learning is mixed; some studies did find beneficial effects of EMMEs

compared with regular videoMEs (Gegenfurtner, Lehtinen, Jarodzka, &

Säljö, 2017; Jarodzka et al., 2012; Jarodzka et al., 2013),1 whereas

others did not (Van Gog et al., 2009; Van Marlen, et al., 2016, 2018,

Experiment 1). Recent findings suggest that the explanation for the

mixed results might lie in the PK of the learners, as EMMEs were

found to be more effective than regular video examples for low PK

learners (Van Marlen et al., 2018, Experiment 2; this is also in line with

findings from a meta-analysis on the effectiveness of visual cueing in

multimedia learning: Richter, Scheiter, & Eitel, 2016). One particular

aspect of PK is likely to moderate the effectiveness of EMMEs: When
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learners do not know the verbal labels for visual information (name–

symbol correspondence), they might benefit from the guidance of the

EMMEs to know what information to attend to. For example, when

learners have more PK (e.g., know what a variable transistor symbol

looks like), the verbal explanation might be sufficient to guide their

attention to the right pictorial information at the right time, and they

do not need the visual attention guidance provided by the EMMEs to

learn from the example. However, although the combined findings of

two studies by Van Marlen et al. (2016, Experiment 2, and 2018,

Experiment 2) suggest that PK is an important factor in the effective-

ness of EMMEs, the specific effect of PK of name–symbol correspon-

dences has not been directly tested.

1.3 | The present study

Therefore, in the present study, we used a 2 × 2 design to investigate

the effectiveness of an EMME (vs. a regular video ME) about trouble-

shooting electronic circuits for high and low PK learners. Here, high

PK refers to participants' PK of the correspondence between the

names and symbols of electronic components, which was manipulated

through pretraining. We also recorded students' eye movements dur-

ing example study to investigate the effects of EMMEs on joint atten-

tion (i.e., the distance from the model's viewing location and the

speed of looking at referenced information) and the relation with

learning outcomes.

We hypothesized that EMMEs would have a beneficial effect on

joint attention during example study, with the distance from the

model's viewing location being smaller and the speed of looking at

referenced information being higher in the EMMEs than in the ME

condition (Hypothesis 1: main effect of example type on eye move-

ment data). We further expected that high PK learners would learn

more from the videos (i.e., perform better on the posttest) than low

PK learners (Hypothesis 2: main effect of PK on learning outcome

data) and that EMMEs would be more effective for learning

(as assessed by posttest performance) than ME for low PK learners

but not for high PK learners (Hypothesis 3: interaction effect of exam-

ple type and PK on learning outcome data). Using structural equation

modelling, we also investigated the hypothesis that the relation

between example type and learning would be mediated by joint atten-

tion (Hypothesis 4).

2 | METHOD

2.1 | Participants

Participants were Dutch university students who were fluent in

English as a first or second language and had normal or corrected to

normal vision. Of the 71 participants who originally enrolled in the

study, 12 had to be excluded because (a) they had taken physics clas-

ses in the last 3 years of secondary education or in higher education

(n = 1), (b) they had a score of five or higher on the pretest (n = 1),

(c) they did not pass the PK test (n = 1), (d) calibration of the eye track-

ing system could not be successfully completed after several attempts

(n = 7), or (e) they had a co-occurrence of two of these issues (n = 2).

The final sample therefore consisted of 59 participants for the ana-

lyses of the eye movement data (age M = 23.46 years, SD = 3.04;

47 females). Because the performance data were not affected by cali-

bration of the eye tracking system, participants with unsuccessful cali-

bration could be included in the analyses of these data, yielding a final

sample of 66 participants (ageM = 23.35 years, SD = 2.98; 53 females).

The study was approved by the research ethics committee of the

institute where this study was conducted; all participants provided

written informed consent. The data that support the findings of this

study are openly available in Dataverse at https://hdl.handle.

net/10411/HY8IBJ, (Kok, 2020).

2.2 | Design

The experiment had a 2 × 2 design with between-subjects factors

example type (EMMEs vs. ME) and PK (Low vs. High). Participants

were randomly assigned to one of four conditions: (a) Low PK + ME

(n = 14), (b) Low PK + EMME (n = 16), (c) High PK + ME (n = 15), and

(d) High PK + EMME (n = 14).

2.3 | Apparatus and materials

2.3.1 | Eye-tracking equipment

The experiment was developed using SMI Experiment Center

(Version 3.7; SensoMotoric Instruments GmbH, 2017) and presented

on a 22-in. monitor (1680 × 1050 pixels). Eye movements were

recorded using a SMI RED250 eye tracker with a sampling rate of

250 Hz (SensoMotoric Instruments GmbH, 2017). The screen sub-

tended 44� of visual angle horizontally and 28� of visual angle verti-

cally at a viewing distance of 59 cm. A velocity-based, high-speed

event-detection algorithm was used with a velocity threshold of 40�/

s. Speakers were used as an audio outlet, and a chin rest was utilized

to stabilize participants' head position while their eye movements

were being recorded.

2.3.2 | Pretest

A pretest, filled out on paper, was administered to check whether partici-

pants did not have an excessive amount of PK on symbols of electronic

circuits. The pretest consisted of an open question, asking participants to

list all the electronic components and their corresponding symbols they

knew (time was not limited). The final score was the total number of cor-

rectly listed name–symbol correspondences. Participants were excluded

from the study if they listed five or more components correctly, indicat-

ing their names in English or Dutch and their corresponding symbols

according to the convention used in Hewes (2018).
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2.3.3 | PK training

The PK training (PKT) consisted of teaching participants in the high PK

conditions the names and functions of 10 basic components of elec-

tronic circuits and their corresponding symbols, and the definitions of

series and parallel circuits. A static image depicting these components

with an audio explanation that lasted approximately 4.5 min was used.

Participants assigned to the low PK conditions heard the same audio

explanation on the names and functions of the 10 components and

the definitions of series and parallel circuits but were shown pictures

of the physical images of those components instead of symbols. This

subtle manipulation was necessary to ensure we investigated the

effect of an important aspect of PK, namely, knowing the name–

symbol correspondences. The static image used in the PKT for the

high PK conditions is displayed in Figure 1.

Afterwards, participants were tested on their acquired PK using a

multiple-choice test with 30 questions (each component was presented

three times), which was created digitally in Qualtrics survey software

(Version 2018; Smith, 2002). For each component name, participants in

the high PK conditions were required to select the correct symbol and

participants in the low PK conditions were required to select the cor-

rect picture from a list of all 10 symbols or pictures. After each ques-

tion, feedback indicating the correct answer was displayed: the name–

symbol correspondence in high PK conditions and the name–picture

correspondence in low PK conditions. The goal of the questions and

feedback was twofold. On the one hand, it served as part of the train-

ing (cf. retrieval practice, Roediger & Butler, 2011; Roediger and

Karpicke, 2006). At the same time, it served as a manipulation check.

2.3.4 | Video ME on the working of electronic
circuits

The video ME in the ME condition showed a static image of an elec-

tronic circuit that included all the components presented in the PKT

(see Figure 2), with a voice-over in which a female model explained

the steps needed to troubleshoot the circuit (i.e., to diagnose and

repair its faults). In order for the circuit to work, four faults needed to

be corrected: (a) the voltmeter had to be turned around; (b) the amme-

ter had to be connected in series with respect to its corresponding

source of light; (c) the diode had to be turned around; and (d) the LED

had to be connected in series with the push-button switch or a resis-

tor had to be placed in the path of the switch to assure that the LED

was no longer short-circuited by the push-button switch. In the verbal

explanation, the model did not give any clues regarding name–symbol

correspondences. The video lasted 3 min 41 s.

In the EMME conditions, the video ME additionally showed where

the model was looking (i.e., the model's fixations) as a translucent blue

dot superimposed on the electronic circuit (see Figure 2). The model's

eye movements and voice-over were recorded simultaneously with the

eye tracking equipment described in Section 2.3.1, and the EMME was

created with SMI BeGaze software (Version 3.7; SensoMotoric Instru-

ments GmbH, 2017). The model was instructed to behave didactically

and align the eye movements with the verbal explanation and could re-

record the video as many times as necessary (cf. procedure by Jarodzka

et al., 2013).

2.3.5 | Knowledge posttest

The knowledge posttest, administered via Qualtrics survey software

(Version 2018; Smith, 2002), consisted of 15 items. The first five items

were focused on only diagnosing the faults made in the circuit and had

all the same nine answer options (provided alphabetically; see

Figure A1 for example item). The last 10 items were focused on also

repairing the faults made and all had the same 10 answer options (again

provided alphabetically; see Figure A2 for example item). Multiple

answers could be selected as correct. There was no time limit for the

test, but participants were encouraged to answer as fast as possible.

All circuits presented in the knowledge posttest were variations

of the circuit shown in the video ME containing a selection of or all

components but had a different surface structure (i.e., a different
F IGURE 1 The static image used in the prior knowledge training
for the high prior knowledge (PK) conditions

F IGURE 2 Screenshot of the eye movement modelling examples
(EMMEs) with the translucent blue dot (here located on the battery on
the left) indicating where the model was looking at any given moment
[Colour figure can be viewed at wileyonlinelibrary.com]

572 CHISARI ET AL.

http://wileyonlinelibrary.com


layout). The test was developed in several steps. First, the types of

connections were identified (i.e., circuits could be connected in series,

in parallel, or in series and in parallel). Second, all faults that could pos-

sibly be made with the used components were divided into categories

(viz., position of the meter with respect to the corresponding source

of light; direction of component with regard to the battery; and short-

circuited). All circuits contained two or three of these faults. To make

some items harder, up to two distractors per circuit were included.

This led to 18 possible combinations of circuits, which were listed. Fif-

teen of these were randomly selected and developed into test items.

Five of these 15 combinations were then randomly selected as diag-

nosing items and the other 10 as repairing items.

Each item in the test was scored separately, granting participants

1 point if they performed the correct action pertaining to an answer

option and no points if they performed the incorrect action (e.g., if an

answer option to an item was supposed to be selected and the partici-

pant did, she or he was given 1 point; if an answer option to an item

was not supposed to be selected, but the participant did, she or he

was given no points). Therefore, the maximum score per question was

the number of answer options it contained. The total score was the

sum of the scores for all 15 questions, resulting in a maximum score

of 145 points. Participants' total score was used as learning outcome

measure. Cronbach's alpha for the five diagnosing questions was .70,

and for the 10 repairing questions 0.88, and the whole knowledge

posttest had an excellent reliability of .90 (no items could be removed

to improve the reliability).

2.4 | Procedure

First, participants completed the pretest and a short questionnaire

asking for demographics, both on paper. They were then seated in

front of the monitor and completed the PKT according to their

assigned experimental condition. After the PKT, all participants were

tested on their level of PK with a multiple-choice test. To make sure

that participants in the high PK conditions had gained the required PK,

they were only allowed to proceed to the video ME after (a) having an

80% overall correct performance on one round of the test and

(b) making no mistakes in the last 10 items. If this was not the case

after the first round (n = 5), participants were automatically directed

into the second (n = 5) and third (n = 3) rounds without watching the

video again until they met the two requirements (feedback was pro-

vided in the first round only). We considered 80% to be the lower

boundary for a score to be called high, which would mean that partici-

pants would know the names of at least eight out of the 10 compo-

nents in this round. With the additional requirement of making no

mistakes in the last 10 items, this should ensure that participants

knew all name–symbol correspondences. Then, the eye tracking

equipment was calibrated using a 9-point calibration with a 4-point

validation procedure, which was only considered to be successful if

the error on the x-axis and y-axis was not larger than 1.0� of the visual

angle. Next, participants were instructed that they would study a

video example (without a reference to whom the model was) and

subsequently studied the video example (ME or EMMEs depending

on their assigned condition) while their eye movements were

recorded. Finally, participants completed the knowledge posttest. The

total experiment had an average duration of 40 min.

2.5 | Data analysis

2.5.1 | Joint attention

Two measures of joint attention were computed. First, the alignment

between the model's and each participant's eye gaze was measured

using Euclidean distances (i.e., the distances in pixels between the

model's gaze location and the learners' gaze location; see also

Jarodzka et al., 2012). Average Euclidean distances were calculated

for each participant using MATLAB (Version R2017a; Moler, 1984).

This measure corresponds to the average distance between the

expert's gaze location and the participant's gaze location throughout

the video, in both EMME and ME conditions, and was calculated

based on raw gaze data. The average Euclidean distance does not

account for the fact that participants need time to plan eye move-

ments that follow the EMMEs or (in the case of ME conditions) the

verbal explanation. The time needed to follow the dot of the EMMEs

is likely to be less than 0.5 s (the time needed to program saccades

that follow the dot), whereas the time needed to follow the

verbal explanation for ME conditions is likely to be around 2–3 s (the

time needed to interpret verbal data and program saccades;

cf. Richardson & Dale, 2005). Thus, the average Euclidean distance is

likely to favour the EMME conditions. Therefore, we calculated each

individual's Euclidean distance for a range of 46,200-ms interval lags,

starting at −3,000 and ending at +6,000 ms (see Richardson & Dale,

2005, for similar lags). We then calculated each individual's optimal

lag (i.e., that lag with the lowest Euclidean distance between expert's

gaze location and the participant's gaze location), and we used the

Euclidean distance for each individuals' optimal lag (minimal distance)

as a measure of joint attention. The measure “minimal distance” is

thus a conservative measure of joint attention.

Second, the entry time (measured in ms) was calculated as the

mean time a participant needed to fixate on a referent after it was

mentioned in the verbal explanation. A lower entry time (i.e., the par-

ticipant fixates the referent soon after it was mentioned) reflects

higher joint attention. For each circuit component that was verbally

referred to by the model, an area of interest (AOI) was created using

BeGaze 3.7 software (SensoMotoric Instruments, GmbH, 2017).

Those AOIs only became “active” when the component name was

used in the model's explanation and finished when the next compo-

nent was being mentioned. The entry time was calculated from the

moment an AOI would become active. In total, the video example

contained 30 active AOIs (identical for EMME and ME videos). The

average active time of AOIs was 7,553.47 ms (range

1,467–33,007 ms). The average size of AOIs was 37,156.9 px (range

15,930–51,986 px). The active time of an AOI was used as entry time

if the AOI was not looked at by a participant. Again, this was done to
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make this a conservative measure of entry time: If, in some conditions

most AOIs would never be looked at, but a few AOIs would be looked

at quickly, the average entry time of only those AOIs would be an

overestimation of joint attention.

2.5.2 | Analyses of variance

Hypotheses 1–3 were tested with 2 × 2 analyses of variance

(ANOVAs) with example type (EMMEs vs. ME) and PK (Low vs. High)

as between-subjects factors. The ANOVAs were based on N = 59 for

the eye movement data and N = 66 for the performance data (see

Section 2.1). Partial eta-squared (ηp
2) is reported as a measure of

effect size with values of .01, .06, and .14 corresponding to small,

medium, and large effect sizes, respectively (Cohen, 1988). Bonferroni

correction was applied to control familywise error due to multiple

testing (see Field, 2013, pp. 68–69), resulting in a significance level

of α = .017.

Before analysis, the assumptions of (a) normality (assessed with

histograms, skewness and kurtosis values, and the Shapiro–Wilk test),

(b) homogeneity of variance, and (c) absence of outliers (participants

were considered an outlier with z ≥ |2.5|) were checked. For entry

time, one univariate outlier was identified (z = 2.81) and therefore

removed from the ANOVA of this variable.

2.5.3 | Structural equation modelling

Hypothesis 4 was tested using structural equation modelling in Mplus

8 software (Muthén & Muthén, 2018). Structural equation modelling

was used because it allows for testing both mediators in one model,

incorporates measurement error in the model, and offers greater power

than hierarchical regression to detect effects (Cheung & Lau, 2008; Sar-

desmukh & Vandenberg, 2017). The manifest path model displayed in

Figure 3 was specified. In order to test the hypothesis that EMMEs

would foster joint attention, which, in turn, would have a beneficial

effect on learning outcomes, it was tested whether (a) β31 * β23 > 0,

(b) β41 * β24 > 0, and (c) β21 = 0 (indicating that joint attention perfectly

mediates the effect of example type on learning). The model was based

on N = 59 for both eye movement data and performance data.

The total effect and all indirect effects were evaluated using

bootstrapped confidence intervals (using 1,000 bootstraps); all direct

effects were evaluated at α = .05. For the path model, model fit was

evaluated using the following five model fit indices: (a) chi square test

of model fit (p > .05 indicates good fit), (b) root mean square error of

approximation (RMSEA; <0.08 indicates adequate fit; <0.05 good fit),

(c) comparative fit index (CFI; >0.90 indicates adequate fit; >0.95

good fit), (d) Tucker–Lewis index (TLI; >0.90 indicates adequate fit;

>0.95 good fit), and (e) standardized root mean square residual

(SRMR; <0.08 indicates good fit; Hu & Bentler, 1999). Besides that, R2

effect size was reported for each endogenous (i.e., being predicted)

variable in the model. For R2, values of .25, .50, and .75 correspond to

weak, moderate, and substantial effect sizes, respectively (Hair,

Ringle, & Sarstedt, 2011).

Before analysis, the assumptions for structural equation models

were checked. For all variables used in the path model (i.e., knowledge

posttest score, minimal distance, and entry time), multivariate normal-

ity could be assumed according to Q–Q plots. According to the

Mahalanobis distance test for the eye-tracking measures, defined as

χ2(2) = 9.21, p < .001, one multivariate outlier was present

(χ2 = 17.02), but Cook's values were close to zero (maximum value of

0.12), indicating that the outlier did not exert large influence.

According to the Mahalanobis distance test for the knowledge post-

test scores, defined as χ2(1) = 6.64, p < .001, no multivariate outliers

were present (maximum values were below 6.64).

3 | RESULTS

The means and standard deviations for pretest score, knowledge post-

test score, minimal distance, and AOI entry time per condition are pro-

vided in Table 1. As can be seen in the first column, scores on the pretest

F IGURE 3 Structural equation model for
testing Hypothesis 4. e indicates the error
term, ψ indicates the residual variances, and β

indicates parameter estimates
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were low for all conditions: On average, participants knew less than one

name–symbol correspondence before the start of the experiment.

3.1 | Hypothesis 1: Joint attention

3.1.1 | Minimal distance

In line with our first hypothesis, the 2 × 2 ANOVA on minimal dis-

tance showed a large, significant main effect of example type, F

(1, 55) = 74.08, p < .001, ηp
2 = 0.574, with participants in the EMME

conditions (M = 209.49, SD = 79.29) fixating more closely to the

model's viewing location than participants in the ME conditions

(M = 384.26, SD = 82.06). There was no significant main effect of PK,

F(1, 55) = 0.059, p = .808, ηp
2 < 0.001, but there was a significant

interaction between example type and PK, with a medium effect size,

F(1, 55) = 6.54, p = .013, ηp
2 = 0.106. This interaction indicates that

the effect of example type on minimal distance differed as a function

of PK: EMMEs decreased minimal distance in both the high PK and

low PK conditions, but this decrease was much larger for participants

in the low PK condition (cf. Table 1 and Figure 4).

3.1.2 | AOI entry time

In line with our first hypothesis, there was a large, significant main effect of

example type, F(1, 54) = 15.26, p < .001, ηp
2 = 0.220, with participants in

the EMME conditions (M = 2,155.78, SD = 703.82) having a faster entry

time (i.e., displayingmore joint attention) than participants in the ME condi-

tions (M = 2,932.56, SD = 844.32). There was no significant main effect of

PK, F(1, 54) = 2.88, p = .095, ηp
2 = 0.051, nor a significant interaction

between example type and PK, F(1, 54) = 0.45, p = .506, ηp
2 = 0.008.

3.2 | Hypotheses 2 and 3: Posttest performance

The 2 × 2 ANOVA on knowledge posttest performance showed no

significant main effect of example type, F(1, 62) = 0.145, p = .704,

TABLE 1 Means and standard deviations for pretest score, knowledge posttest score, minimal distance, and entry time for each condition
separately

Pretest score Knowledge posttest score Minimal distance Entry time

Condition n M SD n M SD n M SD n M SD

Low PK + ME 17 0.12 0.33 17 105.76 13.30 14 413.58 77.70 14 3,179.80 819.68

Low PK + EMME 17 0.06 0.24 17 107.29 13.22 16 187.63 55.21 15a 2,255.91 743.28

High PK + ME 17 0.35 0.70 17 114.00 12.17 15 356.90 78.75 15 2,701.81 826.87

High PK + EMME 15 0.07 0.26 15 114.80 10.47 14 234.46 96.16 14 2,048.50 669.32

Abbreviations: EMME, eye movement modelling example; ME, modelling example; PK, prior knowledge.
an = 15 instead of 16, because one participant was removed for being an outlier on this variable.

F IGURE 4 Mean Euclidean distance over
the course of the instruction video computed
for 45 lags with an interval of 200 ms, starting
at −3,000 and ending at +6,000 ms, for each
condition separately. Error bars display a ±1
standard error. The vertical line indicates a lag
of 0 ms between the model's and participants'
gaze locations. EMME, eye movement
modelling example; ME, modelling example;
PK, prior knowledge
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ηp
2 = 0.002. In line with our second hypothesis, there was a significant

main effect of PK, with a medium effect size, F(1, 62) = 6.629,

p = .012, ηp
2 = 0.097, with participants in the high PK conditions

(M = 114.38, SD = 11.23) outperforming participants in the low PK

conditions (M = 106.53, SD = 13.08). In contrast with our third

hypothesis that EMMEs would be more effective for learning than

ME for low PK students but not for high PK students, there was no

significant interaction between example type and PK, F(1, 62) = 0.014,

p = .905, ηp
2 < 0.000.

3.3 | Hypothesis 4: Relation between joint
attention and learning

Structural equation modelling was used to test whether the distance

from the model's viewing location and the entry time mediated the

effect of example type on the knowledge posttest score (see

Figure 3). The specified model fitted the data quite well, χ2(1) = 1.08,

p = .300; RMSEA = 0.04; CFI = 1.00; TLI = 0.99; SRMR = 0.03. The

indirect effect of example type on learning through minimal distance

was not significantly different from zero, β31 * β23 = 3.68 (standard-

ized β31 * β23 = 0.15), 95% CI [−6.71, 14.07]. However, the indirect

effect of example type on learning through entry time was significantly

different from zero, β41 * β24 = 4.40 (standardized β41 * β24 = 0.18),

95% CI [0.78, 8.02]. There was no evidence that the EMMEs fostered

learning directly in addition to the indirect effect of the EMMEs on

learning through distance and entry time, β21 = −7.16 (standardized

β21 = −0.29), z = −1.13, p = .257. This indicates that entry time (but

not distance to the model's viewing location) perfectly mediated the

effect of example type on learning. The model explained 21%, 55%,

and 14% of the variability in knowledge posttest performance, mini-

mal distance, and AOI entry time, respectively. These effect sizes can

be considered weak for knowledge test score and entry time, and

moderate for minimal distance.

In order to explore whether PK moderated the above-mentioned

model, again, the manifest path model displayed in Figure 3 was speci-

fied, but now for low PK and high PK learners separately. Stepwise

constraining direct effects to be equal across PK conditions showed

that only β31 was not the same for low PK learners and high PK

learners. This implies that the level of domain-specific PK moderated

the effect of example type on minimal distance. More specifically, for

low PK learners, β31 = −234.62 (standardized β31 = −0.87), z = −9.56,

p < 0.001, whereas for high PK learners, β31 = −122.44 (standardized

β31 = −0.59), z = −3.71, p < 0.001, indicating that the effect of the

condition on minimal distance is negative in both groups, but the

effect is much stronger (i.e., more negative) for low PK learners. The

specified model fitted the data quite well, χ2(6) = 9.51, p = .147;

RMSEA = 0.14; CFI = 0.96; TLI = 0.91; SRMR = 0.21. For low PK

learners, the model explained 27%, 75%, and 13% of the variability in,

respectively, knowledge test score, minimal distance, and entry time.

These effect sizes are respectively, weak, moderate and weak. For

high PK learners, these percentages were 17%, 34%, and 20%, respec-

tively indicating weak, moderate, and weak effect sizes.

4 | DISCUSSION

We investigated the effectiveness of EMMEs as a function of learners'

PK, manipulating PK via pretraining. We also applied eye tracking dur-

ing example study to directly test the assumption that by showing stu-

dents where the model is looking, EMMEs improve joint attention,

and that it is this joint attention that improves learning.

We found support for our first hypothesis that studying an EMME

would have a beneficial effect on joint attention during example study

compared with studying a regular video ME that does not show where

the model is looking. Students' gaze location was closer to the model's

gaze location during example study, and students looked faster at the

pictorial information that the model verbally referred to when studying

EMMEs. These results are in line with findings from the few prior studies

that investigated students' attention during example study (Jarodzka

et al., 2013; Van Marlen et al., 2016, Experiment 2, 2018, Experiment 1)

and show that EMMEs indeed improve joint attention between the

model and the learner. But does joint attention lead to better learning?

As expected (Hypothesis 2), students with high PK showed better

learning outcomes after video example study than students with low

PK, which shows that our pretraining manipulation of PK was success-

ful. Yet in contrast to our third hypothesis, we did not find the

expected interaction effect indicating that EMMEs would be more

effective than regular examples for low (but not for high) PK learners

(nor was there a main effect of EMMEs on learning). Interestingly,

however, structural equation modelling showed that in line with our

fourth hypothesis, the relation between example type and learning

outcomes was mediated by one of the joint attention measures (AOI

entry time). Furthermore, this mediation was moderated by PK: The

attention of participants in the low PK condition was guided more by

the EMMEs than the attention of high PK condition. Thus, although

we did not find a direct effect of EMMEs on learning outcomes, our

findings do provide evidence for an indirect effect, indicating that a

higher degree of joint attention (and in particular, looking faster at the

information that the model is referring to) was associated with better

learning outcomes (i.e., “indirect-only mediation”; Zhao et al., 2010).

4.1 | Limitations and future research

This study has some limitations that may provide potential explanations

for why we failed to find an interaction effect between example type

and PK. First, we manipulated PK through pretraining in which students

in the low PK conditions did not acquire knowledge on the symbols

used in the video examples, but they did receive information on the

function of the components. This specific operationalization allowed us

to investigate whether knowing name–symbol correspondences mod-

erates the effectiveness of EMMEs. Thus, our findings might have been

different if we had used a control condition in which students had no

PK whatsoever (although in that case, if differences would have been

found, it would have been unclear whether they arose from not know-

ing the function, the name–symbol correspondences, or both). The

name–symbol correspondences in this study represent the use of task-
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specific vocabulary, or jargon, in general: Experts might not always be

aware that they use technical language to refer to specific aspects of a

task, and this might impact the effectiveness of video examples (Hinds,

Patterson, & Pfeffer, 2001). Indeed, we found that only knowing the

name–symbol correspondences (without the underlying extensive

schemata that experts possess) already helped participants to establish

joint attention with the model, in such a way that participants in the

low PK group were much more reliant on the EMMEs to guide atten-

tion whereas those who knew the name–symbol correspondences

could follow the verbal explanation without following the eye move-

ments (cf. the ability-as-compensator hypothesis; Richter et al., 2016).

Second, our sample size would not have been large enough to detect a

small effect. Third, our hypothesis regarding PK was based on findings

by Van Marlen et al. showing that EMMEs on learning to solve a geom-

etry problem were not effective for university students (2016, Experi-

ment 2) but were effective for secondary education students who had

less PK (Van Marlen et al., 2018, Experiment 2). As we cannot rule out

that there may be other relevant differences between these two

groups of learners than their PK and between our (conceptual) elec-

tronic circuits task and their geometry problem solving task, it would

be interesting in future research to replicate the design of the present

experiment using the exact same tasks as Van Marlen et al., with sec-

ondary education students as participants.

The fact that AOI entry time but not the distance to the model's

viewing location was found to mediate the effect of example type on

learning outcomes suggests that the mechanism through which

EMMEs may contribute to learning lies mainly in improving the selec-

tion of the right pictorial information at the right time (i.e., at the

moment it is mentioned in the model's verbal explanation). If that is the

case, this could in all likelihood also be established through other ways

of visual cueing as well (Richter et al., 2016; Van Gog et al., 2014). Nev-

ertheless, it is interesting to know that attention and learning can be

guided by visualizing the model's eye movements, because other forms

of visual cueing in videos would require postproduction (e.g., adding

arrows or highlighting), which would rely on deliberate decisions by the

model (e.g., pointing with a mouse cursor), who—because of his or her

expertise—may not always know what the students do not know

(i.e., when to provide and when to withhold attention guidance).

However, it is important to keep in mind that not all EMMEs nec-

essarily contain verbal information; future research would have to

show whether the distance to the model's viewing location may be an

important mechanism for learning when EMMEs are used to convey

perceptual strategies (e.g., Mason et al., 2015, 2016; Mason et al.,

2017; Salmerón & Llorens, 2018; Scheiter et al., 2018). Moreover,

there may be other tasks for which more continuous gaze following

(i.e., minimal distance to the model's viewing location) is important

(e.g., visual search tasks). Further research could explore the working

mechanisms of EMMEs in different types of tasks using the measures

of entry time and/or minimal distance.

Finally, it is important to note that including the online measures of

joint attention was important to shine additional light on the behaviour-

level outcomes: If we had not included these measures, we would have

incorrectly concluded that EMMEs had no effect on learning.

5 | CONCLUSION

To conclude, to the best of our knowledge, the present study was the

first to directly test and confirm the key assumption that one aspect

of joint attention (i.e., entry time) is the mechanism through which

EMMEs affect learning. Seeing the model's eye movements helped

learners to look faster at the pictorial information that the model

referred to in her verbal explanation, and looking faster at referenced

information was associated with higher learning outcomes.
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ENDNOTE
1 Note that positive effects of EMMEs in comparison with no examples or

written examples were also observed for a different use of EMMEs,

namely, using the model's eye movements to convey study strategies,

for example, text–picture integration (Mason, Pluchino, & Tornatora,

2015, 2016; Mason, Scheiter, & Tornatora, 2017; Salmerón & Llorens,

2018; Scheiter, Schubert, & Schüler, 2018).
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A. APPENDIX

F IGURE A1 Example of a knowledge posttest item focused on
only diagnosing the faults made in the circuit. In this circuit, the
voltmeter and its corresponding source of light are connected in
series and the ammeter is connected in the wrong direction. Hence,
answer options 2 and 8 should be selected as correct

F IGURE A2 Example of a knowledge posttest item focused on
also repairing the faults made in the circuit. In this circuit, (a) the
voltmeter is connected in the wrong direction, (b) the lamp is
short-circuited by the (push-button) switch, and (c) the lamp is
short-circuited by bare wire. To repair these faults, one should
(a) turn the voltmeter around, (b) connect the lamp and the (push-
button) switch in series or place a resistor in the path the (push-
button) switch is in, and (c) place a resistor in the path made of
bare wire. Hence, answer options 2, 5, 6, and 10 should be
selected as correct
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