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Abstract – When a wave is incident on a complex scattering medium, the transmitted intensity
differs from the incident one due to extinction. In the absence of absorption, the extinguished
power is equal to the total scattered power, a well-known conservation law termed the optical
theorem. Here, we extend the case of a single incident wave to the situation of scattering and
extinction by multiple incoming waves. The emerging generalized optical theorem has the exciting
consequence that multiple incident waves show mutual extinction and mutual transparency, phe-
nomena that do not exist in common forward scattering or self-extinction. Based on both exact
calculations of realistic three-dimensional (3D) samples containing many (up to 104) scatterers
and on approximate Fraunhofer diffraction theory we make the striking observation that the total
extinction of two incident waves is greatly enhanced, called mutual extinction, or greatly reduced,
mutual transparency, by up to 100% of the usual single-beam extinction. In view of the surpris-
ingly strong mutual extinction and transparency, we propose new experiments to observe mutual
extinction and transparency, namely in two-beam experiments with either elastic and absorb-
ing scatterers, in optical wavefront shaping, in dynamic light scattering, and we discuss possible
applications.
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Introduction. – In many branches of physics, Nature
is interrogated by performing scattering experiments [1].
An incident wave or particle beam impinges on a target
sample, and characteristics of the scattered waves or par-
ticles are analyzed to find detailed information about the
target. The theory of scattering is a mature, unifying
branch of theoretical physics [2–4]. The formalism for the
scattering of particles and the formalism for the scattering
of waves are remarkably similar, despite the vast differ-
ences in their character, and the large varieties of parti-
cles and waves. In all treatises on scattering theory, the
S-matrix and the T -matrix are key concepts to describe
the target’s influence on the scattering.

In traditional scattering experiments, a single beam of
waves is incident on a target. Scattering experiments for

classical waves, such as light, microwaves and sound, often
involve the tremendous complication of multiple scattering
that arises in turbid samples. Fortunately, much progress
has meanwhile been made in understanding multiple scat-
tering of classical waves [5–7]. In the recently developed
popular method of wavefront shaping (WFS) [8,9], multi-
ple beams are simultaneously incident on a turbid sample,
with a range of incoming angles, amplitudes and phases.
WFS has led to breakthroughs in imaging and focusing
in turbid media. Right after the discovery of WFS in
our group [10,11], many WFS experiments have been per-
formed [12], even in the (ultrafast) time domain [13–15].

Theoretical efforts have been made to understand WFS
in terms of the correlations in the transmitted light, see,
for example, refs. [16–18]. In addition studies were made
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of advanced algorithms used to find the optimal wavefront,
e.g., in refs. [19,20]. In our desire to understand more of
the basic principles of WFS, we have recently embarked
on calculating exactly the light scattering properties of a
large number of dipoles acted on by a multiple of incoming
waves. Our method to calculate the T -matrix of a set
of dipoles is summarized in the appendix. In the WFS
calculations we optimize the phases of all incoming beams
to obtain an increased intensity in a single chosen outgoing
direction. Our initial results were puzzling: it appeared as
if energy was not conserved, although the optical theorem
for the individual beams was obeyed.

Therefore, we decided to study in more detail the princi-
ples of the energy balance. By requiring the extinguished
and scattered power to be equal for elastic scattering,
independent of the amplitudes and phases of all incom-
ing beams, we obtain a generalized optical theorem that
appears to be known in abstract form [21] and in more
detail for spherical scattering objects [2]. Our alterna-
tive derivation clarifies that when multiple beams are in-
cident, there are cross-terms in the extinction and —most
strikingly— that these cross-terms are experimentally ob-
servable. When incorporating the cross-terms, that we
will refer to as mutual extinction, into our WFS calcula-
tions we find energy conservation to a very high precision,
typically better than 10−16 relative error.

The occurrence of mutual interference in the extinction
is important for interpreting scattering experiments with
multiple incoming beams and points toward a number
of new experiments. The simplest possible experiments
where the mutual extinction will show up is in exper-
iments with two beams. We suggest in this paper a
number of two-beam experiments that will exhibit these
mutual extinction effects. The beauty of these new and
large mutual extinction effects is that they not only
appear for white paint-like samples —that contain elastic
scatterers with high albedo— but also for black paint-like
samples that contain strongly absorbing particles with
corresponding small albedo.

Theory. – In the scattering of light by multiple-
scattering objects to a large extent polarization effects
are lost. So we will limit ourselves to scalar waves, al-
though the extension of the theory to include polarization
is straightforward.

In scattering theory it is appropriate to partition the
field amplitude ψ into an unperturbed part and a scattered
part:

ψ = ψin + ψscat, (1)

making immediately clear that absorption is also a form
of scattering. Extinction is the interference of the in-
coming beam with its own scattered beam, described by
Re(ψinψ

∗
scat), whereas the scattered intensity is described

by ψscatψ
∗
scat.

For far-field observations a more relevant quantity
than the intensity is the current, for scalar waves

defined as [22]

J ≡ −Re[(∂tψ)∗∇ψ]. (2)

From the current J(r) the observable power S can be
calculated, S = limr→∞ r2

∫
dr̂Jr. We will denote the

extinguished power as Sext and the scattered power as
Sscat. When the scattering is elastic, Sext = Sscat.

One incoming wave. We will start with the case of one
incoming plane wave that is scattered. The amplitude in
far field is given by

lim
r→∞ψ(r) = Aei ω

c k̂in·r−iωteiφ

+Af
(ω
c
r̂,
ω

c
k̂in

) ei ω
c r−iωt

r
eiφ, (3)

where the real-valued A represents the amplitude (units
are the square root of the energy density), ω/c the magni-
tude of the wave vector, k̂in the incoming direction and
φ the phase of the plane wave. The scattering ampli-
tude f(ω

c k̂out,
ω
c k̂in), introduced in eq. (3), denotes the

scattering strength from incoming direction k̂in to outgo-
ing direction k̂out. An alternative property to quantify
scattering is the T -matrix, defined by T (ω

c k̂out,
ω
c k̂in) ≡

−4πf(ω
c k̂out,

ω
c k̂in). For one incoming wave the scattered

power is the differential scattering integrated over solid
angle,

Sscat =
ω2

c
A2

∫
dk̂out

∣∣∣f
(ω
c
k̂out,

ω

c
k̂in

)∣∣∣2 , (4)

and the extinguished power becomes in this case Sext =
4πωA2Imf(ω

c k̂in,
ω
c k̂in). For extinction only the term

k̂out = k̂in survives (forward scattering) as the ever in-
creasing spatially frequency in the phase of the cross-
terms wipes out any other contribution in ψinψ

∗
scat (see

footnote 1). In the case of elastic scattering Sext = Sscat
resulting in the famous optical theorem

4πωImf
(ω
c

k̂in,
ω

c
k̂in

)
=
ω2

c

∫
dk̂out

∣∣∣f
(ω
c

k̂out,
ω

c
k̂in

)∣∣∣2 .
(5)

Multiple incoming waves. The case of multiple incom-
ing waves is described by the following field amplitude:

ψin(r) =
M∑
i=1

Aie
i( ω

c k̂in,i·r−ωt)eiφi , (6)

where each beam has its own real-valued amplitude Ai,
direction k̂in,i and its own phase φi. When this set of in-
coming waves is sent to a target, all waves are scattered.
Let us look at the current. Given the general decompo-
sition (1) for each incoming wave we find, for each pair
of incoming waves i and j, sixteen contributions to the

1To be mathematically more precise: the extinction contribution
is proportional to δ(k̂out − k̂in).
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current: four incoming contributions, four scattered con-
tributions and eight extinction contributions. After cal-
culating the extinction contributions and the scattering
contributions and requiring them to be equal in the case
of elastic scattering, and requiring the equality to be in-
dependent of all amplitudes and all phases, we arrive at

2πωf
(ω
c
k̂1,

ω

c
k̂2

)
− 2πωf∗

(ω
c

k̂2,
ω

c
k̂1

)
=

i
ω2

c

∫
dr̂f

(ω
c

r̂,
ω

c
k̂1

)
f∗

(ω
c

r̂,
ω

c
k̂2

)
. (7)

We verified this generalized optical theorem for our collec-
tion of dipoles and found for elastic scattering an agree-
ment better than 10−16 relative error. We have refrained
from dividing the l.h.s. and r.h.s. of eq. (7) by 2πω be-
cause as it stands now the l.h.s. and the r.h.s. repre-
sent, respectively, exactly the extinction and the scattering
power, after having multiplied the l.h.s. and r.h.s. terms
by the appropriate wave amplitudes and phase factors and
taking the imaginary part.

Two waves: proposed experiments. – Let us dis-
cuss several experimental settings where the mutual ex-
tinction could be observed. The simplest, highly relevant
realization is the situation where one incoming (laser)
beam is split 50%–50% into two beams and then sent to
a sample. The two experimental properties that can be
adapted by the experimentalist are the relative phases of
the two beams and the angle γ between them. A simpli-
fied set-up of the experiment is sketched in fig. 1 where we
suggest to use a scattering sample with optical density of
about 0.3 to ensure that the two extinguished beams are
clearly visible and easy to detect.

Figure 1(a) shows two beams incident from the left on
a complex medium consisting of scatterers with a high
albedo. One incident beam has a phase shifter which,
with the phase φ, can be tuned and the other beam has a
modulator for phase-sensitive detection, see, e.g., ref. [23].
Both beams emanate from the right of the slab —after
experiencing a certain extinction— before propagating to
their respective detectors. The phase-sensitivity detec-
tion is necessary because there will be a lot scattered light
present.

The beauty of mutual extinction is that it also exists
for strongly absorbing samples. In fig. 1(b) we sketch an
experiment with two beams that are incident from the left
on a complex medium consisting of scatterers with a low
albedo.

The minimum observable level of change in the trans-
mitted intensity of coherent light in these experiments is
determined by the Poisson statistics of photodetection,
and in WFS experiments it is of the order of 1/η, where η is
the maximal level of intensity enhancement achieved [24].
The enhancement has recently been shown to reach values
on the order of 105 [25], and, as a result, intensity fluctu-
ations on this level should be detectable in an optimized
setting. In the next section we will show by calculation

Fig. 1: (a) Schematic of an experiment in which two beams
of equal intensity, derived from one laser beam, are incident
on a semi-transparent white scattering slab. Phase-sensitive
detection of the signal on beam 1 is completely due to mutual
extinction. By tuning the phase shifter the mutual extinction
can be varied between maximal and minimal for a particular
angle γ. (b) Same as (a) with a semi-transparent absorbing
sample. This experiment will prove that mutual extinction
also occurs in the case of absorption only, i.e., in the absence
of scattered intensity.

that mutual extinction is so large that in the case of the
experiment sketched in fig. 1(b), it might even be visible
to the naked eye as in that case there is no stray light.

Magnitude of mutual extinction. – To assess
the importance of mutual extinction, its magnitude is
paramount. Therefore, we have calculated the mutual
extinction for large samples consisting of many scat-
terers by exact evaluation of their T -matrix (see ap-
pendix). Moreover, we have estimated the magnitude of
mutual extinction by applying Fraunhofer diffraction the-
ory (FDF) [26,27] that is asymptotically correct the more
opaque the scattering object is and the larger its size is in
comparison to the wavelength.

Figure 2 shows the total extinction as a function of the
phase difference between the two beams that are incident
on a large slab-like box that contains no less than 104

scattering particles. For a phase difference φ = 0 the total
extinction is strongly reduced, indicating mutual trans-
parency, and for φ = π the total extinction is strongly in-
creased, signalling mutual extinction. The total extinction
shows a smooth sine interference pattern with an ampli-
tude of 25% that is readily observable in an experiment.

Figure 3 shows the maximum and minimum total ex-
tinction obtained from interference patterns as in fig. 2, as
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Fig. 2: Calculated total extinction (red curve) in a two-beam
experiment as shown in fig. 1(a) as a function of the phase
difference (φ1 − φ2) between the two beams. The scattering
sample is a rectangular box of size 80λ × 80λ × 10λ containing
10000 randomly positioned elastic point dipoles on resonance.
The mean free path is � = 20.1λ, and the angle between the
two beams is γ = 1◦. The extinction with only the sum of the
forward scattering (self-extinction) of the two beams included,
is the horizontal blue dotted line. Both graphs are scaled by
the sum of the forward scattering of the beams at zero angle.

a function of the angle between the two incident beams.
In the limit of small angles, the mutual extinction is ex-
tremely strong, with modulations up to 100%, as shown in
fig. 3(a). At about γ = 0.75◦ the mutual extinction van-
ishes, before increasing again to 25% at γ = 1◦ (cf. fig. 2).
Since the range between 0.75◦ and 1.4◦ is the first speckle
spot, it is obvious that the large mutual extinction is trans-
ferred by the scatterers. Figure 3(b) shows that at much
larger angles the mutual extinction is less but still at an
experimentally observable few percent level. The pattern
is more speckle-like than at small angles, probably since
we are probing large-wave-vector effects of the sample.

For the diffraction model we assume that the form of the
scattering object is a 3D rectangular box with as x-size a,
as y-size b and as z-size c. We begin with a rectangular slit
lying in the z = 0 plane with the same x-size and y-size
as the box. After calculating the diffraction properties of
this slit we use Babinet’s principle to infer the scatter-
ing properties of the box, just by reversing the sign of the
diffracted amplitude. Consider a beam incident on this 2D
rectangular slit, with the incident direction k̂in defined by
its three direction cosines {cos θx,in, cos θy,in, cos θz,in} and
with the outgoing direction k̂out, defined by its three direc-
tion cosines {cos θx,out, cos θy,out, cos θz,out}. With Fraun-
hofer diffraction (FDF) theory one can easily calculate the
amplitude for outgoing direction k̂out and incoming direc-
tion k̂in [26,27]. By reversing the sign of this amplitude
and adding the incoming beam to the result, the total

Fig. 3: (a) Calculated total extinction in a two-beam experi-
ment as shown in fig. 1(a) as a function of the angle γ between
the two beams. At each angle the relative phase was varied to
obtain the maximal (green curve) and the minimal (red curve)
mutual extinction, see fig. 2. The properties of the scattering
object and the extinction scaling are given in the caption of
fig. 2. The result of Fraunhofer diffraction theory (black dashed
curve) agrees very well with the exact results if a multiplicative
normalization factor of 0.22 is used. The extinction with only
the sum of the forward scattering (self-extinction) of the two
beams included, is the blue dotted line. (b) Same sample as
(a) for large angle γ between the beams. Mutual extinction
reveals itself as a speckle for all angles, with a magnitude of a
few percent. Here the Fraunhofer result (grey curve) differs, as
expected.

diffracted amplitude of the rectangle is of the standard
form (4) with

fFDF

(ω
c

k̂out,
ω

c
kin

)
=
iab

λ
sinc(α)sinc(β), (8)

where α ≡ ω
2ca(cos θx,out − cos θx,in) and in which

β ≡ ω
2cb(cos θy,out − cos θy,in). By writing the Fraun-

hofer diffraction result in form (8) we have generalized
Fraunhofer diffraction to account for mutual extinction.
Formula (8) shows that the mutual extinction can be huge,
of the same order as the self-extinction. A fact we al-
ready discovered from our exact numerical calculations.
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Fraunhofer diffraction is based on the scattering sample
being impenetrable. We introduce a multiplicative nor-
malization factor to bring at zero angle the extinction
calculated with diffraction theory exactly equal to the
rigorous result. We have found, as expected, that the
smaller the mean-free path gets, the closer the normal-
ization factor approaches 1. For instance for a block of
8λ × 8λ× 1λ containing 1000 dipoles the mean free path
is 0.20λ and the normalization factor for this nearly com-
pletely opaque sample is 0.97.

In the more translucent sample of fig. 3 we see that the
result from Fraunhofer diffraction is in excellent agreement
with the exact theory at small angles when using 0.22
as the multiplicative normalization factor. Conversely,
at large angles diffraction theory gives poor results, see
fig. 3(b), as expected: Fraunhofer diffraction is based on
the scattering object being impenetrable and the impen-
etrability of opaque samples becomes less with oblique
incidence.

In our theory the incoming beams are plane waves,
whereas in an experiment one has to deal with beams of
finite extent leading to an overlap factor that will reduce
the signal compared to the theoretical result.

Generalizations. –

Wavefront shaping. The results in this paper suggest
to perform WFS experiments where the merit function
concerns the minimizing or maximizing of the extinction.
The concept of mutual extinction is generalized in such ex-
periments from two incident beams to a large number of,
individually phase-adjustable, incident modes. The ex-
tinction of one beam, or a linear combination of many
incident beams, could be maximized or minimized by op-
timizing the phases of the incident waves, either using di-
rect optimization methods or methods derived from linear
algebra [28].

In several papers, the intriguing possibility of max-
imizing or minimizing total transmission, reflection, or
absorption was explored both theoretically and experi-
mentally [9,11,29–31]. We note that while these quanti-
ties possibly correlate with extinction, these papers con-
sider intensities summed over many modes, whereas our
new insights into mutual extinction concern the power lost
from or added to each individual incident mode.

Polarization. Up to now we only considered light to
be well described by scalar waves. And indeed the exten-
sion to vector waves is not to be expected to bring about
exciting new features. With one exception: the two-beam
experiment with orthogonal polarizations. From eq. (8)
and from fig. 3 we notice that the mutual extinction for
scalar waves becomes maximal when the two beams al-
most overlap. This would not be the case if the two beams
would have crossed polarizations. When those two beams
overlap the mutual extinction would be zero and would
rapidly increase on enlarging the angle between the two
beams. At larger angles the results will be the same as
with the beams having identical polarizations.

Dynamic light extinction. A very popular optical tech-
nique in physics, chemistry, biology, and in industry is
dynamic light scattering (DLS) [32]. In DLS one uses
samples where the concentration of scatterers that are
moving is so low that on average the observed scattered
intensity has only scattered once when it leaves the sam-
ple. The time correlation of that scattered intensity gives
valuable information on the motion of the scattering par-
ticles. For opaque samples the technique of Diffuse Wave
Spectroscopy was invented [33,34]. Here we suggest to
introduce Dynamic Light Extinction by measuring with
phase-sensitive detection the dynamic correlation function
〈I1(0)I1(t)〉, where I1 is the intensity of beam 1 measured
by detector 1 as sketched in fig. 1. The sample would
contain moving elastic scatterers (see fig. 1(a)) or moving
absorbing particles (see fig. 1(b)). Observation of the mo-
tion of absorbing particles by optical means would open
up a lot of applications in the sciences and in industry.

Conclusions. – On the basis of exact cluster calcula-
tions we have shown that with multiple light beam inci-
dence there is mutual extinction and that its magnitude is
substantial and observable. Based on these exact compu-
tations of clusters containing many scatterers and borne
out by Fraunhofer diffraction theory we make the striking
observation that the mutual extinction and mutual trans-
parency of two incident waves is as large as 100% of the
self-extinction. For small angles between the beams the
mutual extinction is large (up to 100%) and very well de-
scribed by diffraction theory. For large angles the mutual
extinction is smaller, at the percent level, but still observ-
able. At large angles the mutual extinction is speckle-like
and poorly described by diffraction theory.

In view of the surprisingly strong mutual extinction
and mutual transparency, we have proposed several new
experiments to observe mutual extinction, namely in two-
beam experiments, in optical wavefront shaping, in dy-
namic light scattering, and discuss possible applications.
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Appendix: exact calculation of T -matrix. – The
complex scattering medium is taken to consist of a collec-
tion of N scatterers. Scatterers are labeled as α, β, γ, δ,
etc. and the location of scatterer α is represented as Rα.
The scattering of a point scatterer is characterized by its
single particle t-matrix t [35].

We will calculate the T -matrix of the whole scattering
object by summing the scattering events order by order,
up to infinite order. As the t-matrix of an individual
scatterer sums up all interactions with that scatterer, we
should exclude double scattering from that same scatterer.
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When multiple summations over the scatterers are per-
formed, we would rather have

∑
α

∑
β than

∑
α�=β

∑
β .

These awkward conditions on the indices can be avoided
by defining the matrix D,

Dαβ ≡ (1 − δαβ)Gαβ , (A.1)

whereGαβ ≡ G(|Rα−Rβ|), the Green’s function for scalar
waves in homogeneous space. By replacing G by D in
our summations, double counting of scattering events off
the same scatterer is automatically excluded in the sum-
mations, without having to explicitly exclude them. In
addition we define the matrix τ by ταβ ≡ δαβtα.

Let us consider, for instance, the contribution of second-
order scattering, which is given by

T2(r1, r2) =
∑
α,β

δ(r1 − Rα)δ(r2 − Rβ)tα(Dτ )αβ . (A.2)

Similar expressions can be found for higher orders and the
resulting geometric series can be summed exactly into

T (r1, r2) =
∑
α,β

δ(r1 − Rα)δ(r2 − Rβ)Tαβ , (A.3)

where Tαβ is defined as

Tαβ ≡ tα[I − Dτ ]−1
αβ . (A.4)

To calculate the full T -matrix T (r1, r2), and so all the
scattering properties of the collection of N point dipoles,
we have to invert a N × N matrix. In practice this can
be done without any special computational requirements
for up to 10000 point dipoles. In contrast to the popular
Foldy-Lax method [36,37], our method directly gives the
T -matrix of the scattering object, but the two methods
can be shown essentially to be equivalent.
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