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Abbreviations used

FDR: False discovery rate

PAM: Partition around the medoids

RI: Rand index

rRNA: Ribosomal ribonucleic acid

TDA: Topological data analysis

U-BIOPRED: Unbiased Biomarkers in Prediction of Respiratory

Disease Outcomes
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Background: Asthma is a heterogeneous disease characterized
by distinct phenotypes with associated microbial dysbiosis.

Objectives: Our aim was to identify severe asthma phenotypes
based on sputum microbiome profiles and assess their stability
after 12 to 18 months. A further aim was to evaluate clusters’
robustness after inclusion of an independent cohort of patients
with mild-to-moderate asthma.

Methods: In this longitudinal multicenter cohort study, sputum
samples were collected for microbiome profiling from a subset
of the Unbiased Biomarkers in Prediction of Respiratory
Disease Outcomes adult patient cohort at baseline and after 12
to 18 months of follow-up. Unsupervised hierarchical clustering
was performed by using the Bray-Curtis b-diversity measure of
microbial profiles. For internal validation, partitioning around
medoids, consensus cluster distribution, bootstrapping, and
topological data analysis were applied. Follow-up samples were
studied to evaluate within-patient clustering stability in patients
with severe asthma. Cluster robustness was evaluated by using
an independent cohort of patients with mild-to-moderate
asthma.

Results: Data were available for 100 subjects with severe asthma
(median age 55 years; 42% males). Two microbiome-driven
clusters were identified; they were characterized by differences
in asthma onset, smoking status, residential locations,
percentage of blood and/or sputum neutrophils and
macrophages, lung spirometry results, and concurrent asthma
medications (all P values < .05). The cluster 2 patients displayed
a commensal-deficient bacterial profile that was associated with
worse asthma outcomes than those of the cluster 1 patients.
Longitudinal clusters revealed high relative stability after 12 to
18 months in those with severe asthma. Further inclusion of an
independent cohort of 24 patients with mild-to-moderate
asthma was consistent with the clustering assignments.

Conclusion: Unbiased microbiome-driven clustering revealed 2
distinct robust phenotypes of severe asthma that exhibited
relative overtime stability. This suggests that the sputum
microbiome may serve as a biomarker for better characterizing
asthma phenotypes. (J Allergy Clin Immunol 2021;147:123-34.)

Key words: Sputum microbiome, metagenomics, asthma pheno-
types, unbiased clusters, follow-up, neutrophils, macrophages, lung
function

Patients with severe asthma represent approximately 5% of the
total population of individuals with asthma.1 Severe asthma pla-
ces substantial health and cost burdens on patients and health
care communities.2 It is a heterogeneous disease consisting of
multiple phenotypes that show differences in clinical characteris-
tics, inflammatory biomarkers, pathophysiologic processes, and
therapeutic requirements. Better characterization of the popula-
tion of patients with severe asthma should eventually lead to
more effective tailoring of therapeutic decisions to meet patients’
needs and thus improve outcomes and reduce burdens (precision
medicine).

Asthma phenotyping aims to classify the population of in-
dividuals with asthma into subgroups based on clinical charac-
teristics and/or biologic parameters,3 underpinned by different
pathophysiologic mechanisms that drive these phenotypes.
Omics technologies utilize high throughput advanced analytic
and computational tools to elucidate biologic pathways and/or
highlight novel biomarkers that can improve diagnosis and
therapeutic decisions.4 Classifying cohorts of individuals with
asthma by omics methods can be done by using a supervised or
an unsupervised approach. The latter can be considered ‘‘unbi-
ased’’ because it does not involve any a priori assumptions and
is therefore the preferred option. By applying this principle, the
Unbiased Biomarkers in Prediction of Respiratory Disease Out-
comes (U-BIOPRED) project published asthma phenotypes
driven by sputum transcriptomics,5 proteomics,6 or breathomics.7

Over the past decade several studies have investigated the
airway microbial dysbiosis in patients with asthma,8-12 with some
focusing on airway microbiome profiles in patients with different
inflammatory phenotypes of asthma.13-17 Inconsistencies in the
reported results between the studies that might hinder direct
clinical applicability have been observed.18 In addition, most of
the studies conducted have used amplicon sequencing of bacterial
ribosomal RNA (rRNA), which has a limited ability to identify
bacteria at the species level and therefore limits its clinical
relevance.

Studying the induced sputummicrobiomewithin the context of
a large-scale multicenter asthma cohort study such as the
U-BIOPRED and using both 16s rRNA sequencing and
metagenomics could lead to more conclusive results. In this
study, we hypothesized that the sputum microbiome, through its
host and environment interaction, could reveal distinct
phenotypes of severe asthma. Specifically, we aimed to (1)
identify severe asthma phenotypes through unsupervised
unbiased clustering of sputum microbiome profiles of patients
with severe asthma, (2) assess within-patient longitudinal
stability of the identified clinical clusters after 12 to 18 months,
and (3) evaluate the robustness of the clinical clusters by
subsequently analyzing the microbiome of patients from an
independent cohort of patients with mild-to-moderate asthma in
the analysis.
METHODS

Study design
The U-BIOPRED project is a multicenter prospective observational pan-

European cohort study, comprising 3 subcohorts of individuals with asthma

defined by standard clinical criteria: nonsmoking patients with severe asthma

(cohort A), previously or currently smoking patients with severe asthma

(cohort B), and nonsmoking patients with mild-to-moderate asthma (cohort

C), as described in detail previously.19 All recruited participants provided

written informed consent, and each study center obtained local medical ethics

committee approval. The study was registered under the identifier

NCT01976767 at ClinicalTrials.gov.

The study involved 2 research visits: screening and baseline visits for

patients with mild-to-moderate and severe asthma and an additional

http://ClinicalTrials.gov
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longitudinal visit (12-18 months after baseline) for the patients with severe

asthma.19 At the baseline and longitudinal visits, several questionnaires and

biologic measurements were obtained from the recruited participants as

described in detail elsewhere.19
Participants
A total of 100 adults with severe asthma and 24 adults with mild-to-

moderate asthma from the U-BIOPRED cohort study provided induced

sputum samples at baseline that passed quality control, with 46 of those with

severe asthma providing single additional follow-up samples after 12 to 18

months (see Fig E1 in this article’s Online Repository at www.jacionline.org);

the participants were from 13 study centers spanning 9 different European

countries. Individuals with mild-to-moderate or severe asthma were defined

according to criteria of the Innovative Medicines Initiative and Global Initia-

tive for Asthma guidelines.20,21 The participants completed standard asthma

control and quality of life questionnaires,22,23 underwent spirometry,24 and

were assessed for inflammatory biomarkers25,26 and for atopy27 (for details,

see the Online Supplement in this article’s Online Repository at www.

jacionline.org). All participants were considered nonsmokers if they had not

smoked for at least the past 12 months and had less than a 5–pack year smok-

ing history.
Sputum induction, 16s rRNA amplicon sequencing,

and shotgun metagenomics processing
Sputum at baseline and at longitudinal visits was induced by inhalation of

hypertonic (0.9%-4.5%) saline according to standardized protocols.26,28 The

induced sputum samples were prepared for microbiome and metagenomics

profiling, as described in detail in the Online Supplement and elsewhere.29

Data analysis
The general data analysis workflow is shown in Fig E2 (in this article’s

Online Repository at www.jacionline.org) and is further described in the

following sections.

Clustering protocol. Cluster benchmarking was based on the

analysis performed by Brinkman et al,7 with modifications to suit the micro-

biome data. To assess the patient variability in the microbiome profiles, the

Bray-Curtis b-diversity dissimilarity measure was computed separately on

the basis of the numeric count data of 16s rRNAmicrobiome operational taxo-

nomic units and metagenomics species. Clustering was then performed by us-

ing hierarchicalWard2 agglomerative clustering on the Bray-Curtis measure.30

The optimumnumber of clusterswas determined on the basis of several indices,

such as optimum average silhouette width,31 total within-cluster sum of

square,32 and Calinski-Harabasz33 indices. Cluster assignment of the patients

was internally validated by using partition around the medoids (PAM).34

Agreement in the clustering of patients’ assignments between hierarchical

Ward’s clustering and PAM clustering was quantified by means of the Pearson

chi-square or Fisher exact test and the Rand index (RI).35 This quantification

was also performed to assess whether the clustering would differ in 16s

rRNA sequencing versus in themetagenomics approach. Clusteringwas further

validated visually by using topological data analysis (TDA) with the Ayasdi

workbench (version 7.15.0; Ayasdi, Menlo Park, Calif) as reported previ-

ously.6,7 In TDA, visual depiction of the shape of patients’ metagenomics

data was performed, wherein nodes represent patients’ points that are highly

similar and connected by edges (lines) to nodes that have data in common.

The neighborhood lenses (filter functions) 1 and 2were used to generate a graph

of patients’ metagenomics data into 2-dimensional space by the k-nearest

neighbor’s algorithm. The TDA graph thus shows connections of each patient

point to its nearest neighbors only by information driven from themetagenome.

Clusterwise stability was evaluated by consensus cluster distribution36 and

by resampling the data (1000 iterations) using bootstrapping, jittering, and

replacement of points by noise with subsequent calculation of the Jaccard

similarity indices.37

Metagenomics data were used to reveal the bacterial profiles of the

identified clusters up to species level.
Cluster migration. The same clustering protocol was reperformed

for the longitudinal samples. Longitudinal cluster migration and stability were

assessed by cross-tabulating baseline and longitudinal patient clusters

assignments and assessed visually by a Sankey diagram.

Cluster robustness. Robustness of the clustering was evaluated by
including patients with mild-to-moderate asthmas (U-BIOPRED cohort C) to

test whether their inclusion would fit the previous clustering solution or result

in cluster disintegration.

Statistical analysis. Patient cluster distribution according to the

inclusion country and season of sample collection was tested by using a

chi-square test with Monte Carlo simulation (2000 permutations) and later

visualized by principal coordinate analysis with the Bray-Curtis dissimilarity

measure.

Differences in patients’ demographic and clinical characteristics between

the baseline and longitudinal visits and between the revealed clusters were

compared by using the Wilcoxon signed rank and McNemar tests for paired

data and the Pearson chi square, Fisher exact, or Mann-WhitneyU tests for in-

dependent data as appropriate (2-tailed). Results are considered significant at

an alpha level less than 0.05.

Differences in microbiome profiles between the clusters and between

baseline and longitudinal visits were compared by using a Mann-Whitney U

test and Wilcoxon signed rank test, respectively. P-values for metagenomics

species differences were adjusted for multiple testing by using

Benjamini-Hochberg false discovery rate correction (FDR).38 Results are

considered significant at an FDR alpha level less than 0.05.

A correlation heatmap (Spearman and point-biserial correlations) was

depicted between bacterial species and asthma clinical characteristics that

were found to be statistically significantly different between the baseline

clusters.

All analyses were performed by using R studio (version 1.1.453) with R

software (version 3.5.1) supported with the following software packages:

phyloseq, vegan, stats, cluster, factoextra, ConsensusClusterPlus, fpc, fossil,

metacoder, and SIAMCAT.
RESULTS
The baseline and follow-up characteristics for the included

participants are summarized in Table I.
Unsupervised unbiased clustering of microbiome

profiles of patients with severe asthma at baseline

identified 2 main clusters
The 16s rRNA microbiome sequencing identified a total of

2777 operational taxonomic units, whereas the metagenomics
approach identified a total of 251 bacterial species. Bray-Curtis
beta microbiome diversity suggested 2 optimum clusters as
evaluated by multiple indices (see Fig E3 in this article’s Online
Repository at www.jacionline.org). Applying hierarchical Ward’s
clustering revealed 2 groups of patients with severe asthmawhose
asthma was driven only by their microbiome profiles at baseline
visit (Fig 1, A). PAM clustering also revealed 2 isolated clusters
(Fig 1, B). Quantitative assessment of similarity in patients’
assignment between hierarchical Ward’s and PAM clustering
was performed by means of the Pearson chi-square test (x2 5
51.85; P < 1 3 10–11) and RI value (0.82), suggesting great
similarity. The 16s rRNA microbiome-generated clusters
were highly concordant with the metagenomics generated
clusters as indicated by Pearson chi-square test (x2 5 63.659;
P < 1.483 10–15) and RI value (RI5 0.85). Visual representation
by the TDA analysis showed that the 2 patient groups could be
driven by the microbiome profiles (Fig 1, C) when the metage-
nomics species were mapped to the color coding of the 2 hierar-
chical clusters.

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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TABLE I. Baseline and longitudinal patient characteristics for the patients with severe and mild-to-moderate asthma

Characteristic

Patients with severe asthma

Patients with

mild-to-moderate asthma

Baseline (n 5 100) Longitudinal (n 5 46) P value* Baseline (n 5 24)

Median age, y (IQR) 55 (46.0-62.0) 57 (51.3-63.5) 4.3 3 10–11 40.50 (25.75-51.00)

Median age of onset, y (IQR) 27 (7-46) 37 (14-49) NA 9 (3-22)

Females, n (%) 58 (58.0%) 25 (54.3%) NA 11 (45.8%)

Median BMI, kg/m2 (IQR) 27.72 (24.67-32.45) 27.71 (24.37-31.04) NA 24.02 (21.80-30.18)

White race, n (%) 92 (92.0%) 43 (93.5%) NA 23 (95.8%)

Residential location, n (%) NA

d Rural 26 (26.0%) 10 (21.7%) 6 (25%)

d Suburban 25 (25.0%) 8 (17.4%) 8 (33.3%)

d Urban 49 (49.0%) 28 (60.9%) 10 (41.7%)

Atopy, n (%) 70 (70.0%) 31 (67.4%) NA 23 (95.8%)

Nonsmoking patients, n (%) 66 (66.0%) 30 (65.2%) NA 24 (100%)

Median percent of eosinophils in sputum (IQR) 2.75 (0.37-19.27) 2.19 (0.76-17.12) .838 0.72 (0.21-1.81)

Median percent of neutrophils in sputum (IQR) 57.98 (39.59-81.98) 62.95 (51.19-78.24) .096 42.17 (26.16-75.18)

Median percent of macrophages in sputum (IQR) 22.82 (10.15-39.55) 21.57 (10.01-37.84) .068 42.97 (21.62-66.69)

Median percent of eosinophils in blood (IQR) 3.43 (1.58-6.51) 3.50 (1.86-4.97) .024 3.55 (1.81-4.46)

Median percent of neutrophils in blood (IQR) 58.48 (53.96-67.45) 60.55 (54.88-76.83) .190 58.75 (53.35-64.82)

Median FEV1 percent predicted before salbutamol (IQR) 62.78 (45.31-74.16) 61.42 (49.03-74.75) .642 92.00 (87.34-104.45)

Median FEV1 percent predicted after salbutamol (IQR) 73.08 (52.77-86.92) 72.79 (55.24-85.61) .468 103.13 (88.51-114.07)

Median FEV1/FVC percent predicted before salbutamol (IQR) 73.46 (61.03-83.66) 75.21 (61.35-83.33) .282 89.99 (79.80-96.54)

Median FEV1/FVC percent predicted after salbutamol (IQR) 76.49 (65.03-87.28) 78.70 (64.03-85.90) .461 96.91 (87.42-100.83)

Median FENO in ppb (IQR) 23.50 (13.25-45.00) 27.50 (16.90-50.00) .708 30.25 (19.50-58.13)

Median exacerbations per year (IQR) 2 (1-3) 2 (0-3) .737 0 (0-1)

Median ACQ5 score average (IQR) 2.3 (1.60-3.20) 1.9 (0.95-3.00) .589 1.00 (0.45-1.55)

Median AQLQ score average (IQR) 4.46 (3.50-5.50) 4.59 (3.67-5.60) .245 5.59 (4.84-6.56)

Current asthma medication used, n (%)

d ICS 100 (100%) 42 (91.3%) .125 24 (100%)

d SABA 63 (63.0%) 27 (58.7%) .999 19 (79.2%)

d LABA 99 (99.0%) 43 (93.5%) .250 1 (4.2%)

d OCS 87 (87.0%) 14 (30.4%) .070 0 (0.0%)

d Short-acting anticholinergic 9 (9.0%) 3 (6.5%) .999 1 (4.2%)

d Long-acting anticholinergic 29 (29.0%) 15 (32.6%) .999 0 (0.0%)

d Leukotriene antagonists 43 (43.0%) 19 (41.3%) .999 0 (0.0%)

d Theophylline 21 (21.0%) 7 (15.2%) .999 0 (0.0%)

Antibiotic use, n (%)

d Current intake 18 (18.0%) 7 (15.2%) .500 0 (0.0%)

d Current and previous (ever) intake 22 (22.0%) 26 (56.5%) <.001 1 (4.2%)

ACQ5, 5-Item Asthma Control Questionnaire; AQLQ, Asthma Quality of Life Questionnaire; BMI, body mass index; FENO, fraction of exhaled nitric oxide; FVC, forced vital

capacity; ICS, inhaled corticosteroid; IQR, interquartile range; LABA, long-acting b-agonist; NA, not applicable; OCS, oral corticosteroid; SABA, short-acting b-agonist.

*P values were computed for paired differences only for patients who have both baseline and longitudinal sputum samples.
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There were no statistically significant associations between the
patients’ clusters assignments and the 9 countries from which
samples were collected (the P values were .110 and .229 for
hierarchical and PAM clustering, respectively) or the season of
sample collection (the P values were .633 and .702 for
hierarchical and PAM clustering, respectively). This was visually
confirmed by running principal coordinate analysis on
Bray-Curtis dissimilarity measure, showing random patient
allocations (see Fig E4 in this article’s Online Repository at
www.jacionline.org).
Baseline clusters show distinct demographic and

clinical characteristics
Table II shows the demographic and clinical characteristics of

the 2 baseline clusters of patients with severe asthma. Cluster 1
represents 75 % of the patients with severe asthma (n 5 75).
More than half of them lived in urban areas. As compared with
the cluster 2 patients, the cluster 1 patients had significantly lower
percentages of sputum neutrophils, higher percentages of sputum
macrophages, and higher values for FEV1 and FEV1/FVC percent
predicted before and after salbutamol administration (see Fig E5,
A in this article’s Online Repository at www.jacionline.org). In
contrast, the cluster 2 patients had a significantly younger age
of asthma onset, were mostly nonsmokers (84%), and were
more likely to live in suburban areas. In addition, a higher
percentage of cluster 2 patients were prescribed theophylline.
Microbial profiles of the 2 baseline clusters of

patients with severe asthma
The cluster 2 patients had lower microbial richness and alpha

diversity indices when compared with the cluster 1 patients
(Fig 2). Fig E6 (in this article’s Online Repository at
www.jacionline.org) shows the bacterial phylogenetic map of
the 2 baseline clusters. Statistical testing showed that a total of

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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FIG 1. A, Hierarchical cluster dendogram in a tree-like structure in which patients’ nodes (leaves at the bot-
tom of the dendogram) that are statistically closely connected are joined together by edges (small
branches). The small branches are further joined by larger branches (bottom-up) to the upper part of the

dendogram representing the 2 main branches (clusters) originating from the severe asthma cohort. B,

PAM clustering show 2 relatively detached ellipses. Similarity in patients’ assignment between the 2 clus-

tering algorithms was assessed by Pearson chi-square test (x2 5 51.85, P < 1 3 10–11) and RI value (0.802),

suggesting great similarity. Bootstrapping, jittering, and replacement of points by noise schemes (1000 it-

erations) resulted in Jaccard similarity indices ranged from 0.82 to 1 for both clusters by either hierarchical

clustering or PAM, suggesting highly stable clusters. C, TDA graph, in which nodes are colored in accor-

dance with baseline hierarchical clustering of patients. Two distinct patient clusters based on the metage-

nome profile are observed; blue nodes represent cluster 1 patients, whereas red nodes represent cluster

2 patients. Yellow nodes represent less matched patient cluster assignment by TDA compared with when

hierarchical clustering is used.
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28 species remained significantly different between the 2 clusters
after FDR correction. All of them were more abundant in the
patients in cluster 1 than in the patients in cluster 2 (Figs 3 and
4). Those species were related to 3 dominant phyla, Firmicutes,
Bacteriodetes, and Actinobacteria, and to a lesser extent, to the
phylum Proteobacteria, which comprises the following main
genera: Veillonella, Prevotella, Alloprevotella, Streptococcus,
Porphyromonas, Rothia, Haemophilus, Neisseria, Megasphaera,
and a few others. In contrast, there was a trend toward
increased relative abundance of a few pathogenic species,
such as Haemophilus influenza, Moraxella catarrhalis, and
Streptococcus pseudopneumoniae in cluster 2 patients compared
with in cluster 1 patients; however, these results were not
statistically significant (see Fig E7 in this article’s Online
Repository at www.jacionline.org). Correlations between
individual bacterial species and asthma characteristics were of
weak or moderate (r < 0.50) strength (see Fig E8 in this article’s
Online Repository at www.jacionline.org) and reflected the find-
ings revealed by the clustering.
Unsupervised clustering of the microbiome profiles

of patients with severe asthma at follow-up

(longitudinal clusters)
Microbiome data were available for 46 of the 100 patients with

severe asthma after 12 to 18 months from baseline inclusion.
Similar to the values at the baseline visit, different indices
suggested that the microbiome profiles of patients with severe
asthma at the longitudinal visit allocated the patients into 2 main
clusters (see Fig E9 in this article’s Online Repository at
www.jacionline.org). Hierarchical Ward’s clustering had a great
similarity to PAM (see Fig E10 in this article’s Online Repository
at www.jacionline.org) as quantified by the Fisher exact test
(P < 1 3 10–6) and RI value (0.875).
Demographic and clinical characteristics of the

longitudinal sputum microbiome clusters
Table III shows the demographic and clinical characteristics of

the 2 longitudinal clusters of patients with severe asthma. The

http://www.jacionline.org
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TABLE II. Demographic and clinical characteristics of the baseline clusters.

Characteristics

Baseline

P valueCluster 1 (n 5 75) Cluster 2 (n 5 25)

Median age, y (IQR) 55 (46-62) 57 (49-63) .327

Median age of onset, y (IQR) 30.50 (14.00-48.25) 16.00 (5.00-33.50) .012

Females, n (%) 44 (58.7%) 14 (44.0%) .815

Median BMI, kg/m2 (IQR) 27.73 (24.60-32.61) 27.47 (24.48-30.82) .591

White race, n (%) 70 (93.3%) 22 (88.0%) .409

Residential location, n (%) .009

d Rural 21 (28.0%) 5 (20.0%)

d Suburban 13 (17.3%) 12 (48.0%)

d Urban 41 (54.7%) 8 (32.0%)

Atopy, n (%) 54 (72.0%) 16 (64.0%) .359

Nonsmokers, n (%) 45 (60.0%) 21 (84.0%) .028

Eosinophils % in sputum, median (IQR) 3.81 (0.19-21.92) 2.28 (0.39-7.08) .446

Median percent of neutrophils in sputum (IQR) 53.40 (32.40-70.74) 86.90 (57.32-92.73) <.0001

Median percent of macrophages in sputum (IQR) 26.69 (14.60-47.30) 9.21 (3.89-19.49) <.0001

Median percent of eosinophils in blood (IQR) 3.50 (1.52-6.53) 3.28 (1.74-6.42) .987

Median percent of neutrophils in blood (IQR) 58.16 (53.93-66.54) 58.80 (53.48-70.57) .678

Median FEV1 percent predicted before salbutamol (IQR) 65.24 (52.38-74.15) 47.66 (38.36-74.18) .035

Median FEV1 percent predicted after salbutamol (IQR) 74.88 (61.52-86.94) 51.44 (42.90-87.62) .009

Median FEV1/FVC percent predicted before salbutamol (IQR) 74.62 (65.60-83.97) 65.99 (51.82-77.86) .030

Median FEV1/FVC percent predicted after salbutamol (IQR) 79.25 (67.02-89.11) 68.19 (52.31-83.86) .012

Median FENO in ppb (IQR) 26.25 (12.63-53.00) 22.00 (14.00-26.75) .328

Median exacerbations per year (IQR) 2 (1-3) 2 (1-4) .416

Median ACQ5 score average (IQR) 2.40 (1.40-3.20) 2.20 (1.65-3.15) .783

Median AQLQ score average (IQR) 4.53 (3.52-5.53) 4.09 (3.33-5.14) .417

Current asthma medication use, n (%)

d ICS 75 (100%) 25 (100%) NA

d SABA 45 (60.0%) 18 (72.0%) .282

d LABA 74 (98.7%) 25 (100%) .999

d OCS 33 (44.0%) 14 (56.0%) .298

d Short-acting anticholinergics 8 (10.7%) 1 (4.0%) .444

d Long-acting anticholinergics 20 (26.7%) 9 (36.0%) .373

d Leukotriene antagonists 32 (42.7%) 11 (44.0%) .907

d Theophylline 11 (14.7%) 10 (40.0%) .007

Median OCS normalized dose, mg (IQR) 10.00 (8.44-16.25)

(n 5 33)

10.00 (5.00-14.38)

(n 5 14)

.363

Antibiotic use, n (%)

d Current intake 14 (18.7%) 4 (16.0%) .999

d Current and previous (ever) intake 18 (24%) 4 (16.0%) .403

ACQ5, 5-Item Asthma Control Questionnaire; AQLQ, Asthma Quality of Life Questionnaire; BMI, body mass index; FENO, fraction of exhaled nitric oxide; FVC, forced vital

capacity; ICS, inhaled corticosteroid; IQR, interquartile range; LABA, long-acting b-agonist; NA, not applicable; OCS, oral corticosteroid; SABA, short-acting b-agonist.

P values for testing statistical significance between the 2 longitudinal clusters were calculated by using the Pearson chi-square or Fisher exact tests as appropriate for categoric

variables and the Mann-Whitney U test for continuous variables. Entries with statistically significant P values are boldface.
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patients in longitudinal cluster 2 were more likely to live in rural
areas (55.6%) than were the cluster 1 patients, who were more
likely to live in urban areas (70.3%). As in the baseline analysis,
the patients in longitudinal cluster 2 had higher percentages of
sputum and blood neutrophils, lower percentages of sputum mac-
rophages, and lower values for FEV1 percent predicted before and
after administration of salbutamol (see Fig E5, B). In addition, a
higher percentage of cluster 2 patients than cluster 1 patients were
prescribed long-acting anticholinergics.
Microbial profiles of the longitudinal clusters of

patients with severe asthma
The patients in longitudinal cluster 2 had lower microbial

richness and diversity than did the patients in longitudinal cluster
1, as estimated by multiple indices (as shown in Fig E11 in this
article’s Online Repository at www.jacionline.org). Fig E12
(in this article’s Online Repository at www.jacionline.org) shows
the bacterial phylogenetic map of the 2 longitudinal clusters.
A total of 13 species remained significantly different between
the 2 clusters after FDR correction. All of them were more
abundant in the patients in cluster 1 than in the patients in cluster
2 (see Figs E13 and E14 in this article’s Online Repository at
www.jacionline.org). Those species were related to the
following main genera: Veillonella, Prevotella, Streptococcus,
Rothia, Haemophilus, and Neisseria.
Stability of the longitudinal clusters over time in

patients with severe asthma
Patients who had both baseline and longitudinal microbiome

samples were cross-tabulated to check similarity in the clusters’
assignment between the 2 visits (Fig 5). Of the 46 patients, 39
(84.7%) remained cluster stable longitudinally. Quantitative
assessment resulted in a statistically significant Fisher exact test
value (P < .01) and relatively high RI value (0.74), suggesting

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


FIG 2. Venn diagram representing the metagenomics species distribution between the 2 clusters

(upper panel). Different alpha diversitymeasures reveal that the cluster 2 patients hadmuch lowermicrobial

diversity than did the cluster 1 patients (all P values < .0001) (lower panel).
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relative cluster stability after 12 to 18 months. No significant dif-
ferences in microbial richness and diversity (see Fig E15 in this
article’s Online Repository at www.jacionline.org) or in species’
relative abundance after FDR correction between the baseline and
longitudinal visits were observed. Fig E16 (in this article’s Online
Repository at www.jacionline.org) shows a bar chart of the mean
percentage in relative abundance of bacterial taxa at the baseline
and longitudinal visits.
Cluster robustness when including patients with

mild-to-moderate asthma in the analysis
Repeating the baseline clustering with inclusion of both the

data from the patients with severe asthma (n5 100) and the data
from those with mild-to-moderate asthma (n 5 24) also resulted
in 2 main clusters (see Fig E17 in this article’s Online Repository
at www.jacionline.org); 23 of the 24 patients with mild-to-
moderate asthma (95.8%) were assigned to cluster 1, with only
1 patient with mild-to-moderate asthma being assigned to cluster
2 when hierarchical clustering was used. This patient displayed
clinical characteristics similar to those of patients with severe
asthma in cluster 2 with respect to young age of asthma onset,
sputum neutrophilia, and decreased percentage of sputum
macrophages and FEV1 values (Table E1 in this article’s Online
Repository at www.jacionline.org). A cross-table to assess
whether the initial cluster assignment of the patients with severe
asthma had changed after inclusion of the group of patients with
mild-to-moderate asthma is shown in Table E2 (in this article’s

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


FIG 3. Metagenomics phylogenetic map shows statistically significantly differential bacterial taxa between

the 2 baseline clusters after FDR correction. Nodes’ color corresponds to the median difference in relative

abundances of the bacterial taxa. The darker the color of the phylogenetic branches, the higher median

differences, whereas gray nodes and branches indicate no significant differences. Magenta indicates that all

significant taxa were more abundant in cluster 1 compared with in cluster 2, whereas absence of cyan in the

phylogenetic map indicates that no significant taxa were more abundant in cluster 2 as compared with

cluster 1.
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Online Repository at www.jacionline.org). High cluster stability
is indicated by the Pearson chi-square test result (x2 5 73.397,
P < 1 3 10–15) and RI value (0.904), suggesting robustness of
the clustering model.
DISCUSSION
This is the first study to investigate microbiome-driven

phenotypes and their stability over time in patients with severe
asthma. Using unbiased clustering based on microbiome profiles,
we have shown that patients with severe asthma can be stratified
into 2 phenotypic clusters. These clusters differed significantly by
age of asthma onset, patient residential locations, smoking
history, percentage of blood and/or sputum neutrophils and
macrophages, spirometry results, and asthma medications used.
At both the baseline and longitudinal visits, the patients with
severe asthma in cluster 2 had worse lung function, with
associated blood and/or sputum neutrophilia and decreased
sputum macrophages, than did the cluster 1 patients. In addition,
theywere more likely to receive add-on asthmamedications, such
as theophylline or long-acting anticholinergics, possibly indi-
cating greater need to control their more severe airway
obstruction.

The 2 phenotypic clusters were associated with markedly
distinct microbiome profiles; cluster 1 had higher bacterial
richness and diversity than did cluster 2, both at the baseline
and longitudinal visits. Cluster 2 was characterized by a
clear deficiency of several bacterial species, including the
genera Veillonella, Prevotella, Alloprevotella, Streptococcus,
Porphyromonas, Rothia, Haemophilus, Neisseria, and Mega-
sphaera. Most of these species are considered commensals
inhabiting the oropharyngeal region and the airways. This
microbial dysbiosis was associated with blood and/or sputum
neutrophilia, deceased sputum macrophages, and worse lung
function outcomes at the baseline and longitudinal visits.
A study by the Severe Asthma Research Program showed that
sputum neutrophilia (with or without eosinophilia) is a
characteristic of more severe asthma phenotypes.39 In our study,
the neutrophilia in cluster 2 could be attributed to the presence
of either ‘‘subclinical infection’’ or modulation of the airway

http://www.jacionline.org


FIG 4. Statistically significant differentially abundant species after FDR correction between baseline cluster

1 and cluster 2 patients by metagenomics. All of them were more abundant in cluster 1 patients than in

cluster 2 patients.
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‘‘immune tone’’ by the microbiota. Thus, deficiency of
commensal bacteria leads to increased risk of infections with
pathogenic ones, as manifested by increased abundance of H
influenza, M catarrhalis, and S pseudopneumoniae. Conse-
quently, these bacteria could be responsible for the observed
blood and/or sputum neutrophilia. Our results are complementary
to those of another U-BIOPRED study showing that adult patients
with severe asthma had lower sputummicrobiome alpha diversity
than did patients with mild-to-moderate asthma and healthy con-
trols, and this diversity was inversely correlated with sputum neu-
trophils.29 This finding was in line with the findings of previously
reported studies showing that neutrophilic asthma is character-
ized by low airway bacterial diversity and high abundance of
the phylum Proteobacteria, especially the genera Moraxella and
Haemophilus.14-16 In addition, a decrease in the percentage of
sputum macrophages may suggest a defective innate immune
response with impaired macrophage phagocytosis of these patho-
genic bacteria. This finding is in agreement with the findings of a
previous study showing that patients with severe asthma have a
reduced macrophage phagocytic capacity for certain pathogenic
bacteria such asH influenzae compared with in patients with non-
severe asthma and healthy subjects.40
A study in patients with chronic obstructive pulmonary disease
showed that the survivors with 1-year mortality had a higher
relative abundance of Veillonella than the nonsurvivors did.41

This was partly in agreement with the finding that the patients
in cluster 1 with less severe asthma had a higher relative abun-
dance of Veillonella bacteria than did the patients in cluster 2,
which may suggest that these bacteria might have a protective
role in chronic respiratory diseases. Although a few species,
such as Haemophilus parainfluenzae, can become opportunistic
pathogens in some situations, their increased abundance in the
cluster 1 patients was not associated with asthma severity charac-
teristics such as exacerbation frequency. These findings imply
that the crosstalk of several species within the airway microbial
community and their interplay with innate immunity may provide
a better clinical relevance than does looking at the roles of one or a
few bacterial species.

A striking finding in our study is that approximately 85% of the
patients remained cluster stable after 12 to 18months. In addition,
the bacterial dysbiosis was not related to either current or previous
(ever) antibiotic intake, suggesting that the microbial profiles of
these patients were not a main consequence of short-term intake
of antibiotics. Rather, they were probably shaped over a long



TABLE III. Demographic and clinical characteristics of the longitudinal clusters.

Characteristics

Longitudinal

P valueCluster 1 (n 5 37) Cluster 2 (n 5 9)

Median age, y (IQR) 57 (48-64) 55 (53-65) .957

Median age of onset, y (IQR) 37.00 (17.50-48.50) 29.50 (3.50-49.75) .716

Females, n (%) 22 (59.5%) 3 (33.3%) .264

Median BMI, kg/m2 (IQR) 27.96 (24.25-31.87) 29.56 (24.83-30.36) .744

White race, n (%) 35 (94.6%) 8 (88.9%) .488

Residential location, n (%) .012

d Rural 5 (13.5%) 5 (55.6%)

d Suburban 6 (16.2%) 2 (22.2%)

d Urban 26 (70.3%) 2 (22.2%)

Atopy, n (%) 25 (67.6%) 6 (66.7%) .872

Nonsmokers, n (%) 23 (62.2%) 7 (77.8%) .463

Median percent of eosinophils in sputum (IQR) 2.65 (0.88-16.45) 0.99 (0.51-18.69) .651

Median percent of neutrophils in sputum (IQR) 59.40 (45.03-72.64) 83.76 (72.58-95.66) .002

Median percent of macrophages in sputum (IQR) 27.24 (15.23-38.99) 5.68 (1.37-12.45) <.0001

Median percent of eosinophils in blood (IQR) 3.65 (2.07-5.29) 2.07 (0.81-4.13) .103

Median percent of neutrophils in blood (IQR) 59.81 (53.72-65.82) 76.61 (65.31-82.98) .023

Median FEV1 percent predicted before salbutamol (IQR) 63.76 (50.55-77.23) 56.17 (40.00-62.28) .036

Median FEV1 percent predicted after salbutamol (IQR) 74.33 (63.23-86.27) 64.22 (44.64-78.08) .036

Median FEV1/FVC percent predicted before salbutamol (IQR) 77.35 (62.08-83.38) 65.50 (51.22-76.02) .116

Median FEV1/FVC percent predicted after salbutamol (IQR) 80.40 (67.68-86.22) 65.04 (50.82-78.93) .081

Median FENO in ppb (IQR) 25.00 (15.90-54.50) 28.25 (19.00-35.88) .999

Median exacerbations per year (IQR) 2 (0-3) 2 (0-3) .663

Median ACQ5 score average (IQR) 2.0 (0.9-3.1) 1.8 (1.0-2.7) .957

Median AQLQ score average (IQR) 4.59 (3.86-5.53) 4.48 (3.44-6.09) .807

Current medication use, n (%)

d ICS 33 (89.2%) 9 (100%) .571

d SABA 20 (54.1%) 7 (77.8%) .270

d LABA 34 (91.9%) 9 (100%) .999

d OCS 10 (27.0%) 4 (44.4%) .423

d Short-acting anticholinergics 2 (5.4%) 1 (11.1%) .488

d Long-acting anticholinergics 7 (18.9%) 8 (88.9%) <.001

d Leukotriene antagonists 15 (40.5%) 4 (44.4%) .999

d Theophylline 4 (10.8%) 3 (33.3%) .124

Median OCS normalized dose, mg (IQR) 10.00 (8.13-12.50)

(n 5 10)

13.75 (5.63-20.00)

(n 5 4)

.999

Antibiotics use, n (%)

d Current intake 4 (10.8%) 3 (33.3%) .124

d Current and previous (ever) intake 20 (54.1%) 6 (66.7%) .711

ACQ5, 5-Item Asthma Control Questionnaire; AQLQ, Asthma Quality of Life Questionnaire; BMI, body mass index; FENO, fraction of exhaled nitric oxide; FVC, forced vital

capacity; ICS, inhaled corticosteroid; IQR, interquartile range; LABA, long-acting b-agonist; OCS, oral corticosteroid; SABA, short-acting b-agonist.

P values for testing statistical significance between the 2 longitudinal clusters were calculated by using Pearson chi-square or Fisher exact tests as appropriate for categoric

variables and the Mann-Whitney U test for continuous variables. Entries with statistically significant P values are boldface.
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period and might have a genetic background42 and/or might have
resulted from a lifelong exposure to environmental factors.43

Tobacco smoking has been reported previously to be associated
with sputum microbiome diversity of patients with asthma44; in
addition, it has been reported to induce neutrophilia in chronic
airway disease, including asthma.45,46 In our study, however,
the cluster 2 patients with more severe asthma were more likely
to be nonsmokers (84.0%). Because microbial dysbiosis and
neutrophilia were more often observed in cluster 2 patients, it
seems unlikely that this is mainly attributed to smoking, possibly
denoting the interplay between microbial dysbiosis and innate
immunity altering the airway immune tone. In another study
investigating the airway microbiome in patients with asthma,
neutrophilia was the strongest predictor for microbiota variance,
whereas smoking was not a predictor14 supporting the findings
observed in cluster 2. This warrants further investigation to gain
more insight on the trajectories of neutrophilic asthma and
possible overlap/delineation between microbial-associated and
smoking-associated neutrophilic asthma. Cluster 2 patients
were more likely to live in suburban or rural areas, in contrast
to cluster 1 patients, who were more likely to live in urban areas.
We could speculate that there is relatively more traffic in or
around suburbs and driving times are longer on account of
commuting towork. Therefore, more exposure to car gases and/or
particulate air pollution may influence the airway microbiome
profiles.47 In addition, exposure to fine particulate air pollution
can increase neutrophils,48 which may contribute to the
neutrophilia that we see in cluster 2 patients.

The relative cluster stability and robustness that we found in
our study is an ideal criterion for personalized diagnostic or
therapeutic decisions in patients with asthma. In addition, the
inclusion of the group with mild-to-moderate asthma fitted well
with our previous clustering scheme, whereas most of this patient
group (>95 %) was assigned to the cluster of those with ‘‘milder’’



FIG 5. Cross-tabulated and Sankey diagram of patient cluster assignments among 46 patients with both

baseline and follow-up visits: 39 patients are cluster stable (in boldface), and 7 patients migrate between

clusters. Cells described in terms of number and percentage of baseline clusters. P value was generated by

using the Fisher exact test.
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asthma, except for 1 patient who also showed characteristics close
to those of the cluster 2 patients with severe asthma (eg, young age
of asthma onset, neutrophilia, and low values of FEV1). This sug-
gests that using the criteria of the observed microbiome profiles
may enable better diagnosis and/or prediction of more severe phe-
notypes and hence tailor therapeutic decisions. In addition, the
relative stability of the clusters after 12 to 18 months indicates
that management approaches aiming at correcting the pathophys-
iology of these patients should be sought instead of just symptom
control, which is not sufficient. This may include approaches that
aim to reshape the lung microbiome (eg, using long-term prebi-
otics, probiotics, or synbiotics). Moreover, therapeutic strategies
directed toward the neutrophilic corticosteroid-resistant asthma
phenotype and innate immunity may be tried in these patients;
this includes use of compounds, such as macrolide antibi-
otics,49,50 low-dose theophylline,51 and other antineutrophilic
compounds.52,53

Our study has many strengths. First, the analysis protocol is
unbiased and its clinical significance is driven only by the
microbiome. Second, the pan-European nature of this study
makes our results more generalizable and valid than those of
previously reported single-country or single-center studies with
lower sample sizes. Third, the utilization of both 16s rRNA
sequencing and metagenomics further increase the reliability and
generalizability to other studies. In addition, the limited but
affordable 16s rRNA method provided clustering results that are
highly concordant with those of the metagenomics approach,
which further extends its potential applicability in clinical
practice in settings in which metagenomics could not be
performed. Fourth, we internally validated our finding by
applying different clustering algorithms that were highly consis-
tent. Although adding an independent cohort of patients with
mild-to-moderate asthma is not considered a validation, its
perfect harmonization with the clustering solution prove the
robustness and clinical relevance of the clustering technique used.
Fifth, shotgun metagenomics allowed us to reveal bacterial
associations up to the species level and hence increase the clinical
relevance, unlike in most previous studies that used 16s rRNA–
based methods (which are limited in identifying bacterial
species). Finally, this study is regarded as one of the first attempts
to uncover microbiome-driven phenotypes and elaborate targets
for precision medicine within the group of patients with severe
asthma.

However, there are also limitations. First, we sampled only 1
airway compartment (induced sputum). Whether other sampling
compartments would provide additional microbiome-related in-
formation needs to be determined. Second, only 2 time points
were measured over a follow-up design of 12 to 18 months, which
may not be sufficient to adequately assess longitudinal shifts of
microbiome clusters in patients with asthma. Third, some patients
were lost to follow-up, which may create further bias in the
assessment. However, we are the first study to investigate the
microbiome clusters in patients with severe asthma, which might
serve as a basis for future investigations. Finally, using an external
cohort outside the U-BIOPRED cohort for validation is still
needed to confirm our findings.

In conclusion, our study has shown that microbiome-driven
clustering can be used as an unbiased way to detect phenotypes in
patients with severe asthma. Furthermore, they are relatively
stable after 12 to 18 months of follow-up and demonstrated
robustness after inclusion of an independent cohort of patients
with asthma. Patients with asthma with the more severe,
microbiome-driven phenotype comprised approximately 25% of
those with severe asthma and need to be considered targets for
personalized medicine decisions targeting the airway
microbiome.

Some of the drawn objects in the graphical abstract were adapted from

Servier Medical Art (https://smart.servier.com) in accordance with a Creative

Commons Attribution 3.0 Unported License (https://creativecommons.org/

licenses/by/3.0/).

Key messages

d Using unbiased clustering based on sputum microbiome
profiles showed that severe asthma can be stratified into
2 phenotypic clusters.

d The patients in these clusters differed significantly by age
of asthma onset, patients’ residential locations, smoking
history, percentage of blood and/or sputum neutrophils
and macrophages, spirometry results, and asthma medi-
cations used.
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