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A B S T R A C T

Although the bacterium Piscirickettsia salmonis has been detected in many salmon-producing countries around
the world, losses caused by salmonid rickettsial septicaemia (SRS) are mostly occurring in the Chilean aqua-
culture industry. Horizontal transmission of SRS between salmonid farms was suggested, based on the existence
of spatiotemporal correlation in the level of disease between neighbouring sea farms. However, it remains un-
clear to which extent between-farm water-borne pathogen dissemination is important in the epidemiology of SRS
in Chile. Such information is critical to assess the level of risk of transmission of SRS from one farm to another at
different mortality incidence levels and to apply appropriate and cost-effective mitigation measures. In this
study, we used weekly SRS mortality data from all salmonid farms in the Los Lagos region between January 2012
and September 2018 to model the spatiotemporal autocorrelation in the SRS-attributed mortality in the study
area. A generalized additive regression modelling framework was adopted, using a linear functional component
to model the influence of other farms on the target farm. Several nested statistical models were built to compare
the significance of different covariates. Predicted values of SRS mortality on the target farm, conditional on
different distance, time lag and mortality values from the source farms were estimated from the best model. The
results showed that there was a statistically significant association between the weekly mortality incidence at
source farms and the mortality incidence at target farms during the same week and during the previous weeks.
This study did not provide evidence that the spatiotemporal correlation observed in SRS mortality may be due to
water-borne pathogen dissemination between farms and alternative explanatory mechanisms should be in-
vestigated. It remains possible that the patterns of lagged correlation observed between source and target farm
mortality may be due to a model artefact. In addition, there was no evidence of a threshold effect above which
farms pose a substantially larger health risk to their neighbours. Stronger evidence for or against between-farm
transmission of P. salmonis may be obtained by different methods.

1. Introduction

Salmonid rickettsial septicaemia (SRS1) is an infectious disease
caused by the bacterium Piscirickettsia salmonis. The disease was first
identified in Chile in coho salmon farms in 1989 (Bravo and Campos,
1989), and has since caused substantial losses to the industry in all
salmonid species. Although smolt stocks are disease-free at sea entry, a
previous study of regulatory data showed that about 80% of production

batches will be diagnosed with SRS during the sea production phase
(Hillman et al., 2020). The occurrence of horizontal transmission be-
tween farms has been suggested in Chile for SRS and other pathogens,
as well as for ectoparasites such as sea lice (Rees et al., 2014;
Kristoffersen et al., 2013; Price et al., 2017; Arriagada et al., 2017).
These suggestions were based on detecting spatiotemporal correlation
in the level of disease or infestation between neighbouring sea farms, a
phenomenon also called ‘infection pressure’ by some authors. However,
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the distances between sites and the site densities for which this corre-
lation poses a substantial health risk have not been characterized. In
addition, it remains unclear whether the available evidence of spatio-
temporal correlation between farms is due to direct horizontal trans-
mission between farms or to infection by a common environmental
reservoir of P. salmonis. In the latter case, the SRS mortality on neigh-
bouring farms would be correlated due to such farms sharing similar
environmental and spatial characteristics. Under the hypothesis of
horizontal transmission between farms, the pathogen circulation could
be mediated by a vector or occur via bacteria suspended in the flowing
saltwater column. The latter would be possible given the extended
survival time of P. salmonis in salt water, which can be up to 50 days
(Olivares and Marshall, 2010). In addition, the role of wildlife re-
servoirs is unclear as P. salmonis has been identified in native fish
species in Chile (Contreras-Lynch et al., 2015).

Comprehensive management of SRS outbreaks requires direct ap-
plication of control measures in affected farms to limit the local
transmission of SRS and hence reduce mortality within a farm.
Moreover, control measures should effectively mitigate the risk of SRS
spreading from one farm to other farms. The Chilean National Fisheries
and Aquaculture Service (Servicio Nacional de Pesca y Acuicultura,
Sernapesca) sets regulatory thresholds for SRS mortality incidence rates
that, if exceeded, trigger mandatory responses to control outbreaks of
SRS and hence reduce the risk of transmission to nearby farms. These
regulations rely on the assumption that the infectivity of a farm for
neighbouring farms is correlated with the mortality incidence on the
infected farm. However, the level of risk of transmission of SRS from
one farm to another at different mortality incidence thresholds is yet to
be characterized for the Chilean salmon farming industry.

This study was the fifth in a series of epidemiological studies to
examine risk factors for SRS and evaluate the effectiveness of inter-
ventions to control the disease (Happold et al., 2020a, 2020b; Hillman
et al., 2020; Meyer et al., 2019). This work aimed to generate in-
formation that supports Sernapesca in evaluating the current regulatory
threshold for on-farm interventions (Sernapesca, 2012). Our specific
objective in this work was to examine the plausibility of the hypothesis
that spatiotemporal correlation of SRS mortality between farms in Chile
is caused by water-borne pathogen dissemination between farms.

2. Material and methods

2.1. Study population

The study population comprised all seawater farms and farm-level
production cycles included in the data provided by Sernapesca between
January, 2012 and September 2018, in the Los Lagos region of Chile
where a large proportion of the saltwater rearing of salmonids occurs
(Sernapesca, personal communication). The unit of analysis was the
farm-level weekly observation, hereafter referred to as ‘farm-week’.

2.2. Data sources

Weekly, farm-level mortality reports were obtained from the
Sistema de Información para la Fiscalización de Acuicultura (SIFA)
database. The SIFA database was deployed at the end of 2010 and
contains complete data since January, 2012 based on mandatory
mortality reporting by all salmonid production companies. The mor-
tality data used in this study were based on mortality categories as
reported in the SIFA database, rather than laboratory-confirmed disease
cases.

2.3. Statistical regression model

2.3.1. Primary outcome
The outcome variable was the SRS-attributed mortality count for

each farm-week observation in the study area. Here we considered the

mortality incidence in a given region as a single variable. The spatio-
temporal autocorrelation of this variable was considered as the primary
exposure. More specifically, we included two separate model terms to
account for autocorrelation: the SRS-attributed mortality incidence on
other farms at different distances and time lags (primary exposure) and
the temporal autocorrelation at the same farm.

2.3.2. Primary exposure variable
The primary exposure variable was the SRS-attributed mortality

incidence on the 50 closest active farms (‘source farms’) around the
farm on which the mortality was measured (‘target farm’), during a
window of time prior to the week of interest. This variable effectively
modelled the spatially and temporally lagged autocorrelation of the
outcome variable.

In a previous study on SRS in Chile where authors investigated
several between-farm distances up to 20 km, the model with the lowest
Akaike information criterion (AIC) included spatial influence between
farms distant by up to 10 km (Rees et al., 2014). Here, the source farms
were located at distances up to 150 km, allowing the model to reveal
any spatiotemporal autocorrelation, regardless of the underlying me-
chanism of such correlation. The source farms were limited to the 50
closest farms for computational reasons.

In this work, we used a varying coefficient model (Hastie and
Tibshirani, 1993) that allowed mortality on a given farm to vary as a
smooth function of mortality located at different distances and tem-
poral lags from this farm. The influence of the source farms on the SRS-
attributed mortality count at target farm i during week t was modelled
using a linear functional (Ramsay and Silverman, 2006; Wood, 2017) of
the following form:

F d k mort( , , )
j i k

i j j t k
,

, ,

with j the indices of the active farms within a 300-km radius of farm i,
di,j the sea-way distance between farms i and j, k between 0 and
10 weeks, mortj,t-k the mortality at farm j during week t-k, and F a spline
function estimated from the data. The mortality at farm j during week t-
k was measured as an incidence rate in the full model, i.e., as the
mortality incidence count during that week divided by the number of
fish present at the beginning of the week. In an alternative model (see
explanations below), the mortality at farm j during week t-k was mea-
sured as an incidence count. In addition to the linear functional term,
the model was risk-adjusted for the other risk factors observed at each
farm and within-farm autocorrelation, as described below.

2.3.3. Other explanatory variables
The autocorrelation model was adjusted for other risk factors, given

the large variability between different farms and different production
cycles, and in order to account for possible confounding. Seven risk
factors identified as important from previous studies conducted by the
authors or published results from other research groups were included
in the models.

The fish-level factors included in the model were the fish species,
the time since sea entry in degree-days, and the mortality from other
infectious causes during the week of observation. Two predictors were
included to capture temporal trends: the number of days since the first
observation in the dataset (January 2nd, 2012) to account for broad
scale temporal trends such as variations between years, and the day of
the year was included to account for potential seasonal trends. Lastly,
we included the average sea water temperature during the week of
observation, which was the only available variable related to environ-
mental conditions with low rates of missing data. The farm latitude was
included to account for other unmeasured environmental and spatial
variations.

2.3.4. Statistical methods
The weekly SRS-attributed mortality incidence count data was
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treated as a negative binomial response to account for overdispersion in
the counts. These counts were offset by the natural logarithm of the
number of fish present at the beginning of the week. A generalized
additive regression modelling framework was adopted, and im-
plemented through the mgcv package (Wood, 2017) available within
the R statistical computing environment (R Development Core Team,
2019).

The linear functional component of the model that included time
lag, distance and SRS-attributed mortality incidence observed at other
farms was modelled via a tensor product smooth (Wood, 2017). Other
explanatory variables were included either as linear effects or as spline
smooth effects (thin plate regression splines) (Wood, 2017), based on
initial data exploration. Continuously valued explanatory variables
were centred and scaled.

Clustering of the farm-week records within company, farm and
production cycle was considered when building the models. Different
methods for including random effects for company, farm and produc-
tion cycle, and a stricter temporal within-farm autoregression structure,
were trialled but were not computationally feasible to implement given
the large size of the dataset (≈ 49,000 farm-week records). Ultimately,
the random effects were included in the model as spline smooth effects,
which are treated as penalized regression terms, an estimation method
equivalent to that of conventional random effects (Wood, 2004). In
short, the coefficients associated with the model matrix component are
assumed i.i.d. normal, with unknown variance to be estimated. The
within-farm autocorrelation terms of lag order 1 and 2 were modelled
as linear regression terms, again for ease of implementation. These
terms correspond to the mortality on the same farm during the last and
before-last weeks before the observation week. Exploratory analysis
showed that the within-farm autocorrelation for larger temporal lags
(> 2) was not significant.

2.3.5. Model selection
Consistent with the information theoretic approach (Burnham and

Anderson, 2002), eight nested statistical models were built to compare
the significance of different covariates. The full model included all the
covariates described in the above sections. In three other models, some
variables were not included, namely the spatiotemporal autocorrelation
term, the latitude effect and the farm and company effects. The max-
imum lag of the spatiotemporal correlation was changed from 10 to 4
and 15 weeks in two other models, respectively. Last, a model based on
the Euclidean distances rather than the seaway distances was also built,
as well as a model using the mortality incidence count on source farms
rather than the incidence rate (Table 1).

Once fitted to the observed data, the eight statistical models were
ranked according to their AIC and Akaike weights (Akaike, 1974).
Models with an AIC difference greater than ten points from the model
with the lowest AIC were considered to be substantially less supported
by the data than the highest-ranking model (Burnham and Anderson,
2002; Wagenmakers and Farrell, 2004).

2.4. Distance calculations

The sea-way distance between farms was computed using a least-
cost path algorithm implemented in Python by the scikit-image
package.2 A raster map of the region of interest, with a cell resolution of
0.003°, was used. Resistance values of one for seawater pixels and of
one million for land pixels were selected to prevent the optimal route
from crossing land pixels. The routing algorithm was applied to each
pair of farms available in the dataset. Both the sea-way distance and the
Euclidean (straight-line) distance were recorded for each pair.

2.5. Interpretation of the results

Partial effects were obtained from the most supported model for a
range of time lag, distance and source farm mortality values. We ob-
tained the partial effects for the influence of a single source farm on the
target farm, although the models were fitted by considering the influ-
ence of the 50 closest source farms. In addition, the concepts of source
and target farms are used here for clarity, but it is important to note
that the linear functional term considers an undirected spatiotemporal
correlation. The partial effects displayed in Fig. 2 indicate the direction
and intensity of the correlation between the mortality on source and
target farms, at different values of time lag, distance and source farm
mortality.

Then, predicted values of SRS mortality on the source farm were
obtained considering the influence of SRS mortality on the 50 closest
source farms, distributed as per the average neighbourhood config-
uration in the dataset. Continuous and categorical fixed effect values
were set to the dataset mean or reference category, respectively. The
within-farm autocorrelation terms were set to 0. This allowed us to
compare the changes attributable to the spatiotemporal correlation in
time and space, all other factors remaining equal (Fig. 3).

3. Results

Sea farms in the Los Lagos region reported a total of 49,724 farm-
week records between January 2nd, 2012 and September 24th, 2018.
Species farmed during that period were rainbow trout, Atlantic salmon,
coho salmon, King salmon and pink salmon. There were only very few
records for the two latter species, and they were removed before ana-
lysis. The number of fish present each week on the farm and the average
sea temperature were missing from 1.2% and 25% of the records, re-
spectively. These values were approximated using the previous and
following weekly records where possible. A total of 48,791 complete
farm-week records (1010 production cycles) were retained for this
analysis. These records originated from 334 farms (Fig. 1).

The best-fitting statistical model according to the Akaike weight was
model 7, which was the model based on mortality incidence rates on
source farms during the previous 10 weeks, without the latitude effect
(Table 2). There was only a small difference with the full model (model

Table 1
Characteristics of each statistical model.

Statistical model identifier Model characteristics

1 (null model) No spatiotemporal autocorrelation term.
2 (full model) Spatiotemporal autocorrelation estimated with a lag between 0 and 10 weeks.
3 Farm and company effects not included.
4 Spatiotemporal autocorrelation estimated with a lag up to 15 weeks rather than 10 weeks.
5 Spatiotemporal autocorrelation estimated with a lag up to 4 weeks rather than 10 weeks.
6 Spatiotemporal autocorrelation estimated using Euclidean distances rather than sea-way distances.
7 Latitude effect not included.
8 Mortality on source farms estimated as an incidence count rather than an incidence rate.

2 http://scikit-image.org/docs/0.7.0/api/skimage.graph.mcp.html
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2). These 2 models performed better than the model based on Euclidean
distances (model 6), the model including lags up to 15 weeks (model 4)
and the model based on SRS mortality incidence counts on source farms
(model 8), with AIC differences larger than 200 points. The models
including no spatiotemporal correlation and only 4 weeks of lagged
mortalities (models 1 and 5) had the highest AIC values. The spatio-
temporal correlation in SRS mortality was statistically significant in all
models where it appeared (Table 3).

However, the partial effect of a single source farm on SRS mortality
was small in all models (see estimates from best model in Fig. 2, panel
A). There were small variations of this effect with distance, time lag and
mortality on the source farm, which are described below for the best
fitting model (model 7) but were similar for model 2. There was no
correlation between the mortality on source and target farms for a wide
range of parameters. Within a small time lag (≤3 weeks), there was a
negative correlation for very high values of mortality (above 1%) when

the distance between the source and target farms was small (up to
10 km). There was also a negative correlation for very high values of
mortality for farms located at long distances (≥80 km), with medium
time lags between 2 and 8 weeks. For farms located at medium dis-
tances (20 to 50 km), there was a positive correlation for very high
values of mortality. For longer time lags (≥8 weeks), there was a po-
sitive correlation across the range of mortality levels at short and
medium distances (up to 25 km). At long time lags, there was also a
strong positive correlation for very high values of mortality (above 1%)
at very long distances (above 100 km). Although model 4 only ranked
5th in our study, the partial effect plots from this model are presented in
Fig. 2, panel B, to illustrate the effect of considering time lags up to
15 weeks. In model 4, the large correlation values mentioned above for
long and time lags distances were not observed. Other correlation
patterns were similar between models 4 and 7.

While the partial effects showed significant spatiotemporal auto-
correlation, the influence of a single infected source farm on predicted
values of mortality on the target farm was negligible regardless of the
time lag and source farm mortality considered (Fig. 3). The mortality on
the target farm remained lower than 0.0001% after 3 weeks and in-
creased to 0.0002% after 9 weeks. Predicted values were higher when
10 to 20 of the source farms were infected, remaining under 0.005%.
When all neighbour farms were infected for 9 weeks, the mortality on
the target farm increased to up to 0.2%. The standard errors for all
predicted values were large and the confidence intervals included 0.
The effect of the level of mortality on infected source farms was not
statistically significant.

In the most supported model, SRS mortality was positively asso-
ciated with the mortality on the same farm during the previous week
and two weeks before the observation (Table 3). Weekly SRS mortality
was also positively associated with time since sea entry, sea tempera-
ture, mortality from other infectious causes. There were significant
long- and short-term temporal trends (Supplementary material, Fig-
ures). Mortality in coho salmon was significantly lower than in Atlantic
salmon, and there was no difference between Atlantic salmon and
rainbow trout.

4. Discussion

This study considered the spatiotemporal correlation of SRS mor-
tality in commercial salmonid farms in southern Chile. The results
showed that there was a statistically significant association between the
weekly mortality incidence at source farms and the mortality incidence
at target farms during the same week and during the previous weeks.
The ranking of different model formulae provided additional informa-
tion on this spatiotemporal correlation in SRS mortality. First, including
the spatiotemporal correlation term for time lags of up to 10 weeks
substantially improved the model fit compared to the model excluding
this term, or including only 4 weeks of lagged mortalities. Extending
the correlation term to longer time lags (up to 15 weeks rather than 10)
did not provide additional benefits in terms of model fit. The time lag
considered between mortality on source and target farms is an im-
portant factor to consider when interpreting the model results (see
more detailed interpretation below). Under the hypothesis of water-
borne pathogen dissemination of P. salmonis from a source farm, a
substantial time lag is expected before observing an increase in SRS
mortality on the target farm. This period can be divided in two: a period
of dissemination of bacteria from the source to the target farm and the
period before substantial SRS mortality is observed on the target farm.
These durations may be affected by many factors, such as the level of
shedding of bacteria on the source farm, hydrodynamic parameters, the
incubation period of SRS and within-farm disease dynamics.

The exclusion of the latitude effect (model 7) did not substantially
modify the fit to the data (small AIC difference with model 2), nor did it
modify the spatiotemporal patterns of predicted values (data not
shown). Consequently, we considered that the latitude effect was not

Fig. 1. Location of the 334 farms for which data were available, in the Los
Lagos region of Chile.

Table 2
Statistical model ranking based on the observed data.

Statistical model
identifier

No. of
parameters

AIC ΔAIC Akaike
weight

7 1007 394,303 0 0.97
2 1007 394,310 7 0.03
3 997 394,351 48 0.00
6 997 394,520 217 0.00
4 993 394,572 269 0.00
8 1004 394,673 370 0.00
5 1003 394,820 517 0.00
1 967 396,295 1992 0.00

Table 3
Coefficient estimates from the best statistical model. Edf: estimated degrees of
freedom. Estimates for continuous variables are provided for the scaled vari-
ables.

Parametric coefficients Estimate Standard
error

t-value p-value

Intercept −12.61 0.19 −65.42 < 0.01
Autocorrelation with lag 1 4.15 0.06 73.99 < 0.01
Autocorrelation with lag 2 0.30 0.05 6.21 < 0.01
Time since sea entry < 0.01 < 0.01 56.10 < 0.01
Sea temperature 0.18 0.03 6.75 < 0.01
Mortality from other infectious causes 0.55 0.07 7.68 < 0.01
Species (reference: Atlantic salmon) reference
coho salmon −1.75 0.20 −8.84 < 0.01
Rainbow trout −0.03 0.23 −0.14 0.89
Smooth terms edf F-value p-value
Linear functional term 42.86 88.01 < 0.01
Long term temporal trend 3.00 145.68 < 0.01
Seasonal trend 1.98 718.74 < 0.01
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unduly capturing the variability due to spatiotemporal autocorrelation
in the response in the full model. Previous analyses showed that SRS
mortality was influenced by the site latitude in Atlantic salmon
(Happold et al., 2020). The present results suggest that the association
with latitude may be due to local correlation in mortality between sites.
It is also plausible that our results differ because the model was fitted
for Los Lagos region only. Within the region, there was a smaller range
of variations along the North-South direction.

Interpretation of the partial effects showed local, positive correla-
tion between the mortality on source and target farms within a radius of
20 to 50 km, instantaneously and for time lags of up to 2 weeks. As the
incubation period of SRS is assumed to be at least 2 weeks (Rozas and
Enriquez, 2014; Smith et al., 2004), such spatial correlation with time
lags inferior or equal to the incubation period is unlikely to be ex-
plained by water-borne pathogen dissemination between the source and

target farms. Alternative mechanisms such as infection by a common
(e.g., environmental) reservoir of P. salmonis or sharing similar local
environmental characteristics that trigger the expression of SRS mor-
tality on already-infected farms may explain the observed correlation in
neighbouring farms for small time lags. Local, positive correlation, on
sites up to 25 km apart, also occurred for longer time lags, from 7 to
8 weeks onwards. This pattern could be consistent with water-borne
pathogen dissemination having occurred between the source and target
farms. The longer time lags observed in this case are biologically
plausible, as they could reflect a combination of the incubation period
of the disease at fish-level and the time for the disease to result in ob-
servable levels of fish mortality on a newly infected farm. Published
descriptive parameters of the within-farm transmission of SRS were not
available at the time of writing. Finally, the positive correlation ob-
served over long distances (≥100 km) may be associated with multiple

Fig. 2. Partial effect of the SRS mortality of the
source farm on the SRS mortality on the target
farm, conditional on different distance and time
lag values, obtained from model 7 (panel A) and
model 4 (panel B). Yellow tones correspond to
the lowest values while purple tones correspond
to the highest values. The y-axis corresponds to
increasing levels of mortality on the source
farm. The x-axis corresponds to an increasing
time lag between the mortality observations on
the source and target farms. The panels corre-
spond to increasing distances between the
source and target farms, as indicated by the
numbers (in km) in the white boxes. (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)
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disease foci, distributed over the entire study area. These foci of SRS
mortality may appear correlated, while actually occurring in parallel
without any epidemiological link between them. In addition to be-
tween-farm correlation, model results showed temporal, within-farm
autocorrelation in mortality, with positive coefficients for 1-week and
2-week lags. These terms represented the within-farm dynamics of the
disease, including transmission both between fish and between pens.

In this paper, we used a spline-based model. Others have studied
spatiotemporal correlation of animal diseases using kernel-based
methods (e.g. Boender et al., 2007; Gubbins et al., 2018; Ypma et al.,
2013). Both methods are based on arbitrary values for the ‘smoothing’
parameter (i.e., bandwidth or degrees of freedom). The spline-based
method was chosen in this work as it better allowed for the inclusion of
multiple risk factors within the GAM framework, such as seasonality
with a cyclic spline. No readily usable framework for kernel-based
multivariate GAM estimation was found at the time of this study. In
addition, the spline-based GAM framework allowed for the use of
continuous mortality data rather than dichotomizing the data according
to arbitrary rules. The choice of kernel type is a critical step in kernel-
based methods, and may have a significant impact on the outcome, as
shown in Gubbins et al. (2018). Other methods used to study spatial
correlation of infectious animal disease outbreaks include the space-
time K function (Vergne et al., 2017). It is worth noting that any such
method may only be used to assess whether spatiotemporal correlation
has a substantial effect on the distribution of the cases, and that these
studies do not assess whether farm-to-farm transmission is the main
cause of such correlation.

A potential caveat of the spline-based method is harmonic beha-
viour. Higher values observed at the upper extremity of the range of
time lags may be due to a model artefact rather than representing
biological processes. Such oscillations may have occurred for large time
lags in model 7 and did not appear in the model using longer time lags
(model 4). Harmonic behaviour may also explain the negative corre-
lations observed for some of the parameter combinations, which are
unlikely to be biologically plausible. Oscillations in the spline functions
may be a consequence of the harmonic behaviour of the smoothing
process, as demonstrated by previous authors (Bowman and Azzalini,
1997; Wüst et al., 2017). In addition, it is worth noting that the un-
certainty associated with the smooth effect was large, which leads to
the necessity of interpreting the shape of the surfaces carefully.

An important limitation of this study is the use of on-farm mortality
classification data as the only form of SRS diagnosis. We were unable to
determine the sensitivity and specificity of the classification process of
fish mortalities. These indicators may depend on the qualifications and
experience of farm personnel as well as previous SRS laboratory diag-
noses for the fish group. Classification inaccuracies may have affected
our results, by misestimating the level of SRS mortality on the source or
target farms. The data used in this study could be improved by in-
cluding results from farm-level or area-level laboratory diagnosis of
SRS.

Our model results suggest a small dose-response effect where in-
creasing SRS mortality on the source farms (up to 0.05%) resulted in
increasing mortality predicted values on target farms. However, this
response was not statistically significant and only appeared when a very

Fig. 3. Predicted values of SRS mortality of the target farm according to the SRS mortality on the neighbour source farms. Distances were set to represent the average
neighbourhood configuration in the region. The different line colours represent the cumulative time lag of SRS mortality on the source farms (for example, 3 indicates
that we considered the mortality on the target farm after 3 weeks of SRS mortality on the source farms). The panels represent the number of source farms which
declare SRS mortality at the level indicated on the x-axis. The error bars represent the standard error of the predicted values. The predicted values were obtained from
model 7 and are plotted on a log scale.
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large proportion of the neighbouring farms were affected. The infection
pressure from a few farms in the neighbourhood, even with very high
SRS mortality and at short distances did not increase the mortality on
the target farm. Overall, the mortality on source farms did not explain a
substantial proportion of the variance in the SRS mortality on the farms
included in our dataset. Hence, this study does not provide evidence
that the spatiotemporal correlation observed in SRS mortality could be
due to water-borne pathogen dissemination between farms. Although
the pathogen may abundantly disperse in the sea environment of in-
fected farms, our models do not support a substantial effect of this
dissemination in causing mortality in neighbour farms. Overall, the
models provide evidence in favour of alternative explanations of the
mechanisms behind spatiotemporal correlations. Confounding effects
due to unaccounted-for factors that influence SRS mortality on neigh-
bouring farms simultaneously or with a certain time lag include various
biotic and abiotic factors. The results presented here highlight the
complex epidemiology of P. salmonis infection in salmonid farms.

Previous modelling work showed that larger sea farms were at
higher risk of transmitting disease to their neighbours, due to the higher
intensity of pathogen shedding (Salama, 2011). Our full model based on
SRS mortality rates on source farms (model 2) provided a significantly
better fit to the data than the alternative model using mortality counts
instead (model 8), with a large AIC difference. This result is surprising,
as it was expected that the number of fish dying from SRS (representing
a combination of the level of mortality on the source farm and the farm
size) would provide a better estimation of the farm-level infectivity and
pathogen shedding. Other variables which could be of interest are the
stocking density, the number and size of cages and the production stage
on the source farms. However, the effect of these variables could not be
studied here, as the models did not converge when including more than
three variables in the linear functional terms (time lag, distance and
source farm mortality). The importance of SRS mortality rates is con-
sistent with Chilean regulatory thresholds for intervention, which are
based on weekly mortality rates rather than counts. However, there was
no evidence in our study of a threshold effect above which farms poses
a substantially larger health risk to their neighbours.

It is important to note that models based on seaway distances per-
formed better than the model based on Euclidean distances. A spatial
study of pancreas disease using a hydrodynamic model in Norway
showed that the infection pressure for this disease was best modelled by
a variable based on water contact and the fish biomass on infectious
sites (Viljugrein et al., 2009). An infection pressure variable based on
seaway distances and including the number of fish at infectious sites
was an acceptable alternative. Stronger evidence for or against be-
tween-farm transmission of P. salmonis may be obtained by building
and assessing the predictive power of mathematical models of pathogen
spread. A large range of methods are available, depending on the spa-
tiotemporal scale of interest for instance (Parry et al., 2013). Existing
models of pathogen spread in aquaculture demonstrated the importance
of including hydrodynamic features of the study area (Salama and
Murray, 2011, 2013; Viljugrein et al., 2009). Little published work on
hydrodynamic features is currently available to support such modelling
work in our study area. Local parameters for currents and tidal am-
plitude were reported in a few studies in the Los Lagos and Aysén re-
gions (Atkinson et al., 2002; Aiken, 2008; Shaffer et al., 1999; Figueroa
and Moffat, 2000; Sobarzo et al., 2018). Although the Peru-Chile cur-
rent system affects the general area (Karstensen and Ulloa, 2019), sea
farms in the Los Lagos region are located in protected channels, fjords
and bays rather than in open water. These farms are less likely to be
affected by large-scale oceanic conditions than by local water flows.
Such water flows follow complex patterns created by tidal movements,
residual currents, freshwater inputs, oceanographic features and local
topography (Sobarzo et al., 2018). The development of a mathematical
model of SRS spread including hydrodynamic parameters would be
expected to provide a substantial contribution to explaining spatio-
temporal patterns of SRS mortality in Chile (Steven et al., 2019). Such

work could build on previous hydrodynamic modelling for other dis-
eases, such as the work on infectious salmon anaemia presented by
Olivares et al. (2015), which was based on the Regional Oceanic
Modelling System (Shchepetkin and McWilliams, 2005).

In addition, whole-genome sequencing has proven useful in identi-
fying disease transmission patterns in various situations where tradi-
tional contact tracing was not conclusive (Crispell et al., 2017; Kao
et al., 2014; Walker et al., 2014; Gardy et al., 2011). Molecular tech-
niques could contribute to clarifying SRS transmission routes in Chilean
salmon farms, by characterising the P. salmonis isolates identified on
different farms and assessing the genetic distance between them. Fur-
ther research on these topics would contribute to close some important
knowledge gaps related to SRS (Mardones et al., 2018) and support the
development of more evidence-based policy. In the meantime, the
evidence currently available is not strong enough to base all regulatory
disease management efforts on the hypothesis of waterborne between-
farm transmission. A broader approach to risk management is re-
commended, with different mitigation measures addressing the poten-
tial spread mechanisms.
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