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ScienceDirect
Coordinated excitatory and inhibitory activity is required for

proper brain functioning. Recent computational and

experimental studies have demonstrated that activity patterns

in recurrent cortical networks are dominated by inhibition.

Whereas previous studies have suggested that inhibitory

plasticity is important for homeostatic control, this new

framework puts inhibition in the driver’s seat. Complex

neuronal networks in the brain comprise many configurations in

parallel, controlled by external and internal ‘switches’. Context-

dependent modulation and plasticity of inhibitory connections

play a key role in memory and learning. It is therefore important

to realize that synaptic plasticity is often multisynaptic and that

a proper balance between excitation and inhibition is not fixed,

but depends on context and activity level.
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Introduction
It has been long recognized that proper functioning of

neural networks in the brain requires coordinated actions

of excitatory and inhibitory synapses. Early modeling

studies have demonstrated that networks are stable when

activity is ‘balanced’ [1]. In these networks, all neurons

receive many excitatory and inhibitory inputs, which

nearly cancel each other out. The net input to individual

neurons is therefore small, but sufficient to allow fast

dynamic responses to external (e.g. sensory) stimuli.

When network activity levels change, excitation (E)

and inhibition (I) stay balanced, which ensures stability

of the network. In this framework, the main role of

inhibition in the brain is to counteract excitation to

prevent instabilities in neural network function.

The concept of E/I balance has proven highly useful,

both in experimental and computational neuroscience.
www.sciencedirect.com 
In a clinical context, disturbances in E/I balance are

thought to underlie several neurodevelopmental and

other brain disorders [2,3]. However, the term ‘balance’

is not always clearly defined. Recent computational

studies have demonstrated that the precise E/I balance

in a network depends on the (often complex) circuit

connectivity, the activity level and the firing properties

of the neurons involved. In this review we discuss how

computational and experimental studies are redefining

the role of inhibition within the brain. We argue that,

rather than simply following excitation, inhibition

controls the rules for information processing and learning

in the brain.

Information processing in the brain is
controlled by inhibition
Sensory information arrives in the cortex via the thala-

mocortical pathway, by direct excitatory and indirect

feedforward inhibitory projections. Processing occurs in

local cortical networks which include recurrent excitatory

connections and external modulation. Recent experimen-

tal and theoretical studies indicate that sensory cortex

circuits operate in a regime where network activity is

dominated by strong inhibitory feedback connections,

described as inhibition stabilized networks (ISNs)

[4,5�,6,7��]. An ISN is a theoretical network model of

excitatory and inhibitory neurons with specific features.

In an ISN, the recurrent excitatory connections dominate

over external inputs, which renders the excitatory net-

work inherently unstable. However, because the excit-

atory network is connected to a strong inhibitory network,

overall stability of the ISN is secured. The important

advantage of a strong recurrent excitatory network is that

responses to (behaviorally relevant) stimuli are rapidly

amplified [8,9]. This amplification results in a very brief

surge in neural activity, as the explosive increase in

excitation gets immediately (within tens of milliseconds)

stabilized by strong recurrent inhibition [10]. This

so-called ‘balanced amplification’ via strong recurrent

connections was recently shown to allow effective signal

transmission across several cortical areas in a large-scale

model of the macaque cortex [11].

The rapid stabilization after an E/I disturbance also

occurs in the opposite direction. Theoretical studies have

predicted that external excitatory input to inhibitory cells

leads to a counterintuitive lowering of network inhibition.

This latter effect is because the initial increase in inhibi-

tion is rapidly counteracted by a decrease in overall

network activity [12,13]. Rapid E/I rebalancing was also

recently observed in an experimental study in which

optogenetic silencing of parvalbumin (PV) cells in layer
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2 Neurobiology of learning and plasticity
IV of the auditory cortex led to adjustment of cortical

activity level in which E/I ratio was rapidly restored [7��].
This illustrates how networks with recurrent excitatory

and inhibitory connections inherently correct E/I

disturbances.

Firing properties of neurons are highly nonlinear and this

nonlinearity further adds to the instability of the excit-

atory network. At rest, cortical neurons fire at low rate and

their firing is determined by small fluctuations of the

membrane potential above the firing threshold. There-

fore, cortical responses are nonlinear and highly variable

when external (e.g. sensory) inputs are weak. As only a

few neurons are active, recurrent connections are mostly

silent and network activity is mainly driven by external

input. However, when external inputs become stronger,

network activity increases and recurrent connections will

be recruited. In this activity regime, strong recurrent

connections become dominant over external drive. As

excitation is now automatically balanced by strong feed-

back inhibition, the network responses become linear and

reliable (Figure 1). This means that graded inputs evoke

graded responses over a wide range of activity levels, in

which the E/I balance is automatically adjusted to the

activity level [4,14].

The transition from highly variable, supralinear network

activity to reliable and linear cortical responses with

increasing input strength reflects a shift in effective

network connectivity depending on the activity level

[5�]. This implies that the E/I ratio is not fixed within

the network, but that the optimal E/I ratio strongly

depends on the network activity level and stimulus

properties. Variable E/I ratios have been experimentally

observed [6,15,16]. For instance, in the primary visual

cortex of awake mice the E/I ratio decreases with increas-

ing stimulus size and contrast [6]. This suggests that the

sensory cortex operates as an ISN, in which feedback

inhibitory connections are only employed when external

inputs are strong enough to recruit the recurrent

connections.

Even though the computational framework was originally

developed to explain sensory processing, supralinear

neuronal networks which are stabilized by inhibition

can display a large diversity of activity patterns, including

bimodal, persistent and oscillatory activity [17]. This

matches with experimental observations of the remark-

able versatility of cortical function and illustrates the

potential as a general principle of cortical organization.

Inhibition is context-dependent and essential
for memory
The above studies emphasize that inhibition is an integral

part of neuronal circuits and information processing. More

importantly, it highlights the central role of inhibition in

governing cortical activity, function and effective
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architecture. Previous excellent reviews have discussed

the role of inhibition in controlling activity levels,

sharpening tuning and modulating oscillations [18–20].

Here we will focus on recent new insights in the role of

inhibition in learning and memory.

Context-dependent information processing

Cortical responses to external (e.g. sensory) stimuli are

profoundly influenced by context and by the behavioral

state of the animal. For instance, active and passive

responses are different already in the primary sensory

cortex [21,22] and responses are modulated by expecta-

tions [23,24]. Interestingly, context-dependent differ-

ences are often reflected in differences in inhibitory

currents [25�,26]. For instance, active versus passive

hearing modulates inhibitory rather than excitatory inputs

in the auditory cortex [25�]. Inhibition may change the

overall activity level of the network, which can funda-

mentally alter information processing and behavioral

outcome [27]. Experimental studies showed that

context-dependent modulation occurs via activation of

specific subsets of GABAergic cells through long-range

connections from other brain areas [22,24,28]. Long-range

context signals often converge onto inhibitory neurons

in layer I and vasoactive intestinal protein (VIP) cells

[29–31] and act to ‘switch’ network inhibition. Multiple

network configurations are implemented in parallel

within the same cortical circuitry, controlled by external

‘switches’ to specific subset of inhibitory neurons

(Figure 2) [32,33]. This demonstrates the power of

inhibition to fine-tune the E/I balance in the network

and to control the responses of the network via a highly

specific gain control mechanism.

Recent experimental findings demonstrate that neuronal

networks can switch between learning-competent and

learning-resistant configurations. Activity-dependent

reorganization of excitatory connection is gated by a

transient decrease in inhibition [34,35]. In one study, rats

were trained to run on a treadmill. Learning of this

coordinated movement involves establishing reliable

sequential activation of pyramidal cells in layer II/III

of the motor cortex. This learning process was found to

be under control of somatostatin (SST) and VIP inter-

neurons. Learning only occurred when SST cells were

inhibited, either directly using optogenetics or indirectly

via activation of local VIP cells [36]. In another study, low-

threshold spiking interneurons in the striatum were

shown to play a similar role in mice that learned to press

a lever to obtain a reward. Learning was facilitated by

suppression of these interneurons, and hindered when

they were activated [37]. A similar VIP-controlled

mechanism involved in fear conditioning was found in

the striatum [38]. In all cases, learning involved specific

reconfigurations of the network by dedicated changes in

the inhibitory circuitry.
www.sciencedirect.com
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Figure 1
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Recurrent excitatory networks are stabilized by inhibition.

(a) When external input is weak, only a few excitatory neurons are activated and recurrent connections are mostly silent (dashed lines). Network

responses are mainly driven by noise.

(b) With stronger external input, recurrent excitatory connections are recruited and the network response becomes supralinear and unstable.

(c) As excitation is quickly balanced by strong feedback inhibitory connections, the network stabilizes and network responses become linear. The

E/I ratio in the network is decreased with stronger input.

www.sciencedirect.com Current Opinion in Neurobiology 2021, 67:1–8
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Figure 2
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Context-dependent inhibition in cortical circuits.

Cortical circuit with several inhibitory neurons controlled by ‘switches’. Depending on context-signals from other brain areas (orange), or activity

level, different sets of inhibitory neurons are involved, which leads to context-dependent information processing in the cortical circuit. Three

hypothetical configurations controlled by external switches S1, S2 and S3 are illustrated. Excitatory connections are indicated by black lines,

inhibitory connections are blue.
Memory

Memory is generally considered to be represented by long-

lasting changes in synaptic connections. Learning is well

associated with experience-dependent changes in spines,

where excitatory synapses are located. New spines

are rapidly formed while some pre-existing spines are

removed, such that long-term changes in connectivity are

implemented without changing total spine density [39,40].

The newly formed spines assure that the network will

respond in a different way to the same external stimulus

at subsequent occurrences — it has learned from the

previous experience.

Multiple activity patterns (‘memories’) are stored in

parallel in the same circuit. As explained above, activity

patterns in neuronal circuits are dominated by the inhibi-

tory, rather than the excitatory, synapses. Computational

models have shown that balanced E/I networks allow

storage of multiple memory activity patterns, which can

be evoked by external inputs via controlled transient

unbalancing [41,42]. In line with this, an increasing

number of experimental studies are showing that

inhibitory plasticity is important in memory processes,

including fear memory [43], grid cell formation for spatial

memory [44], and in the human brain [45].

A recent computational study showed that the storage

capacity of memories (e.g. specific activity patterns) in a

recurrent network is surprisingly larger when memory-

related changes are implemented in inhibitory, rather

than in excitatory, synapses [46��]. Changes in activity

patterns in the network (e.g. memories) can be stored in

relatively few changes of the inhibitory circuit, while

ongoing excitatory changes serve to rebalance network

activity. This also explains how memories are kept stable
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over time, despite ongoing and extensive changes in

spine number and size [46��].

In another computational study, changes in inhibitory syn-

apses are used to ‘teach’ a network about rewarded stimuli.

Here, a reward signal (modeled via VIP interneuron activa-

tion) alters the network configuration via inhibitory synaptic

changes. This initial inhibitory change is then corroborated

by further excitatory plasticity such that the pyramidalcells in

the network develop a preference for the rewarded stimulus

[47�]. Interestingly, it is not necessary to maintain the reward

signal. A transient ‘training period’ is enough to sculpt the

inhibitory network to store the reward information. Subse-

quent network activity further entrains the network [47�].

Although the number of computational studies in which

coordinated inhibitory and excitatory plasticity are imple-

mented are still limited, these few examples demonstrate

their great promise.

Codependent plasticity of excitatory and
inhibitory synapses
To fully appreciate the impact of coordinated changes in

excitatory and inhibitory synapses, it is necessary to

understand the underlying mechanisms of E/I coordina-

tion. To facilitate unraveling of molecular mechanisms in

experiments, synaptic plasticity is mostly studied in

isolation. However, in vivo synaptic plasticity integrates

neighboring excitatory and inhibitory inputs, and often

induces concerted changes in multiple inputs. For

instance, learning a motor task causes coordinated

changes in excitatory and inhibitory synapses onto the

same dendrites in the mouse motor cortex [48]. Multi-

synaptic changes at excitatory and inhibitory synapses are

needed to maintain overall network performance [35,49].
www.sciencedirect.com
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Figure 3

PostPre

Current Opinion in Neurobiology

Excitatory and inhibitory plasticity co-occur within dendrites.

Two-photon microscopy images of a dendrite (red) of an excitatory CA1 pyramidal cell and an inhibitory axon (green). After local glutamate

uncaging at excitatory synapses (blue circles), several spines undergo plasticity (orange arrowheads), and a new inhibitory presynaptic bouton

(white arrowhead) occurs at the crossing. This indicates local crosstalk between inhibitory and excitatory synapses. Scale bar is 2 mm.
This coordination may be especially important in den-

drites, where the first stage of neuronal computation takes

place [50,51]. Within dendrites, excitatory and inhibitory

synapses are close together (within a few micrometers;

Figure 3) and dendritic plasticity signaling pathways

at nearby synapses will inevitably interfere [52,53],

rendering plasticity inherently heterosynaptic.

A number of recent studies are highlighting coordinated

changes in excitatory and inhibitory synapses and empha-

size the importance of considering the heterosynaptic

nature of plasticity. In the developing auditory cortex,

plasticity at one synaptic input induces subsequent

changes to a broad range of excitatory and inhibitory

inputs to the same neuron [54�]. These heterosynaptic

changes were shown to maintain overall E/I ratio, pre-

sumably allowing dynamic experience-dependent

updates of synapses, while preserving overall network

function [54�,55]. In adult neurons, there is also clear

evidence for heterosynaptic plasticity [48,56–58]. Two

recent papers demonstrated that strong excitatory activity

induces plasticity at nearby inhibitory synapses within

dendrites [59�,60�]. In some cases, inhibitory plasticity

precedes and gates excitatory plasticity [48,58], while in

other cases inhibitory plasticity seems to follow from

changes in excitatory activity patterns [46��,61,62]. Het-

erosynaptic plasticity, in which dendritic inhibition

affects local excitatory plasticity, may be specifically

important for clustering and matching of synaptic inputs

within dendrites [55]. However, the computational

consequences of excitatory activity inducing local

inhibitory plasticity are much less understood [63].

Molecular mechanisms

Inhibitory synapses display various forms of synaptic

plasticity, which are extensively described elsewhere
www.sciencedirect.com 
[19,53,64,65]. The induction of GABAergic plasticity

often requires a non-GABAergic triggering signal, such

as glutamate or a retrograde messenger from nearby cells,

but external signals from other brain areas may also be

involved. This property underscores the heterosynaptic

nature of inhibitory plasticity.

The same molecular pathways (via CaMKII and

calcineurin) that govern glutamate receptor levels at

excitatory synapses can also regulate insertion and endo-

cytosis of postsynaptic GABAA receptors at inhibitory

synapses [53,57,59�,66], making a direct molecular cou-

pling between excitatory and inhibitory synapses. For

instance, dendritic SST synapses are strengthened upon

NMDA receptor activation, while somatic PV synapses

are not affected [59�]. Specificity between different

inhibitory synapses can be achieved via molecular

specializations, such as the presence of specific GABAA

receptor subunits and calcium channels [59�,67].

Presynaptic forms of plasticity occur more prominent at

inhibitory synapses compared to excitatory synapses

[53,68]. This may be explained by the more active role

played by the presynaptic inhibitory axon during synapse

formation and plasticity [69,70]. Axons contain receptors

and signaling pathways that can regulate presynaptic

function via local factors (e.g. BDNF, nitric oxide or

endocannabinoids from the postsynaptic cell), but neu-

romodulatory signals from other brain areas may also be

involved (e.g. dopamine or acetylcholine). For instance,

perisomatic PV synapses are precisely matched with local

network activity via a nitric oxide feedback mechanism

[71,72]. This matching shapes network oscillations and

decreases network correlations [73]. Dendrites which

receive strong excitatory input produce endocannabi-

noids, which can trigger the growth of a new inhibitory
Current Opinion in Neurobiology 2021, 67:1–8
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bouton on the same dendrite [60�]. These mechanisms

maintain local E/I balance in an activity-dependent man-

ner. Dopamine signaling can also regulate the number of

inhibitory synapses [43,48]. Interestingly, many presyn-

aptic mechanisms converge onto axonal cAMP and cGMP

signaling pathways, which seem conserved between mice

and humans [74]. Axonal receptors may provide local and

long-range control of inhibitory synapses. Future research

will need to further unravel axonal signaling pathways

and plasticity mechanisms [68], especially in inhibitory

axons.

Conclusion and outlook
Inhibitory neurons and their synapses have traditionally

been understudied. The emerging concept that neuronal

networks in the brain are dominated by inhibition puts

inhibitory neurons in the spotlight. Recurrent excitatory

cortical networks are chaotic and cannot function by

themselves, so they need to be stabilized by inhibitory

connections. This provides GABAergic inhibition with

previously unrecognized power to determine when and

where excitatory activity can occur, even though inhibi-

tory synapses are noticeably in the minority. Rather than

simply dividing the inhibitory labor in cortical circuits,

different interneuron types may form multiple entry

points for differential control over network function,

activity patterns and effective connectivity. The broad

spectrum of different interneurons and external controls

may provide cortical circuits with their remarkable

versatility.

In future studies it will be important to understand how

simple ISN network models fit to the complex circuit

architecture and many cell types that are found in the

brain. In complex networks, it is not always possible to

precisely define the role of specific interneurons

[7��,75,76]. Cortical circuits may accommodate several

modes of network function in parallel, and local

imbalances may be well tolerated, or even exploited

[77]. Future efforts, combining experimental and

computational approaches, should be aimed at further

understanding the molecular mechanisms and functional

consequences of codependent excitatory and inhibitory

plasticity.

The ISN concept will also help to understand the role of

inhibition in brain development and disease. Develop-

mental inhibitory plasticity is important for determining

adult brain function and learning capacity [78]. Here,

inhibitory plasticity may play an instructive role, setting

the boundary conditions for further excitatory plasticity

later in life. In line with this, a number of recent studies

show that restoring inhibitory plasticity at the proper

developmental time has a major and long-lasting impact

on brain function and behavior in a wide variety of

brain disorders [79–81]. Many brain diseases, including

neurodevelopmental disorders, are associated with E/I
Current Opinion in Neurobiology 2021, 67:1–8 
imbalances, causing instabilities in neuronal function. In

complex networks, an E/I imbalance does not simply

translate into defective inhibitory synapses or an excess

of dendritic spines, but requires more careful analysis

[82,83]. It will be important to fully understand the

different modes of cortical operation and their (external

and internal) control mechanisms to examine how subtle

defects can cause context-dependent problems.
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73. Lourenç o J, De Stasi AM, Deleuze C, Bigot M, Pazienti A,
Aguirre A, Giugliano M, Ostojic S, Bacci A: Modulation of
coordinated activity across cortical layers by plasticity of
inhibitory synapses. Cell Rep 2020, 30:630-641.

74. Patzke C, Brockmann MM, Dai J, Gan KJ, Grauel MK, Fenske P,
Liu Y, Acuna C, Rosenmund C, Südhof TC: Neuromodulator
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