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We show that the problem of deciding whether a collection of polyominoes, each fitting in 
a 2 × O (log n) rectangle, can be packed into a 3 × n box does not admit a 2o(n/ logn)-time 
algorithm, unless the Exponential Time Hypothesis fails. We also give an algorithm that 
attains this lower bound, solving any instance of polyomino packing with total area n in 
2O (n/ logn) time. This establishes a tight bound on the complexity of Polyomino Packing, 
even in a very restricted case. In contrast, for a 2 × n box, we show that the problem can 
be solved in strongly subexponential time.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The complexity of games and puzzles is a widely studied topic, and the complexity of most games and puzzles in terms 
of completeness for a particular complexity class (NP, PSPACE, EXPTIME, . . .) is generally well-understood (see e.g. [1]
for an overview). Results in this area are not only mathematically interesting and fun, but are also a great educational 
tool for teaching hardness reductions. However, knowing that a game or puzzle is NP-complete does not provide a very 
detailed picture: it only tells us that there is unlikely to be a polynomial-time algorithm, but leaves open the possibility 
that there might be a very fast superpolynomial but subexponential-time algorithm. This issue was precisely the motivation 
for introducing the Exponential Time Hypothesis [2].

The Exponential Time Hypothesis (ETH) states that there exists no algorithm solving n-variable 3-SAT in 2o(n) time. 
Assuming this hypothesis, and by designing efficient reductions (that do not blow up the instance size too much), it is 
possible to derive conditional lower bounds on the running time of an algorithm.

In this paper, we study the Polyomino Packing problem from the viewpoint of exact complexity. We give a reduction 
from 3-SAT, showing that Polyomino Packing can not be solved in 2o(n/ log n) time, even if the target shape is a 3 × n
rectangle and each piece fits in a 2 × O (log n) rectangle. As the reduction is self-contained, direct from 3-SAT and rather 
elegant, it could be an excellent example to use for teaching. We also show that this is tight: Polyomino Packing can be 
solved in 2O (n/ logn) time for any set of polyominoes of total area n that have to be packed into any shape.

Polyomino Packing appears to behave similarly to Subgraph Isomorphism on planar graphs, which has exact complexity 
2�(n/ logn) [3] (i.e., there exists an algorithm solving the problem in 2O (n/ log n) time on n-vertex graphs, and unless the ETH 
fails there is no 2o(n/ log n)-time algorithm).

Demaine and Demaine [4] showed that packing n polyominoes of size �(log n) × �(log n) into a square box is NP-
complete. This result left open a gap, namely of whether the problem remained NP-complete for polyominoes of area
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O (log n). This gap was recently closed by Brand [5], who showed that Polyomino Packing is NP-complete even for poly-
ominoes of size 3 × O (log n) that have to be packed into a square. However, Brand’s construction effectively builds up larger 
(more-or-less square) polyominoes by forcing smaller (rectangular) polyominoes to be packed together in a particular way, 
by using jagged edges that correspond to binary encodings of integers to enforce that certain pieces are placed together.

Our reduction also uses binary encoding of integers to force that various pieces are placed together. However, in contrast, 
it gives hardness for a much more restricted case (packing polyomino pieces of size 2 × O (log n) into a rectangle of height 3) 
and also reduces directly from 3-SAT, avoiding the polynomial blowup incurred by Brand’s reduction from 3-Partition, thus 
giving a tight (under the Exponential Time Hypothesis) lower bound. As 3-Partition is a frequently used tool for showing 
hardness of various types of packing puzzles and games, we believe that these techniques could be used to give (tight, or 
at least strong) lower bounds on the complexity of other games and puzzles.

This result is tight in another sense: we show that Polyomino Packing where the target shape is a 2 ×n rectangle admits 
a 2O (n3/4 logn)-time algorithm, so 3 × n is the smallest rectangle in which a 2�(n/ log n)-time lower bound can be attained.

Note that our results are agnostic to the type (free, fixed or one-sided) of polyomino used. That is, it does not matter 
whether we are able to rotate (one-sided), rotate and flip (free) or not (fixed) our polyominoes. Our reduction creates 
instances whose solvability is preserved when changing the type of polyomino, while the algorithms can easily be adapted 
to work with any type of polyomino. In the following, we consider the Polyomino Packing problem, which asks whether a 
given set of polyominoes can be packed to fit inside a given target shape. If we include the additional restriction that the 
area of the target shape is equal to the total area of the pieces, we obtain the Exact Polyomino Packing problem.

2. Lower bounds

Theorem 1. Unless the Exponential Time Hypothesis fails, there exists no 2o(n/ logn)-time algorithm for Polyomino Packing, even if 
the target shape is a 3 × n box, the bounding box of each polyomino is of size 2 × O (log n) and each polyomino has area �(logn).

Proof. A weaker version of the statement follows by a simple reduction from the Orthogonal Vector Crafting problem 
[6]. However, because obtaining the bound on the piece size requires a deeper understanding of the proof, and to illustrate 
the technique, we give a self-contained proof that closely follows the presentation of [6].

We proceed by reduction from n-variable 3-SAT. The Exponential Time Hypothesis, together with the Sparsification 
Lemma [7], implies (conditionally) that this problem does not admit a 2o(n)-time algorithm, even if the number of clauses 
m = O (n).

Using the following well-known construction, we can furthermore assume that each variable occurs as a literal at most 
3 times: replace each variable xi that occurs k > 3 times by k new variables xi,1, . . . , xi,k and add the clauses (¬xi,1 ∨ xi,2) ∧
(¬xi,2 ∨ xi,3) ∧ . . . ∧ (¬xi,k−1 ∨ xi,k) ∧ (¬xi,k ∨ xi,1). This only increases the total number of variables and clauses linearly 
(assuming we start with a linear number of clauses).

We remark that our construction works for general SAT formulas. The Sparsification Lemma is only needed to achieve 
the stated 2�(n/ log n) lower bound, and the bound on the number of occurrences of a variable is only needed to obtain the 
bound on the piece size.

Our construction will feature three types of polyomino: n formula-encoding polyominoes, n variable-setting polyominoes 
and m clause-checking polyominoes. We number the variables of the input formula 1, . . . , n and the clauses n + 1, . . . , n +m. 
With every clause or variable we associate a bitstring of length 22 + 4�log (n + m)�, which is obtained by taking the binary 
representation of that clause/variable’s number, padding it with 0’s to obtain a bitstring of length �log (n + m)�, replacing 
every 0 by 01 and every 1 by 10 (thus ensuring the number of 1’s in the bitstring is equal to the number of 0’s, and that 
the bitstring contains at most 2 consecutive zeroes or ones) and then appending a reversed copy of the bitstring to itself 
(making it palindromic). Finally, we prepend 11110001111 and append 11110001111 (note that thus the start and end of 
the bitstring is the only place to feature 3 or more consequitive 0’s).

For any bitstring, we can create a corresponding polyomino: given a bitstring of length k, its corresponding polyomino 
fits in a 2 × k rectangle, whose top row consists of k squares, and whose bottom row has a square whenever the bitstring 
has a 1 in that position. For each such polyomino, we can also create a complementary polyomino that mates with it to 
form a 3 × k rectangle (which can also be seen as a flipped version of the polyomino corresponding to the complement of 
the bitstring, i.e., the bitstring with all zeroes replaced by ones and vice-versa). Fig. 1 shows several example correspond-
ing polyominoes and their complements. Note that since the bitstrings are palindromic, the thus created polyominoes are 
achiral, i.e., invariant over being flipped.

We can concatenate two polyominoes corresponding to bitstrings b1, b2 by taking the polyomino corresponding to the 
concatenation of the two bitstrings b1b2.

Note that the polyomino corresponding to a variable or clause can only mate with its complementary polyomino, it 
can not fit together with any polyomino corresponding to any other variable or clause or the complement thereof. Our 
construction uses as building blocks two more polyominoes: the wildcard polyomino, which is obtained as the polyomino cor-
responding to the bitstring 00001110000000 . . . 00000001110000 (i.e., 4�log (n + m)� zeroes surrounded by 00001110000), 
and the blocking polyomino, which is the complementary polyomino for the wildcard. Note that the wildcard polyomino 
fits together with any clause or variable polyomino, while the blocking polyomino only fits together with the wildcard 
polyomino.
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Fig. 1. Top: polyominoes corresponding to variables x1, x2 and clause c3. Bottom: the complementary polyominoes, that mate with the polyominoes above 
them to form a 3 × k square. Note that the polyominoes are depicted compressed horizontally.

Fig. 2. Example of our reduction for the formula (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2). Top-to-bottom, left-to-right: formula encoding polyomino for x1, 
variable-setting polyomino for x1, clause-checking polyomino for c4, clause checking-polyomino for c5, formula-encoding polyomino for x2, clause-checking 
polyomino for c3, variable-setting polyomino for x2. The polyominoes are arranged in a way that suggests the solution x1 = f alse, x2 = true.

Since each variable occurs as a literal at most three times, we can assume that it appears at most twice in positive form, 
and at most twice negated (if the variable occurs exclusively positively or negated we can simply remove the clauses that 
contain it to obtain an equivalent instance).

We are now ready to define the formula-encoding polyominoes. The construction will have n variable-encoding poly-
ominoes, one for each variable xi , and each consists of the concatenation of 7 polyominoes: we start with a polyomino 
corresponding to the bitstring of xi . Next, for each time (at most two) xi occurs positively in a clause, we take a polyomino 
corresponding to (the bitstring of) that clause. If xi occurs only once in positive form, then we take (for padding) a copy of 
the blocking polyomino. Then, we take another copy of the polyomino for xi . Next, we take the polyominoes corresponding 
to clauses in which xi occurs negated. Again, we add the blocking polyomino if xi only occurs negated once. Finally, we take 
another copy of the polyomino corresponding to xi .

The variable-setting polyomino for xi is the polyomino formed by concatenating, in the following order: (a) the comple-
ment polyomino for the variable, (b) 2 copies of the wildcard polyomino, (c) another copy of the complement polyomino.

The clause-checking polyominoes are simply the following: for each clause, we take a polyomino corresponding to the 
complement of its bitstring.

This completes the construction. An example of the construction is shown in Fig. 2. Note that if fixed or one-sided 
polyominoes are used, the formula-encoding ones are provided with the solid row of squares on top, and the remaining 
polyominoes are provided with the solid row on the bottom. We claim this set of polyominoes can be packed into a 
3 × 7n(22 + 4�log (n + m)�) box if and only if the formula is satisfiable.

(⇒). Suppose the polyominoes can be packed in a 3 × 7n(22 + 4�log (n + m)�) box. We first examine the placement 
of the formula-encoding polyominoes. Because each formula-encoding polyomino starts with a row of four ones, and the 
largest “gap” of zeroes occurring in one is of length three, they cannot overlap vertically; each formula-encoding polyomino 
must be fully to the right of the previous. Moreover, since the width of the target rectangle matches exactly the total width 
of the formula-encoding polyominoes, they must be placed back-to-back in some arbitrary permutation.

Consider the placement of a single complementary polyomino for a clause or variable. Because wherever two formula-
encoding polyominoes touch back-to-back there are 8 consecutive rows in which 2 squares are already occupied, and the 
longest “gap” in a complementary polyomino is of length at most 5 (and at the left and right edges, there is a gap of length 
exactly 4, we see that the rows in which this polyomino are placed can contain only a single formula-encoding polyomino. 
This rules out any undesirable shifts: no complementary polyomino can overlap (vertically) more than one formula-encoding 
polyomino. Moreover, note that this same phenomenon forces the vertical alignment of polyominoes corresponding to 
variables or clauses in the formula-encoding polyominoes with the complementary polyominoes in variable-setting and 
clause-checking polyominoes.

Now, consider the placement of a variable-setting polyomino (for variable xi ). Since it starts with a complementary 
polyomino for xi , and also ends with one xi , it must be placed such that it only overlaps at most (and exactly) one formula-
encoding polyomino, namely the one for xi . It thus suffices to consider each formula-encoding polyomino in isolation. Note 
that then, there are only two possible placements for the variable-setting polyomino for variable xi : either overlapping the 
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first half of the formula-encoding polyomino, with the wildcard polyominoes used as building blocks in the variable-setting 
polyomino overlapping (and thus blocking) the polyominoes corresponding to clauses that are satisfied by setting xi to 
true, or, overlapping the second half of the formula-encoding polyomino, overlapping (and thus blocking) the polyominoes 
corresponding to clauses that are satisfied by setting xi to f alse.

Thus, the placement of the variable-setting polyominoes (unsurprisingly) corresponds to an assignment for the variables 
of the formula. It is easy to see that the clause-checking polyominoes can then be packed into the space left only if the 
assignment is satisfying: if the assignment does not satisfy some clause, then all the places where the respective clause-
checking polyomino could fit are blocked by variable-setting polyominoes.

(⇐). We can consider each formula-encoding polyomino in isolation. An assignment for the formula immediately tells 
us how to pack the variable-setting polyomino for xi into the formula-encoding polyomino for xi (namely: if xi is true we 
place the variable-setting polyomino in the second half, otherwise, we place it in the first half of the formula-encoding 
polyomino). It is easy to see that if the assignment is satisfying, then for each clause-checking polyomino there is at least 
one possible placement inside a formula-encoding polyomino. For an example of how the pieces fit together for a satisfying 
assignment, see Fig. 2. �

Remark that our reduction leaves gaps inside the packing. If we consider the variant of the problem where total area of 
the pieces is equal to the area of the target shape, and thus the entire rectangle must be filled (Exact Polyomino Packing), 
the instance can be padded with several 1 × 1 polyominoes to make the total area of the pieces equal to the area of the 
target rectangle.

Corollary 1. Unless the Exponential Time Hypothesis fails, there exists no 2o(n/ logn)-time algorithm for Exact Polyomino Packing, 
even if the target shape is a 3 × n box, and the bounding box of each polyomino is of size 2 × O (log n).

An interesting question is whether Corollary 1 still holds when the pieces are similarly sized, that is, each piece must 
have area �(logn) (or even just �(log n)). An analog of Corollary 1 for exact packing of similarly-sized polyominoes can be 
achieved in the 4 × n case:

Theorem 2. Unless the Exponential Time Hypothesis fails, there exists no 2o(n/ logn)-time algorithm for Exact Polyomino Packing, 
even if the target shape is a 4 × n box, the bounding box of each polyomino is of size 3 × O (log n) and the area of each polyomino is 
�(log n).

Proof. By a modification of the construction for the proof of Theorem 1. A corresponding (or complementary) polyomino 
can be padded by doubling the solid row, i.e., for a bitstring of length k we obtain a polyomino that fits inside a 3 × k
rectangle, with two solid (top) rows consisting of k squares each, and a (bottom) row with squares corresponding to the 
bitstring.

We make the following modifications:

• The clause-checking polyominoes are changed by padding them with an additional solid row, expanding their bounding 
boxes from 2 × O (log n) to 3 × O (log n).

• The variable-setting polyominoes are obtained by padding them with an additional row, and then removing any squares 
that corresponded to wildcard polyominoes in the original construction.

• The formula-encoding polyominoes remain unmodified.

Now, to ensure the target rectangle can be packed exactly, we add the following additional pieces:

(a) For every clause ci consisting of p literals, we add p − 1 (unpadded) complementary polyominoes.
(b) We add 2n − m copies of a 1 × 22 + 4�log (n + m)� rectangle polyomino.
(c) For every variable, we add one padded complementary polyomino.
(d) For every blocking polyomino occurring in the construction of the formula-encoding polyominoes, we add one (un-

padded) wildcard polyomino.

Thus, for every p-literal clause ci we have one padded complementary polyomino and p − 1 unpadded complemen-
tary polyominoes. The padded complementary polyomino serves to verify that the clause is satisfied, while the unpadded 
ones can be packed into the gap left between a formula-encoding polyomino and a variable-setting polyomino, or can be 
combined with one of the rectangles (b) to fill the gap if the clause is satisfied by more than one of its literals. �

An interesting open question is to establish the exact complexity of Exact Polyomino Packing in the 3 ×n case with poly-
ominoes of area �(log n). It is easy to obtain a 2O (n/ log2 n)-time lower bound by scaling up the construction of Corollary 1
in the horizontal axis by a factor log n. Is a better algorithm or lower bound possible?
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Fig. 3. Packing an arbitrary (non-degenerate) 2 × k polyomino into a Y-monotone polyomino results in several pieces that are again Y-monotone.

Note that we can fix the position of the formula-encoding polyominoes in advance. The problem then reduces to packing 
variable-setting and clause-checking polyominoes into the shape left when subtracting the formula-encoding polyominoes 
from the 3 × n rectangle, which fits inside a 2 × n rectangle. Doing so we obtain the following corollary:

Corollary 2. Unless the Exponential Time Hypothesis fails, there exists no 2o(n/ logn)-time algorithm for Polyomino Packing (resp.,
Exact Polyomino Packing), even if the target shape fits inside a 2 × n box, and the bounding box of each polyomino is of size 
2 × O (log n) and each polyomino has area �(logn) (resp., area O (logn)).

3. Algorithms

Our lower bound applies in a rather constrained case: even for packing polyominoes with a bounding box of size 2 ×
O (log n) into a rectangle of size 3 ×n, there is no 2o(n/ log n)-time algorithm. As we will show later, a similar lower bound can 
not be established when the pieces are 1 × k or 2 × k rectangles (since the number of distinct such polyominoes is linear in 
their area rather than exponential). An interesting question, which we answer negatively, is whether a 2�(n/ log n)-time lower 
bound can be obtained for packing polyominoes with a bounding box of size 2 × O (log n) into a rectangle of size 2 × n. 
Thus, the case for which we have derived our lower bound is essentially the most restrictive possible.

Note that, while solvable in strongly subexponential time, this problem is NP-complete, as can be seen by a simple 
reduction from 3-Partition: given a collection of integers s1, . . . , s3k , take a 1 × si rectangle for every integer si and one 
large “frame” polyomino consisting of a 2 × (M + k + 1) rectangle into which k slots of size 1 × M/k have been cut, where 
M = �3k

i=1si .
We say that a polyomino is Y-monotone if every row consists of a number of contiguous squares, that is, there are no 

gaps.

Theorem 3. Polyomino Packing for fixed, free or one-sided polyominoes can be solved in 2O (n3/4 logn) time if the target shape is a 
2 × n rectangle.

Proof. First, consider a simple O (2aaO (1))-time dynamic programming algorithm that decides whether m ≤ a polyominoes 
p1, . . . , pm can be packed into a target polyomino of area a: for any subset S of (the squares of) the target polyomino (there 
are 2a such subsets) and i ∈ [1, m], let B(S, i) be the proposition “the polyominoes pk, pi+1, . . . , pm can be packed into S”. 
B(S, m) is simply the proposition that S is the same polyomino as pm; if B(S, i + 1) is known for all S then B(S ′, i) can be 
computed by trying all (polyominally many) placements of pi within S ′ .

We are now ready to present our algorithm for 2 × n polyomino packing. If we are dealing with free or one-sided 
polyominoes we first guess how many (if any) of the 1 × 2 polyominoes should be used in the vertical orientation, and how 
many in the horizontal orientation. This thus converts them to fixed 1 × 2 or 2 × 1 polyominoes, and only increases the 
running time of the algorithm by a factor n.

We augment the previously presented algorithm with the following observation: when the target polyomino is a 2 × n
rectangle, and if we process the polyominoes in a fixed order, with the polyominoes that are 1 ×k rectangles being processed 
last (thus after the 2 × 1 polyominoes and any other polyominoes), then the target shapes considered by the dynamic 
programming algorithm are always the disjoint union of several Y-monotone polyominoes (cf. Fig. 3). Such polyominoes can 
be described by 3 integers: one giving the number of squares in the bottom row, one giving the number of squares in the 
top row, and one giving the shift of the top row relative to the bottom row. Note that this observation crucially depends on 
processing the 1 × k polyominoes last, since removing them from a 2 × k polyomino does not necessarily result in a shape 
that is Y-monotone, however, if only 1 × k polyominoes remain, we can ensure this requirement remains satisfied because 
we can consider the top and bottom row of each polyomino in the target shape separately.

If each of these integers is (in absolute value) at most n1/4 − 1 we call the resulting polyomino small, otherwise, the 
polyomino is large. We can use the following more efficient description of the target shape: for each polyomino in the shape 
that is small, we give the number of such polyominoes in the target shape and we simply list each large polyomino. Since 
there are at most 2n3/4 distinct small polyominoes,2 giving the quantity for each leads to at most (2n)2n3/4 ≤ 22n3/4(logn+1)

cases. There are at most 2n3 distinct large polyominoes, but the target shape contains at most 2n3/4 of them (since each 

2 The top and bottom rows can consist of 0, 1, . . . , n1/4 − 1 squares, while the shift can be −(n1/4 − 2) to n1/4 − 2.
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Fig. 4. Polyomino Packing problem (left) modelled as Subgraph Isomorphism from pattern (middle) into host graph (right).

Fig. 5. Alternative constructions to use with fixed (left) or one-sided (right) polyominoes.

has area at least n1/4), thus contributing (2n3)2n3/4 ≤ 26n3/4(logn+1) cases. Thus, if we identify equivalent target shapes, the 
dynamic programming algorithm needs to consider at most 28n3/4(log n+1)n = 2O (n3/4 logn) subsets of the target shape. �

Note that this algorithm only works when the target shape is a 2 × n rectangle. Corollary 2 shows that we should not 
expect a similar algorithm for packing polyominoes into an arbitrary target shape, even if that target shape fits in a 2 × n
box.

Finally, we show that our 2�(n/ log n)-time lower bound is tight:

Theorem 4. Polyomino Packing for free, fixed or one-sided polyominoes can be solved in 2O (n/ logn) time if the target shape has area 
n.

Proof. The problem can be modelled as Subgraph Isomorphism for an O (n)-vertex planar graph, for which a 2O (n/ logn)-time 
algorithm is known [3]. The construction is as follows: for every square in a polyomino, we take a cycle on four vertices, 
to which we add a fifth, universal vertex (which can be embedded in a planar embedding in the middle of this cycle). This 
fifth vertex is marked by adding a number of degree 1 vertices to it, to bring its degree up to (at least) 7. Each edge of this 
cycle is associated with an edge of the square in the polyomino. We make adjacent the endpoints of edges corresponding to 
adjacent edges in the polyomino. Both the host graph and the guest graph are constructed in this way, the host graph from 
the target shape (when viewed as a polyomino) and the guest graph from the set of input polyominoes (which will thus 
have one connected component corresponding to each separate polyomino that must be packed). An example for packing 3
polyominoes into a 3 × 4 rectangle is shown in Fig. 4. The special (degree 7) vertices must be mapped to other vertices that 
are also degree 7, and this means that the cycles corresponding to squares can only be mapped to cycles corresponding to 
other squares (and not to cycles created by making cycles adjacent since those vertices have degree less than 7).

This construction works for free polyominoes. To restrict to fixed or one-sided polyominoes, we can modify the construc-
tion slightly to make the structure used to represent a square asymmetric. For one-sided polyominoes, we create a structure 
that is rotationally symmetric but achiral. To this end, we subdivide each edge of the cycle twice and choose one of the two 
vertices created by this subdivision, add another vertex adjacent to this vertex, to its neighbours, and to the central vertex. 
For fixed polyominoes, we can add one additional edge (from the center to one of the vertices of the cycle) to also remove 
the rotational symmetry. These constructions are depicted in Fig. 5. �

To make the paper self-contained and more instructional, we give a direct proof of the following weaker version of 
Theorem 4 — which illustrates in a simpler way the principles from [3].

Theorem 5. Polyomino Packing for free, fixed or one-sided polyominoes can be solved in 2O (n/ logn) time if the target shape is a 
rectangle of area n.

Proof. If the rectangle is higher than it is wide, rotate it (and, if the polyominoes are fixed, the polyominoes as well) 90 
degrees. Consider a scanline passing over the rectangle from left to right. At any given time, the scanline intersects at most 
O (

√
n) squares of the rectangle. We can specify how the intersection of the solution with the scanline looks by, for each 

square, specifying the polyomino (if any) that is placed there, along with its rotation and sidedness. Since the position of 
the polyomino can be fixed by specifying one of its squares, this gives at most 8n cases for each square, and, since the 
scanline intersects at most 

√
n squares, 2O (

√
n logn) cases total.

We furthermore need to specify which polyominoes have already been used in the solution (to the left of the scanline) 
and which ones still need to be packed. Similar to [3], a polyomino is large if it has area greater than c log2 n, and small 
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otherwise. Since the number of polyominoes with area k is bounded by 4.65k [8], the number of distinct small polyominoes 
it at most 4.65c log2 n . For c ≤ 0.22, this is at most 

√
n. We can specify the quantity of each small polyomino left with a 

single number from 0 to n, giving (n + 1)
√

n = 2O (
√

n logn) cases. Meanwhile, the number of large polyominoes is at most 
n/(c log n), and thus there are 2O (n/ logn) possible subsets of them.

The problem can now be solved by dynamic programming. For each position of the scanline, we have 2O (n/ logn) sub-
problems: can a given subset of pieces (2O (n/ log n) cases) be packed entirely to the left of the scanline (with only the pieces 
intersecting the scanline possibly sticking out to the right of it), such that the intersection with the scanline looks as speci-
fied (2O (

√
n logn) cases) (and, in the case of Exact Polyomino Packing, leaving no gaps)? For each such subproblem, we can 

find its answer by deleting the pieces whose leftmost square(s) intersect the scanline, and checking whether the instance 
thus obtained is compatible with some subproblem with the scanline moved one position to the left. �

There is an interesting contrast between these two algorithms. Whereas the strongly subexponential algorithm for the 
case of the 2 × n rectangle works by considering the input polyominoes in a fixed order (so that we always know which 
subset we have used) and uses a bound on the number of subsets of the target shape that have to be considered, the 
algorithm for the general case works the opposite way around: it considers subsets of the target shape in a (more-or-less) 
fixed order (by the scanline approach) and bounds the number of possible subsets of the input polyominoes.

Note that our 2�(n/ logn)-time lower bound exploits the fact that we can construct exponentially many polyominoes that 
fit inside a 2 × O (log n) rectangle. If we consider polyominoes with simpler shapes, we may be able to exploit this to obtain 
a faster algorithm. As an example, if the polyominoes are a × b rectangles, then the problem can be solved in strongly 
subexponential time:

Corollary 3. Polyomino Packing can be solved in 2O (
√

n logn) time if the polyominoes are rectangular and the target shape is a 
rectangle with area n.

Proof. Consider the algorithm presented in the proof of Theorem 5. The running time is dominated by the number of cases 
for tracking a subset of the polyominoes. If the polyominoes are rectangles, then note that the number of distinct rectangles 
of area at most n is also at most n. Call a polyomino large if it has area ≥ √

n and small otherwise: there are at most 
√

n
large polyominoes in the input, and thus at most 2

√
n subsets of them. The number of distinct small polyominoes is at most √

n, and thus specifying the quantity for each leads to at most n
√

n = 2
√

n logn cases. �
This problem is essentially equivalent to the Distributor’s Pallet Loading Problem (DPLP) [9], which is a problem that 

has received considerable attention from an operations research perspective. The approach considered in [9] is somewhat 
similar to ours, in the sense that it also considers separators of the packing and uses dynamic programming to determine 
which subsets of the input boxes should be packed on which side of the separator. However, the analysis is mostly from the 
perspective of heuristics (e.g., trying to prune away unpromising solutions) rather than an exact complexity point of view.

4. Conclusions

In this paper, we have given a precise characterization of the complexity of (Exact) Polyomino Packing. For a set of 
polyominoes of total area n, the problem can be solved in 2O (n/ log n) time. Even when restricted to the case where the 
pieces are of size 2 × O (log n) and they have to be packed into a 3 × n rectangle or into a given shape which fits inside a 
2 × n rectangle, there is no faster (up to the base of the exponentiation) algorithm unless the Exponential Time Hypothesis 
fails. In contrast, in the case where the target shape is a 2 × n rectangle, a strongly subexponential algorithm exists.

We conclude by listing several interesting open problems:

• Exact polyomino packing with excess pieces: we are given some target shape, and a set of polyominoes with total area 
possibly exceeding the target shape. Is it possible to use a subset of the polyominoes to build the target shape? Clearly 
this problem is at least as hard as (exact) polyomino packing; however, considering the set of pieces may be much 
larger than the target shape, it would be interesting to study this problem from a parameterized perspective (where 
the parameter k is the area of the target shape). The problem can be solved in 2knO (1)-time (by the simple dynamic 
programming algorithm of Section 3); is there a 2o(k)nO (1)-time (or even a 2o(k)2o(n/ logn)-time) algorithm?

• What is the (exact) complexity of Exact Polyomino Packing when every piece has area �(log n) or �(logn) and the target 
polyomino is 3 × n? Our lower bound construction uses 1 × 1 polyominoes to fill the gaps in the packing. Requiring that 
each piece has area �(log n) seems to limit the number of possible interactions between two pieces significantly if the 
target shape is a 3 × n rectangle.

• We do not believe that our algorithm for packing polyominoes into a 2 ×n rectangle is tight. What is the exact complexity 
of this problem? This is closely related to the exact complexity of 3-Partition with the input given in unary, which (to 
our knowledge) is also an open problem.
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