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• People's mental healthmay be suscepti-
ble to artificial light at night (ALAN).

• Satellite-measured outdoor ALAN was
correlated with traffic-related expo-
sures.

• Unadjusted models showed associa-
tions with ALAN but were strongly
confounded.

• Depression severity correlated posi-
tively with NO2 concentrations and
neighborhood deprivation.

• Epidemiological assessments of outdoor
ALAN should be adjusted accordingly.
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Background: Artificial light at night (ALAN) may be an anthropogenic stressor for mental health disturbing
humans' natural day–night cycle. However, the few existing studies used satellite-based measures of radiances
for outdoor ALAN exposure assessments, which were possibly confounded by traffic-related air pollutants.
Objectives: To assess 1) whether living in areas with increased exposure to outdoor ALAN is associated with
depressive symptoms; and 2) to assess the potential confounding effects of air pollution.
Methods: We used cross-sectional data from people (N=10,482) aged 18–65 years in the Netherlands. Depres-
sive symptoms were assessed with the Patient Health Questionnaire (PHQ–9). Satellite-measured annual ALAN
were taken from the Visible Infrared Imaging Radiometer Suite. ALAN exposureswere assessed at people's home
address within 100 and 600 m buffers. We used generalized (geo)additive models to quantify associations
between PHQ–9 scores and quintiles of ALAN adjusting for several potential confounders including PM2.5 and
NO2.
Results: Unadjusted estimates for the 100 m buffers showed that people in the 2nd to 5th ALAN quintile showed
significantly higher PHQ–9 scores than those in the lowest ALAN quintile (βQ2= 0.503 [95% confidence intervals
(CI): 0.207–0.798], βQ3 = 0.587 [95% CI: 0.291–0.884], βQ4 = 0.921 [95% CI: 0.623–1.218], βQ5 = 1.322 [95% CI:
1.023–1.620]). ALAN risk estimates adjusted for individual and area-level confounders (i.e., PM2.5, urbanicity,
noise, land-use diversity, greenness, deprivation, and social fragmentation)were attenuated but remained signif-
icant for the 100 m buffer (βQ2 = 0.420 [95% CI: 0.125–0.715], βQ3 = 0.383 [95% CI: 0.071–0.696], βQ4 = 0.513
[95% CI: 0.177–0.850], βQ5 = 0.541 [95% CI: 0.141–0.941]). When adjusting for NO2 per 100 m buffers, the air
pollutant was associated with PHQ–9 scores, but ALAN did not display an exposure-response relationship.
ALAN associations were insignificant for 600 m buffers.
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Conclusion: Accounting for NO2 exposure suggested that air pollution rather than outdoor ALAN correlated with
depressive symptoms. Future evaluations of health effects from ALAN should consider potential confounding by
traffic-related exposures (i.e., NO2).

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Light pollution emitted through anthropogenic sources including
streetlights and billboards alters natural light levels (Levin et al.,
2020). With about 88% of Europe affected by light-polluted nights
(Falchi et al., 2016), outdoor artificial light at night (ALAN) is recognized
as a pervasive environmental threat stressing ecosystems (Davies and
Smyth, 2018) and human health alike (Haim and Zubidat, 2015; Cho
et al., 2015; Fonken and Nelson, 2014).

Speculations arise that overexposure of ALAN is among those man-
made disturbances contributing to multiple pathologies in humans
(e.g., cancer [James et al., 2017]) by disrupting the circadian rhythm.
Given that mental illness may reduce disability-adjusted life-years by
as much as 13% (Vigo et al., 2016), a critical question is whether expo-
sure to ALAN could also be involved in the development of mental ill-
ness. Laboratory animal studies suggest that aberrant exposure to
ALAN provokes depressive-like responses and circadian rhythm pertur-
bations (Bedrosian et al., 2013; LeGates et al., 2012; Fonken and Nelson,
2013). Its plausible that humans develop similar physiological and psy-
chological responses to light polluted external environments (Lambert
et al., 2015; Aries et al., 2015). For example, a study in Japanese elderly
indicated associations between bedroom-measured light levels and de-
pressive symptoms (Obayashi et al., 2013; Obayashi et al., 2018).

There have been few analyses of the association between outdoor
ALAN and mental health. Findings from South Korea, for example,
showed an association between depression symptoms and outdoor
ALAN in adults (Min and Min, 2018). However, the analyses had been
poorly adjusted for physical (Gong et al., 2016; Klompmaker et al.,
2019) and social residential environmental correlates (Bagheri et al.,
2020; Dowdall et al., 2017), had used first-generation ALAN data with
technical restrictions (e.g., a lack of radiance calibration, a coarse resolu-
tion of 5 km) (Levin et al., 2020), and ALAN data were aggregated to a
few administrative units, likely resulting in an exposure misclassifica-
tion (Helbich, 2018). In addition, evaluations of satellite-assessed out-
door ALAN indicated that it may represent a poor proxy for indoor or
personal ALAN exposure (Rea et al., 2011; Huss et al., 2019), and that
high correlations with traffic-related air pollutants may exist in urban
environments (Huss et al., 2019; Fecht et al., 2015). Air pollution has
been previously associated with poor mental health (Braithwaite
et al., 2019; Buoli et al., 2018) and should thus be accounted for when
evaluating associations with satellite-measured ALAN to exclude that
possibly other environmental exposures drive observed correlations.

To address these research gaps, we examined the associations be-
tween outdoor ALAN and depressive symptoms using nationally repre-
sentative data from the Netherlands. We tested the hypotheses that
1) there is a positive association between exposure to ALANand depres-
sion symptoms, and that 2) risk estimates are affected by adjusting for
numerous potential confounders, in particular, air pollution
(e.g., NO2). It is important to disentangle how mental health correlates
with ALAN because nighttime lighting is expected to further increase
due to on-going urbanization; at the same time, air pollution is
pervasive.

2. Methods

2.1. Study design and participants

We conducted an observational, cross-sectional study in the
Netherlands. For two reasons the Dutch context provides an ideal
setting: 1) it is among the highest ALAN polluted countries in Europe
(Falchi et al., 2019), and 2) it displays the second greatest prevalence
of mental illness in Europe. As many as 18% of residents in the
Netherlands experience poor mental health (OECD, 2018).

This study was embedded in the NEEDS project, which is described
elsewhere (Helbich, 2019). Briefly, a survey was conducted between
September and December 2018 in conjunction with Statistics
Netherlands. Participants completed an online survey on people's men-
tal health (e.g., depression, anxiety), demographics, etc. Eligibility
criteria for participant recruitment were: a) registered in the Dutch Na-
tional Personal Records Database, b) aged between 18 and 65 years,
c) not living in institutions and care homes, and d) not sampled by Sta-
tistics Netherlands in the past year. To receive representative data, a
sample of 45,000 people were drawn from the population complying
with the eligibility criteria using multi-stage sampling. We used incen-
tives and three contacts (one invitation and two reminders) to increase
survey participation. Of those invited, 11,505 completed the survey
resulting in a response rate of 25.6% (Supplementary Fig. S1).

We obtained coordinates of resident's home addresses by matching
survey data with registers from Statistics Netherlands and the land reg-
istry from 2018. All addresseswere successfully geocoded.We excluded
respondents not living on the mainland or living within 600 m of the
German or Belgian border to avoid boundary effects (N= 100). Partic-
ipants with incomplete data were also removed (N=923), resulting in
a final sample of 10,482.

The study design was approved by the Ethics Committee at Utrecht
University (FETC17-060). Informed consent was implied when people
completed the survey. Survey data were anonymized and enriched
with registers. In line with Dutch privacy legislation, register data
were non-publicly accessible for scientific research in the secure envi-
ronment of Statistics Netherlands.

2.2. Depressive symptoms as outcome

Symptoms of depression were assessed through the self-
administered Patient Health Questionnaire (PHQ–9) (Kroenke and
Spitzer, 2002). Meta-analyses have ascribed the PHQ–9 good diagnostic
performance to screen for depressive symptoms (Manea et al., 2015).
Subjects responded to nine multiple-choice items that measured their
mood levels over the prior two weeks. The response scale ranged from
“not at all” (0) to “nearly every day” (3). The degree of depressive symp-
toms was calculated by summing individual item scores. This summa-
tive score can range between 0 and 27 with higher scores referring to
more pronounced symptoms. A Cronbach's alpha of 0.887 indicated
high internal consistency of the PHQ–9 in our sample.

2.3. Alan exposure assessment

ALAN exposure assessments were based on earth-observing satel-
lites (Levin et al., 2020). We used globally calibrated remote sensing-
based outdoor measurements from the Day/Night Band on the Visible
Infrared Imaging Radiometer Suite (VIIRS) for 2016 (themost recent re-
lease) obtained from the National Oceanic and Atmospheric Adminis-
tration (Elvidge et al., 2017). The sensor's radiometric sensitivity
allows detecting even low levels of visible and near-infrared nightlight
emitted from human settlements (e.g., street lights) (Miller et al.,
2013). VIIRS data have a ground resolution of 750 m, which is higher
than other remotely sensed ALAN products (Elvidge et al., 2017;
Miller et al., 2013).

http://creativecommons.org/licenses/by/4.0/
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We used the annual composite to minimize the seasonal effects
of emitted ALAN levels (Levin et al., 2020). Annual data ranging
from 500 to 900 nm wavelength (with a radiance of nW/cm2/sr)
were preprocessed by filtering abnormal strong light sources
(e.g., fires), removing outliers, and removing non-light background
values (Elvidge et al., 2017). We used bilinear interpolation to
down-sample ALAN data to 50 m to better align with other environ-
mental data. Due to abnormally high values (e.g., through the pres-
ence of glasshouses), cells were restricted to values of N300 nW/
cm2/sr.

We applied concentric buffers of 100 and 600 m centered on re-
spondents' home addresses to capture the immediate and extended
surroundings at people's residential location. Average exposures to
ALAN radiances per buffer were assigned to each respondent. To fa-
cilitate comparisons with previous studies (Min and Min, 2018),
ALAN data were grouped into quintiles.

2.4. Covariates

Gender and ethnicity (Dutch, Western background, non-Western
background) were included due to a varying prevalence in depression
(Jorm, 2000; Stronks et al., 2009). Age in yearswas included because de-
pression risk is life-time dependent (Malhi and Mann, 2018). Marital
(married, separated/divorced, widowed, unmarried) and family status
(single parent, couple without children, couple with children, other
household types) statuswere coded as categorical variables.Marital dis-
ruption, for example, puts people at-risk (Kessler and Bromet, 2013).
Because labor market absence impacts psychosocial well-being and
life satisfaction (Paul and Moser, 2009), we distinguished between
employed, unemployed, non-working, and other. To account for people
with less education or lower socioeconomic status being at-risk of de-
pression (Helbich et al., 2020), we included educational background
coded into low (up to lower secondary education), medium (up to
upper secondary education), and high (university education and fur-
ther). Household income in quintiles (1= lowest, 5= highest) was ob-
tained from registers; themost recent data were from 1st January 2016.

Area-level covariates were considered at both 100 and 600 m
buffers. We aggregated individual register data for 2016 per buffer
size to obtain urbanicity, deprivation, and social fragmentation. To ad-
just for urban-rural differences in psychiatric disorders (Peen et al.,
2010), we included the number of inhabitants per buffer. Composite
measures of deprivation (unemployment rate, reversely coded stan-
dardized median household income, the share of households with a
standardized income below the poverty line) and social fragmentation
(percentage of residents N18 years who were unmarried, lived in a
single-person household, and hadmoved to the address in the previous
12 months) were developed by summing multiple z-scored variables
(Hagedoorn et al., 2020). Pronounced social fragmentation reflects
poor community integration putting people at-risk of poor mental
health (Bagheri et al., 2020). The Shannon index, based on each build-
ings' use for 2018 from the land registry, was used as a land-use diver-
sity score (Zock et al., 2018). Air pollution (Braithwaite et al., 2019) and
noise (Dzhambov and Lercher, 2019) are depression risk factors. We in-
corporated annual average concentrations of particulate matter with an
aerodynamic diameter of b2.5 μm (PM2.5) and nitrogen dioxide (NO2)
(μm/m−3) (Schmitz et al., 2019). The underlying land-use model was
calibrated for 2009 but annual mean air pollution concentrations were
stable over a decade (De Hoogh et al., 2018). Data on estimated average
noise exposures emitted from roads, rail, aviation, industry, and wind
turbines over a 24-h period were included (Rijksinstituut voor
Volksgezondheid en Milieu, 2019). Noise estimates were grouped into
six day–evening–night noise classes ranging from b45 dB to N65 dB.
Data on greenness were obtained from the updated version of the
Dutch land use model for 2015. We grouped the 39 land use types
(e.g., forests, agricultural and natural areas) per 25m grid cell to catego-
rize the availability of greenness (%) (Zock et al., 2018).
2.5. Statistical analysis

We used descriptive statistics to summarize the data (i.e., mean [μ],
standard deviation [SD]). Urban-rural differences were tested with Chi2

tests for categorical variables and Kruskal-Wallis tests for continuous
ones. We used a dummy for stratification into urban (at least moder-
ately urbanized with ≥1000 addresses/km2) and rural areas (hardly/
not urbanized with b1000 addresses/km2). Generalized variance infla-
tion factors (GVIF) assessed multicollinearity. GVIFs N4 were deemed
as problematic. Non-parametric Spearman correlation coefficients
were used to assess bivariate associations.

We fitted generalized (geo)additive models (GAM) (Wood,
2017) with a Gaussian probability distribution to assess PHQ–9-
ALAN associations, including a priori defined person- and area-
level adjustments. To adjust for potentially unmeasured factors
that are shared by respondents living close together, we considered
the use of a bivariate soap film smoother on respondents' address
coordinates. This approach accounts for the complex shape of our
study area without smoothing beyond its boundary (Wood et al.,
2008). We used a 5000 m grid of interior knots to set-up the soap
film smoother (Supplementary Fig. S2).

Fourmodelswith different levels of adjustmentwere estimatedwith
restricted maximum likelihood. Model 1 was unadjusted by only con-
sidering ALAN.Model 2was additionally adjusted for person-level char-
acteristics. Model 3 was additionally adjusted for area-level
characteristics, and Models 4 additionally included a soap film
smoother. Model 1–4 were then fitted with buffer sizes of 100 and
600 m. Goodness-of-fits were compared with the deviance explained
and the Akaike information criterion (AIC). Higher deviance and lower
AIC scores refer to a better fit with AIC reductions of N2 describing sub-
stantial model improvement (Burnham and Anderson, 2003). Residual
spatial autocorrelation was tested with empirical semivariograms that
were bootstrapped 999 times. The GAMs were fitted with the mgcv li-
brary (1.8–31) in R 3.6.2 (64 bit) (R Core Team, 2019).

2.6. Sensitivity analyses

GAMs were separately fitted for urban and rural areas using the
urban-rural dummy variable (Model 5–6). Because ALAN correlated
strongly with NO2 (Huss et al., 2019), we repeated our analyses with
an adjustment for NO2 rather than PM2.5 (Model 7). Finally, to test the
influence of exposure misclassification due to residential mobility, we
restricted the observations to those who had lived at least one year at
their current place of residence (Model 8).

3. Results

3.1. Descriptive statistics

The sample comprised of 10,482 people (Fig. 1A). We performed
a complete case analysis excluding those with any missing informa-
tion. Wilcoxon test showed no significant differences (p=0.989) in
PHQ–9 scores between the retained sample and the excluded cases
(N = 923).

Table 1 summarizes the characteristics of the study population. On
average, the PHQ–9 score was 4.883 (SD ± 4.941) and ranged from 0
to 27. In urban areas, the PHQ–9 was 5.074 (SD ± 5.047) and in rural
areas, it was 4.480 (SD ± 4.683). The Kruskal-Wallis test showed a sig-
nificant difference in depression levels between urban and rural areas
(pb0.001) (Supplementary Table S1). The mean age was 44.617 years
(SD ± 13.970). 52.4% were female, 73.4% were employed, 52.0% were
married, and 44.0% were highly educated. The majority (67.8%) of par-
ticipants lived in urban areas.

Average exposure to ALAN was 13.636 (SD = ±11.514) for 100
m residential buffers. Concentrations were comparable in
magnitude for the 600 m buffer size. ALAN varied significantly



Fig. 1. (A) Residential locations of the study population (N=10,482) For visualization purposes only, we added random noisewith amean of 1000m and standard deviation (SD) of 2000
m to each location for privacy. (B) ALAN (in nW/cm2/sr log-transformed+0.1) in the Netherlands. High ALAN pollution appears in the Amsterdam (52°22′N, 4°54′E) and the Delft, Rot-
terdam, and The Hague region (52°00′N, 4°50′E).
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(pb0.001) between urban (μurban = 17.551, SD ± 11.742) and rural
areas (μ = 5.374, SD ± 4.558) (Supplementary Table S1). The
Randstad area displayed particularly high levels of ALAN (Fig. 1).
Fig. 2 shows that mean ALAN exposures increased with PHQ–9
scores. Spearman correlations between ALAN and the other expo-
sures are summarized in Fig. S3. The Spearman correlation between
ALAN and NO2 was with 0.848 strong (pb0.001).

3.2. Regression models

With the largest GVIF of 2.651, there was no evidence for covariate
multicollinearity. The comparison of the AIC scores of Model 1–4 indi-
cated that the fully adjustedModel 3 performed best; there was no sup-
port of the inclusion of a soap film smother of people's address location
(Model 4). With an adjusted R2 of 0.109 and an explained deviance of
0.111, Model 3 had a moderate fit that varied little across buffer sizes.
Person residuals revealed no violations, and there was also no residual
spatial autocorrelation (Supplementary Fig. S5).

Estimated associations between PHQ–9 scores and outdoor expo-
sure to ALAN are summarized in Fig. 3 (see Supplementary Table S3-
S4 for numeric results). The magnitude of the associations was attenu-
ated with increasing levels of adjustment. Model 3 using the 100 m
buffers showed that people exposed to higher levels of ALAN in the
2nd to 5th quintile had higher PHQ–9 scores than people residing in
neighborhoods that displayed the lowest levels of nightlight pollution
(1st quintile), but there was no indication of an exposure-response rela-
tionship. The filly adjusted model with the 600 m buffers showed non-
significant association between ALAN and PHQ–9 scores (Model 3).

Sensitivity analyses with 100 m buffers (Supplementary Table S5)
did not show an exposure-response relationship between PHQ–9 scores
and increasing levels of outdoor ALAN restricted to neighborhoods in
urban (N=7112;Model 5) or rural areas (N=3370;Model 6). Replac-
ing PM2.5 with NO2 (Model 7) attenuated risk estimates further. Esti-
mates for Q2 were significant but those for the highest three exposure
categories (Q3-Q5) did not reach statistical significance. Of other evalu-
ated exposures, higher NO2 concentrations translated into higher PHQ–
9 scores, as did higher levels of neighborhood deprivation. Finally, re-
fittingModel 3 with those people who lived at their residential location
for at least one year (N = 9492) also attenuated risk estimates (Model
8). PHQ–9 scores were significantly higher for people in areas with
moderate ALAN levels (Q2) but insignificant for those living in areas
with high ALAN levels (Q3-Q5).
4. Discussion

4.1. Main findings

People around theworld are increasingly exposed to nocturnal light-
ing. Our results, which are based on a representative sample of the
Dutch population, partially supported the hypothesis that satellite-
measured outdoor ALAN correlate with decreased mental health. We
observed a statistically significant increase in depressive symptoms
with increasing levels of outdoor ALAN in the immediate residential en-
vironment in unadjusted models. The association remained significant
after adjusting for person-level and environmental correlates
(e.g., PM2.5, urbanicity, noise, land-use diversity, greenness, deprivation,
social fragmentation). Adjusting for NO2 rather than PM2.5 showed a
positive association for the second quintile but did not suggest an
exposure-response relationship. This result suggested that associations
between mental health and ALAN might be substantially confounded
by NO2. This is not unexpected because the pattern of the NO2 concen-
trations (as did ALAN) aligned well with the extent of urban environ-
ments, while PM2.5 concentrations are higher along major roads
(Fig. S6).

4.2. Other available evidence

We are only aware of a limited number of similar studies addressing
light exposure effects onmental health. Our estimates for outdoor ALAN
were similar to those observed in another cross-sectional study of
113,119 South Koreans aged 20–59 years. In the current study, the
odd ratios for depressive symptoms were higher for people exposed
to higher ALAN levels than those reported for Korea (Min and Min,
2018). However, in the Korean study, light pollution datawere captured
with a less accurate sensor from the Defense Meteorological Satellite
Program (Levin et al., 2020; Miller et al., 2013), aggregated for 232 dis-
tricts rather than calculated by individual residential addresses, and ad-
justed for PM2.5 but not NO2.

It is important to note differences in previous research and ours, lim-
iting their comparability. The Korean study assumed—likewe have done
here andhave donepreviously (Portnov et al., 2016)—that artificial light
from the outside reaches people inside. This assumption has been
questioned by contrasting remote-sensing based outdoor ALAN assess-
ments with in situ bedroom measurements of illuminance among 256
Dutch children (Huss et al., 2019). While correlations showed minor



Table 1
Characteristics of the study population.

Total ALAN p-value

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

[0–4.63] (N =
2135)

[4.63–8.49] (N =
2133)

[8.49–13.3] (N =
2101)

[13.3–21.1] (N =
2068)

[21.1–97.4] (N =
2045)

PHQ–9 score [Mean (SD)] 4.883 (4.941) 4.223 (4.364) 4.726 (4.951) 4.811 (4.953) 5.144 (5.042) 5.545 (5.274) b0.001
Gender (%): Male 47.6 47.3 46.6 46.8 50.6 46.8 0.050

Female 52.4 52.7 53.4 53.2 49.4 53.2
Age [Mean (SD)] 44.617 (13.970) 46.059 (13.977) 45.741 (13.592) 45.424 (13.656) 43.993 (14.069) 41.739 (14.122) b0.001
Employment status (%): Employed 73.4 72.6 75.1 73.5 73.4 72.2 0.038

Unemployed 4.9 4.0 4.9 4.6 5.1 5.9
Non-working 19.6 21.4 17.4 19.7 19.7 19.9
Other 2.1 2.1 2.6 2.1 1.8 2.1

Marital status (%): Married 52.0 60.1 58.6 56.2 48.2 36.0 b0.001
Separated 8.7 8.0 8.1 9.3 9.8 8.6
Widowed 1.5 1.7 1.2 1.5 1.8 1.3
Unmarried 37.8 30.2 32.0 33.0 40.2 54.2

Education level (%): Low 19.9 22.0 20.8 21.0 20.1 15.6 b0.001
Mid 36.1 40.4 39.1 35.6 34.9 30.0
High 44.0 37.7 40.1 43.3 45.0 54.4

Household type (%): Other 16.8 9.9 11.3 14.1 20.3 29.2 b0.001
Couple without child 30.9 32.2 31.0 29.4 29.6 32.1
Couple with child 46.0 53.4 51.3 49.5 43.0 32.2
Single parent 6.3 4.4 6.3 7.0 7.1 6.5

Ethnicity (%): Dutch 86.7 94.1 91.3 86.7 83.5 77.3 b0.001
Western 7.8 4.9 6.1 8.7 9.1 10.5
Non-western 5.5 1.0 2.6 4.6 7.4 12.2

Household income (%): Very low 10.0 5.5 7.5 8.9 10.8 17.5 b0.001
Low 10.7 9.2 11.1 10.0 11.5 11.8
Middle 19.2 20.9 20.4 19.5 18.8 16.3
High 26.2 28.7 28.5 27.4 25.0 21.1
Very high 33.9 35.7 32.5 34.2 33.8 33.2

Population density (100 m) [Mean (SD)] 216.953
(150.259)

95.235 (69.635) 170.843 (77.772) 204.079 (94.404) 251.782
(110.869)

370.131
(200.617)

b0.001

ALAN (100 m) [Mean (SD)] 13.636 (11.514) 2.473 (1.334) 6.575 (1.117) 10.746 (1.406) 16.833 (2.182) 32.392 (10.802) b0.001
Noise (100 m) [Mean (SD)] 55.755 (5.228) 51.950 (4.925) 54.099 (4.280) 56.027 (4.277) 57.599 (4.430) 59.309 (4.793) b0.001
Shannon index of building usage (100 m)
[Mean (SD)]

0.227 (0.252) 0.172 (0.239) 0.190 (0.238) 0.215 (0.244) 0.252 (0.250) 0.309 (0.263) b0.001

Social fragmentation (100 m) [Mean (SD)] −0.033 (2.464) −1.126 (1.998) −0.803 (1.762) −0.506 (1.913) 0.310 (2.290) 2.051 (2.845) b0.001
Deprivation (100 m) [Mean (SD)] −0.040 (2.142) −0.484 (2.215) −0.284 (2.438) −0.109 (1.819) 0.122 (1.954) 0.587 (2.062) b0.001
PM2.5 (100 m) [Mean (SD)] 16.609 (0.694) 16.231 (0.714) 16.494 (0.652) 16.627 (0.622) 16.757 (0.610) 16.954 (0.645) b0.001
NO2 (100 m) [Mean (SD)] 24.992 (6.712) 17.509 (3.240) 21.724 (2.936) 24.694 (3.369) 28.035 (3.817) 33.439 (5.845) b0.001
Greenness (100 m) [Mean (SD)] 28.944 (19.220) 43.456 (22.467) 30.297 (16.773) 26.448 (14.802) 24.284 (14.899) 19.661 (16.961) b0.001
Population density (600 m) [Mean (SD)] 4744.872

(3665.098)
1368.652
(1046.033)

3238.805
(1300.149)

4450.541
(1661.410)

5858.917
(2292.177)

9016.372
(4894.143)

b0.001

ALAN (600 m) [Mean (SD)] 13.438 (11.517) 2.348 (1.301) 6.344 (1.252) 10.558 (1.704) 16.723 (2.480) 32.055 (10.973) b0.001
Noise (600 m) [Mean (SD)] 56.455 (4.645) 51.434 (3.820) 54.904 (3.390) 57.089 (3.230) 58.736 (3.254) 60.359 (3.499) b0.001
Shannon index of building usage (600 m)
[Mean (SD)]

0.414 (0.191) 0.374 (0.199) 0.375 (0.177) 0.406 (0.184) 0.444 (0.180) 0.476 (0.193) b0.001

Social fragmentation (600 m) [Mean (SD)] −0.005 (2.527) −1.542 (1.787) −1.083 (1.477) −0.464 (1.769) 0.481 (2.166) 2.706 (2.771) b0.001
Deprivation (600 m) [Mean (SD)] −0.003 (2.264) −0.861 (2.166) −0.460 (1.851) −0.053 (2.083) 0.301 (2.209) 1.112 (2.468) b0.001
PM2.5 (600 m) [Mean (SD)] 16.657 (0.653) 16.236 (0.687) 16.542 (0.639) 16.691 (0.588) 16.825 (0.549) 17.011 (0.505) b0.001
NO2 (600 m) [Mean (SD)] 24.709 (6.791) 16.901 (3.170) 21.320 (2.900) 24.463 (3.252) 27.975 (3.821) 33.345 (5.519) b0.001
Greenness (600 m) [Mean (SD)] 43.929 (19.301) 69.118 (15.213) 49.640 (11.820) 39.834 (10.948) 33.453 (10.690) 26.473 (12.423) b0.001

Note. Chi2 tests were used for categorical variables and Kruskal–Wallis tests for continuous ones to assess differences across quintiles.
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to no agreement between both exposure assessments, outdoor ALAN
levels were positively correlated with air pollution, which suggests
VIIRS data may be a weak proxy for actual ALAN exposure. Our findings
support the notion of air pollution as a highly correlated exposure with
outdoor ALAN that should likely be accounted for in epidemiological
studies. Furthermore, a positive cross-sectional association was re-
ported for a small sample of 516 elderly in the Kansai Region, Japan,
(Obayashi et al., 2013) and reinforced through longitudinal evidence
in a follow-up study using bedroom light measurements (Obayashi
et al., 2018). This suggests that while bedroom-ALAN exposure may de-
grade mental health, evaluating associations using satellite-measured
outdoor ALANmay produce biased results in studies that examine asso-
ciations between light at night and depression.

Our findings that different air pollutants correlate differently in mag-
nitude with depressive symptoms is in line with previous studies
(Klompmaker et al., 2019; Zijlema et al., 2016). A meta-analysis of 22
studies from 10 countries showed no associations of long-term PM2.5

and NO2 with depression (Fan et al., 2020), another meta-analysis came
to a different conclusion for PM2.5 (Braithwaite et al., 2019). Our null find-
ings of PM2.5-depressive symptoms associations confirm Dutch results in
amulti-site European cohort study (Zijlema et al., 2016). Similar to our re-
sults, a positive association between NO2 and depressive symptoms was
reported in a cross-sectional study from Barcelona, Spain (Vert et al.,
2017). Despite ALAN turned out to be insignificant when adjusting for
NO2, we would like to stress that this result does not necessarily refute
that true associations betweenALANandmental illness exist, sincemech-
anistic research already explains such an association.

4.3. Potential mechanisms

To explain the neurobiological mechanisms of how ALAN may con-
tribute to mood disorders, some potential pathways have been put



Fig. 2. Exposure to ALAN by PHQ–9 scores in the Netherlands. Boxplots were based on 100m buffers (outliers not shown). 600 m buffers showed similar patterns. The superimposed re-
gression line based on a GAM suggests an increase in ALAN exposure with increasing PHQ–9 scores.
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forth (Haim and Zubidat, 2015; Lambert et al., 2015; Bedrosian and
Nelson, 2013). A disruption of circadian rhythmicity seems central for
mood disorders including depression (Lyall et al., 2018), while experi-
mental studies onmice and hamsters suggested that abnormal light cy-
cles lead to depression-like behaviors (Bedrosian et al., 2013; LeGates
et al., 2012; Fonken and Nelson, 2013).

Similar pathways are plausible for humans' mental health, since
people also follow circadian rhythms and sleep-wake cycles. It is specu-
lated that disruptions due to alternations in the day-lengths bymeans of
irregular light likely affects people's mood (LeGates et al., 2012). Here,
the blue wavelengths that are strongly emitted in the outdoor light
bulbs that are increasing used because of their high-efficiency status—
these being light-emitting diodes (LEDs)—are of particular concern
(Bierman, 2012). Blue wavelengths at night can suppress melatonin
levels and their production (Haim and Zubidat, 2015), and melatonin
exerts major control over sleep-wake-cycles. When ALAN exposures
are ill-timed or constant, biological rhythms can be desynchronized
and mood disorders exacerbated.

There are tenable mechanisms explaining how exposure to airborne
pollutants have adverse neurophysiological effects (Buoli et al., 2018).
Fig. 3. Associations between ALAN quintiles (Q) at the place of residence and PHQ–9 scores acro
GAMswith different adjustment levels. Model 1was unadjusted,Model 2was adjusted for perso
type, household income, and ethnicity), Model 3 was additionally adjusted for area-level cova
social fragmentation, and greenness), and Model 4 additionally included a soap film smooth
100 m buffer.
Biological pathways include thatfineparticulatemattermay cause envi-
ronmentally induced neuroinflammatory and autoimmune responses
(Block and Calderón-Garcidueñas, 2009; van den Bosch and Meyer-
Lindenberg, 2019). Studies with mice exposed to PM2.5 showed, for ex-
ample, pronounced depressive-like responses compared to those ex-
posed to filtered air (Fonken et al., 2011). Similar mechanisms via
neuroinflammation are likely to be at play in the pathogenesis of de-
pression in humans (Buoli et al., 2018).

4.4. Strengths and limitatations

A strength is the representative number of participants enriched
with person-level register and environmental data. Due to our large
sample size, the resultswerewell-powered. An analytical novelty is, un-
like earlier studies (James et al., 2017;Min andMin, 2018; Portnov et al.,
2016), our adjustment for potentially unmeasured factors related to
shared exposures among respondents living close together. This is an
issue that may have induced a bias had it been ignored (Wood, 2017).
Another strength is that we controlled for a variety of factors describing
both the physical and social environment on an address level rather
ss buffer sizes together with 95% confidence intervals (CI). Effects were estimated through
n-level characteristics (i.e., gender, age, marital status, employment, education, household

riates (i.e., Shannon index of building usage, PM2.5, noise, population density, deprivation,
er of the respondents' address coordinates. AIC scores were lowest for Model 3 with the
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than on the level of administrative units (e.g., postal codes). No previous
ALAN study has incorporated objectively measured area-level social as-
pects, to the best of our knowledge.

Notwithstanding these strengths, this study had limitations. Our
analyses were based on self-reported depressive symptoms, which
may have biased the regression estimates. The survey response rate
was moderate and some selection bias cannot be ruled out. Our survey
and ALAN data were not perfectly aligned which may have led to con-
textual uncertainties in exposure assessments. To assess personal or
bedroom ALAN exposure, information on indoor light conditions or
bedroom measurements to collect night light data with luminance
meters would have been necessary, but this step would have been
labor-intensive and time-consuming with such a large sample (Hänel
et al., 2018). Although our objective environmental assessments are
not prone to subjective evaluations and recall bias, we cannot rule out
that perceptions of residential environments differ. Another consider-
ation is that we could not rule out unmeasured and residual confound-
ing. Data on shift-working and sleep quality—both of which are
correlated with depressive symptoms—were not available (Bedrosian
and Nelson, 2013). Our cross-sectional findings are also vulnerable to
reverse causality – a limitation that applies to many studies (Min and
Min, 2018; Portnov et al., 2016). Lastly, we cannot assume that residen-
tial self-selection has not occurred. People without depressive
symptoms may choose to live in neighborhoods with less light or
other traffic-related pollution. It is therefore crucial to perform studies
with more robust designs such as longitudinal studies during natural
experiments and cohorts with follow-up data collection.

5. Conclusions

In this comprehensive national study, we observed a positive associ-
ation between exposure to outdoor ALAN within the immediate resi-
dential environment and depressive symptoms. The association
persisted after comprehensive adjustments for other exposures includ-
ing PM2.5, urbanicity, noise, land-use diversity, greenness, deprivation,
and social fragmentation. However, outdoor ALAN was highly corre-
lated with traffic-related air pollution, especially NO2, which has been
reported to affect mental health. Accounting for NO2 exposure
suggested that air pollution rather than outdoor ALAN may increase
PHQ–9 scores. Our findings support the notion that future evaluations
of health effects based on satellite-measured outdoor ALAN should
account for traffic-related air pollutants (i.e., NO2). Because ALAN repre-
sents a preventable and modifiable exposure, further research on a
possible association between ALAN and several health endpoints
remains relevant.
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